Corrigendum

Volume 100, September, 2008

During production, an older version of Fig. 7 was not replaced with a revised version. Figure 7 as it should appear is shown below.

FIG. 7. Effect of network dimensionality on gamma range synchronization. *A*: oscillations in the 16×512 PYs (8 \times 256 INs) network model. Snapshots of IN activity at 3 different times *(left)* and cross-correlation of field potentials along x axis *(right)*. *B*: oscillations in the 8×512 PYs (4 \times 256 INs) network model. *C*: normalized probability density distribution of time lags to the main peak of the cross-correlation function between local field potentials at different spatial locations as a function of the network size along the y dimension. Logarithmic scale. Results are averaged across 15 independent trials with randomly selected initial conditions. Note disappearance of the isolated peak for the network of size 1×1 footprint (8 PY neurons). *D*: spectrogram of the local field potential averaged across all neurons within $(150,350) \times (1, N)$ area, where N is number of PY neurons along y axis) as a function of the network’s size along the y-dimension. Logarithmic scale (dB). *E*: left: cross-correlation of field potentials along x axis in 2D model with radius of the synaptic footprint 4 for PY-PY and PY-IN synapses (total 47 and 48 neurons, respectively) and 2 for IN-PY synapses (total 13 neurons). Right: cross-correlation of field potentials along the chain of neurons in 1D model with radius of the synaptic footprint 24 for PY-PY and PY-IN synapses (total 47 and 48 neurons, respectively) and 6 for IN-PY synapses (total 13 neurons). Not only is delay to the peak of cross-correlation function larger in 1D model but also the amplitude of the correlation function is significantly reduced in 1D model.