Journal of Neurophysiology

Error message

Notice: PHP Error: Undefined index: custom_texts in highwire_highwire_corrections_content_type_render() (line 33 of /opt/sites/jnl-jn/drupal-highwire/releases/20151124215058/modules/highwire/plugins/content_types/

Functional organization of sound direction and sound pressure level in primary auditory cortex of the cat

J. C. Clarey, P. Barone, T. J. Imig


1. The functional organization of neuronal tuning to the azimuthal location and sound pressure level (SPL) of noise bursts was studied in high-frequency primary auditory cortex (AI) of barbiturate-anesthetized cats. Three data collection strategies were used to map neural responses: 1) electrode penetrations oriented normal to the cortical surface provided information on the radial organization of neurons' responses; 2) neurons' responses were examined at a few points in the middle cortical layers in multiple normal penetrations across AI to produce fine-grain maps of azimuth and level selectivity; and 3) electrode penetrations oriented tangential to the cortical surface provided information on neurons' responses along the isofrequency dimension. 2. An azimuth-level data set was obtained for each single- or multiple- (multi-) unit recording; this consisted of responses to noise bursts at five SPLs (0–80 dB in 20-dB steps) from seven azimuthal locations in the frontal hemifield (-90 to +90 degrees in 30 degrees steps; 0 degree elevation). An azimuth function was derived from these data by averaging response magnitude over all SPLs at each azimuth tested. A preferred azimuth range (PAR; range of azimuths over which the response was > or = 75% of maximum) was calculated from the azimuth function and provided a level-independent measure of azimuth selectivity. Each PAR was assigned to one of four azimuth preference categories (contralateral-, midline-, ipsilateral-preferring, or broad/multipeaked) according to its location and extent. A level function obtained from the data set (responsiveness averaged over all azimuths) was classified as monotonic if it showed a decrease of < or = 25% (relative to maximum) at the highest SPL tested (usually 80 dB), and nonmonotonic if it showed a decrease of > 25%. The percentage reduction in responsiveness, relative to maximum, at the highest level tested (termed nonmonotonic strength) and the preferred level range (PLR; range of SPLs over which responsiveness was > or = 75% of maximum) of each response was also determined. 3. Normal penetrations typically showed a predominance of one azimuth preference category and/or level function type. The majority of penetrations (26/36: 72.2%) showed statistically significant azimuth preference homogeneity, and approximately one-half (17/36: 47.2%) showed significant level function type homogeneity. Over one-third (13/36) showed significant homogeneity for both azimuth preference and level function type. 4. Mapping experiments (n = 4) sampled the azimuth and level response functions at two or more depths in closely spaced normal penetrations that covered several square millimeters of AI.(ABSTRACT TRUNCATED AT 400 WORDS)