Journal of Neurophysiology

Noradrenergic modulation of firing pattern in guinea pig and cat thalamic neurons, in vitro

D. A. McCormick, D. A. Prince


1. The electrophysiological actions of norepinephrine (NE) in the guinea pig and cat thalamus were investigated using intracellular recordings from neurons of in vitro thalamic slices. 2. Application of NE to neurons of the lateral and medial geniculate nuclei, nucleus reticularis, anteroventral nucleus, and the parataenial (PT) nucleus resulted in a slow depolarization associated with a 2- to 15-nS decrease in input conductance and an increase in the slow membrane time constant from an average of 27.7 to 37.7 ms. The slow depolarization was not abolished by blockade of synaptic transmission, indicating that it was a direct (postsynaptic) effect. 3. The reversal potential of the NE-induced slow depolarization varied as a Nernstian function of extracellular potassium concentration ([K]o), indicating that it is due to a decrease in potassium conductance. This conclusion was supported by the finding that the amplitude of the NE-evoked depolarization was affected by changes in [K]o between 0.5 and 5.0 mM as expected for a K-mediated response. 4. Neurons of the PT nucleus displayed unusually large afterhyperpolarizations (AHPs) in comparison to cells in other thalamic nuclei. NE application to PT neurons caused not only a marked slow depolarization and decreased conductance, but also selectively reduced the slow AHP. 5. The NE-induced slow depolarization effectively suppressed burst firing and promoted the occurrence of single spike activity. NE-induced reduction of the slow AHP in PT neurons was accompanied by a decrease in spike frequency accommodation and the emergence of a slow afterdepolarization. 6. We suggest that through these electrophysiological actions, NE can effectively inhibit the generation of thalamocortical rhythms and greatly facilitate the faithful transfer of information through the thalamus to the cerebral cortex.