Time Course of Attentional Modulation in the Frontal Eye Field During Curve Tracing

P. S. Khayat,1,3 A. Pooresmaeili,1 and P. R. Roelfsema1,2

1Department of Vision and Cognition, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences; 2Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, The Netherlands; and 3Department of Physiology, McGill University, Montreal, Quebec, Canada

Submitted 19 September 2008; accepted in final form 23 January 2009

Khayat PS, Pooresmaeili A, Roelfsema PR. Time course of attentional modulation in the frontal eye field during curve tracing. J Neurophysiol 101: 1813–1822, 2009. First published January 28, 2009; doi:10.1152/jn.91050.2008. Neurons in the frontal eye fields (FEFs) register incoming visual information and select visual stimuli that are relevant for behavior. Here we investigated the timing of the visual response and the timing of selection by recording from single FEF neurons in a curve-tracing task that requires shifts of attention followed by an oculomotor response. We found that the behavioral selection signal in area FEF had a latency of 147 ms and that it was delayed substantially relative to the visual response, which occurred 50 ms after stimulus presentation. We compared the FEF responses to activity previously recorded in the primary visual cortex (area V1) during the same task. Visual responses in area V1 preceded the FEF responses, but the latencies of selection signals in areas V1 and FEF were similar. The similarity of timing of selection signals in structures at opposite ends of the visual cortical processing hierarchy supports the view that stimulus selection occurs in an interaction between widely separated cortical regions.

INTRODUCTION

When a novel stimulus is presented to the visual system, neuronal activity is routed from the retina to the primary visual cortex (area V1) and then passed on to higher areas through a ventral and a dorsal processing stream (Mishkin et al. 1983). These processing streams converge in the frontal cortex where neurons carry signals that are related to sensory stimuli, but also signals related to the selection of specific actions (Kubota et al. 1980). The frontal eye field (area FEF) is one of the regions of frontal cortex that is dedicated to the generation of eye movements. Neurons in area FEF are involved in the transformation of the neuronal representations of relevant visual stimuli into commands to move the eyes (Bruce and Goldberg 1985; Schall and Thompson 1999). Some FEF cells are primarily visual and respond when a stimulus appears in their receptive field. Another class of neurons includes the movement cells that become active around the time of an eye movement toward a specific location in space. A third type of neuron is the visuomovement cell, which exhibits a visual response but is also active around the time of the saccade. If a delay is imposed between the stimulus and the instruction to make a saccade, then the visuomovement cells usually continue firing during the delay, implying that they carry a memory trace of the location where the stimulus had appeared (Sommer and Wurtz 2001; Umeno and Goldberg 2001).

Important information about the role of FEF neurons in the selection of relevant visual information has been obtained with the visual search task (Bichot et al. 1999; Monosov et al. 2008; Murthy et al. 2001; Schall and Thompson 1999; Schall et al. 1995; Thompson et al. 1996, 1997). In this task, the subject has to find a particular target item in a display in the presence of a number of distracting items. The initial responses in the search task are driven by the appearance of a visual stimulus in the neuron’s receptive field and in this phase the responses evoked by target and distractor objects are equally strong. However, at an additional delay, neurons start to discriminate between target and distractor items as the neuronal responses evoked by the target of search become stronger. Interestingly, the delay between the initial visual response and this later signal related to the selection of the target item is longer if the target is harder to find (Sato et al. 2001). It has been hypothesized that the enhancement of neuronal responses evoked by the target of search represents a shift of visual attention (Schall and Thompson 1999) and, indeed, psychophysical studies demonstrated that visual attention is focused on the search target (Kim and Cave 1995).

Comparative selection signals have also been observed in the visual cortex. Neurons in visual areas that respond to task-relevant items enhance their responses relative to neurons coding irrelevant items (Chelazzi et al. 1993; Colby and Goldberg 1999; Constantinidis and Steinmetz 2001; Moran and Desimone 1985). There are also distinct phases in the responses of neurons in the visual cortex, just as was described earlier for the frontal cortex. Visual cortical neurons initially register the appearance of a stimulus in their receptive field with a response that does not discriminate between relevant and irrelevant items and this is followed by a second response phase where task-relevant stimuli cause an increase in the response. These two response phases have also been observed in area V1, at the first stage of the visual cortical processing hierarchy (Khayat et al. 2006; Li et al. 2006; Motter 1993; Roberts et al. 2007; Roelfsema et al. 1998). The above-cited findings, taken together, suggest that frontal areas not only receive information from the visual cortex during the first phase of feature extraction, but that visual and frontal areas may also influence each other during the selection of the appropriate behavioral response. In accordance with this view, recent experiments showed that the activity of neurons in area FEF is coupled to that in areas of the visual cortex (Ekstrom...
et al. 2008; Moore and Armstrong 2003), but it is still unknown how widely separated areas interact with each other during the selection of visual information relevant for behavior. Several models could be envisioned for such an interaction. First, it is possible that higher areas of the visual and frontal cortices control the selection of relevant visual information and send a feedback signal to the earlier visual areas so that these control signals can be integrated with the incoming visual information (Corbetta and Shulman 2002; Serences and Yantis 2007). Second, it is conceivable that visual areas with their privileged access to the visual information first select the relevant item to inform higher areas only when visual selection has taken place. Third, it is possible that the visual and frontal cortices engage in an interaction to jointly select the relevant items in the display. We note that these three types of models give different predictions regarding the relative timing of the selection signals in the visual and frontal cortices.

Here we studied the activity of FEF neurons in a curve-tracing task that we used previously to study the correlates of attention shifts in the primary visual cortex (Khayat et al. 2006). In this task monkeys are required to select a target curve while ignoring another curve that is a distractor (Fig. 1). We showed previously that the initial responses of V1 neurons triggered at a latency of 40 ms after the presentation of the stimulus do not discriminate between the target and distractor curve but that the delayed responses do; the target curve evokes stronger responses than the distractor curve at a latency of 120–160 ms (reviewed by Roelfsema 2006). We will now study the activity in area FEF using the same task to ask a number of questions. 1) Does the temporal separation between a visual response and later selection phase occur other than visual search in area FEF? 2) How and when do visual, visuomovement, and movement cells contribute to the selection of the relevant stimulus? 3) How does the strength and the timing of the visual response and the selection signal in area FEF compare with neuronal activity in area V1?

METHODS

All experimental procedures complied with the National Institutes of Health Guide for Care and Use of Laboratory Animals and were approved by the institutional animal care and use committee of the Royal Netherlands Academy of Arts and Sciences. Standard surgical and electrophysiological techniques were used to record single-unit activity in area FEF. Briefly, in a first surgical operation, a head holder was implanted under aseptic conditions and general anesthesia, which was induced with ketamine (15 mg/kg, administered intramuscularly), and maintained after intubation by ventilating with a 70% N2O-30% O2 mixture, supplemented with 0.8% isoflurane, fentanyl (0.005 mg/kg, administered intravenously [iv]), and midazolam (0.5 mg·kg−1·h−1, iv). The head holder was embedded in dental cement and securely attached to the monkey’s skull using titanium orthopedic bone screws. To allow eye movement recordings, a gold ring was inserted under the conjunctiva of one eye. In a second operation, a trepanation was performed over area FEF and a recording chamber was placed. The FEF was localized with a magnetic resonance imaging scan (see Fig. 1A).

Behavioral task

Two adult macaque monkeys took part in the experiment. A trial started as soon as the monkey’s eye position was within a 1° square window centered on a 0.2° fixation point (FP). After 300 ms, the stimuli appeared (Fig. 1B), but the monkey had to maintain steady fixation. The stimuli consisted of two white curves and two red circles at the end of each curve. One of the curves was connected to the FP and served as a target curve (T in Fig. 1B), whereas the other, unconnected curve served as a distractor curve (D). The FP was extinguished 500 ms later, which cued the monkey to make a saccade to the circle that was at the end of the target curve. The two complementary stimuli shown in Fig. 1B were presented in a random sequence. Trials in which the monkey broke fixation before FP offset were terminated. One of the monkeys used in this experiment also participated in the previous area V1 experiment (Khayat et al. 2006). The animals were highly trained on the curve-tracing task, achieving accuracies that were >95% correct.

Recording and data analysis

We obtained extracellular recordings from single neurons with tungsten electrodes (impedance ~2 MΩ; FHC) that were lowered through the dura with a hydraulic microdrive (Narashige). Action potentials were amplified, filtered, and discriminated on-line using spike-sorter software (CED). The quality of isolation was also verified off-line (Plexon spike sorter). At the end of the recording session, we usually confirmed that the electrode penetration was made in FEF by using the recording electrode for intracortical microstimulation (bi-phasic current pulses, 70-ms train duration, 400 Hz). The penetration was considered in FEF if a saccade could be triggered using currents that were <100 μA (generally <50 μA) (Bruce et al. 1985). The eye position was measured using the double magnetic induction technique (Bour et al. 1984) and recorded at a sampling rate of 1 kHz.

RESPONSE FIELD MAPPING AND CELL CLASSIFICATION. On isolating a neuron, we first mapped its response field (RF) quantitatively by presenting a single saccade target at various directions and eccentricities. We measured tuning to direction at the neuron’s preferred eccentricity and fitted a Gaussian to the tuning curve.
where \(\sigma \) determines width of tuning and \(\mu \) is the preferred direction. We also measured tuning to eccentricity of stimuli in the preferred direction. We fitted one of two functions to the eccentricity-tuning curve. If the neuron’s response decreased at larger eccentricities (nonmonotonic tuning curve) we fitted a Gaussian to the logarithm of eccentricity

\[
H(Ecc) = k_2 \times \exp \left(\frac{-\left[\ln(Ecc) - \mu \right]^2}{2\sigma^2} \right)
\]

where \(\sigma \) determines width of tuning for eccentricity and \(\mu \) determines the preferred eccentricity. However, if the response strength was a monotonically increasing function of eccentricity (within the tested range of eccentricities), we fitted the following function

\[
H(Ecc) = k_2 \times \ln(1 + b \times Ecc^a)
\]

The response strength for any combination of direction and eccentricity was estimated by assuming that the effects of eccentricity and direction on a neuron’s response are separable

\[
G(Dir) = k_1 \times \exp\left(\frac{-[Dir - \mu]^2}{2\sigma^2} \right)
\]

where \(\sigma \) determines width of tuning and \(\mu \) is the preferred direction.

The RFs shown in Fig. 2 correspond to the estimated region of the visual field where the neuron’s response was within 75% of the maximal response \(G(Dir, Ecc) \).

We used a memory-guided saccade task to classify the FEF neuron as a visual, visuomovement, or movement cell (Bruce and Goldberg 1985). During the curve-tracing task, we positioned one of the saccade circles in the center of the RF. The other circle and the curve connected to it were positioned outside the RF, at an angle of about 135°.

Neuronal responses. Peristimulus time histograms of single-unit responses were computed and aligned to stimulus appearance and saccade onset. Only correct trials were included in the analyses. We determined the significance of differences in response strength between stimuli in a window from 150 to 400 ms after stimulus onset, applying the Mann–Whitney \(U \) test to the distribution of firing rates in single trials. We used a \(t \)-test for the population responses.

Latency of the visual response and of the attentional response modulation. Various methods exist to measure the latency of neuronal responses or the modulation thereof. A commonly used procedure is to take the first of a number of time bins that satisfy a significance criterion (e.g., Chelazzi et al. 2001; Lennie 1981; applying the Mann–Whitney \(U \) test for the population responses.)

Fig. 2. Activity of frontal eye field (FEF) neurons during curve tracing. \(A \): response of a visual neuron evoked by the target (solid trace) and distractor curve (dashed trace). \(B \) shows the stimulus display relative to the RF. Gray bar on abscissa shows the range of saccadic reaction times, with the average marked by the triangle. In the bottom panels, the latency of the visual-evoked response was estimated by fitting a function (gray curve) to the averaged response. The latency of response modulation was estimated by fitting a function (black curve) to the response difference. Arrows, latency of visual response (gray) and of response modulation (black). \(B \): neuronal response during control trials that examined the influence of the contour element near the fixation point on the response modulation (see RESULTS). The top panels show the stimulus display relative to the RF. \(C \) and \(D \): response of a visuomovement neuron evoked by the target and distractor curve (C) and during control trials (D). The RF was located at an eccentricity of 8° in the bottom right quadrant of the visual field (see top panels). Bottom panels in \(C \) show the latency estimates. Same conventions as \(A \).
Maunsell and Gibson 1992). Unfortunately, this method yields biased estimates, especially if the difference between neuronal responses between conditions builds up gradually. In that case the method is sensitive to the amount of data collected because it obtains shorter latencies when more trials are collected. In our main analysis, we thus used an alternative latency estimate that is independent of the number of trials and is derived by fitting a function \(f(t) \) to the response or response difference (Khayat et al. 2006; Roelfsema et al. 2003; Thompson et al. 1996). The shape of \(f(t) \) was derived from the following two assumptions: 1) the onset of response (or the response modulation) has a Gaussian distribution across trials and across neurons and 2) a fraction of the response (modulation) dissipates exponentially (as described in Roelfsema et al. 2003). These assumptions yield the following two differential equations:

\[
\begin{align*}
\frac{d m(t)}{dt} &= -\alpha m(t) + g(t, \mu, \sigma) \\
\frac{d m(t)}{dt} &= g(t, \mu, \sigma)
\end{align*}
\]

The solution to these equations is the sum of an ex-Gaussian (Luce 1986) and a cumulative Gaussian, which was fitted to the response difference

\[
f(t) = d \times \exp(\mu t + 0.5\sigma^2 t^2 - \sigma t) \times G(t, \mu + \sigma^2 \alpha, \sigma) + c \times G(t, \mu, \sigma)
\]

Thus \(f(t) \) is determined by five parameters: \(\mu, \sigma, \alpha, c, \) and \(d \); \(g(t, \mu, \sigma) \) is a cumulative Gaussian and \(c \) and \(d \) are the contributions of nondissipating and dissipating modulation, respectively. The latency of the visual response (\(\text{lat}_{\text{vis}} \)) and the attentional modulation (\(\text{lat}_{\text{at}} \)) was (arbitrarily) defined as the point in time that the fitted function reached 33% of its maximum (\(\text{lat}_{\text{vis}} \)). We have also investigated the results with other criteria that gave rise to other latency estimates but qualitatively similar results (see Results).

To compute a 95% confidence interval for the latency of the visual response and of the response modulation, we used a bootstrapping procedure (Press et al. 1986). If there are \(N \) recording sites, we randomly selected \(N \) cases with replacement and determined the latency in the simulated sample using the curve-fitting method described earlier. We repeated this procedure 10,000 times to estimate the 95% confidence interval (black and gray bars on the abscissa in Fig. 3, A and B).

We also analyzed the latency of response modulation in area V1 and FEF using a method that is based on the significance of the difference in the responses evoked by the target and distractor curve, to facilitate the comparison between our results and some of the previous studies that used a similar method (e.g., Chelazzi et al. 2001; Lennie 1981; Maunsell and Gibson 1992). In this analysis, we defined the latency as the first of three time bins (bin width = 5 ms) with a significant \(P < 0.05 \) difference between the responses evoked by the target and distractor curves.

Results

The monkeys had to trace a target curve connected to the fixation point to localize a circle located at the curve’s other end that was the target for an eye movement, while ignoring a distractor curve not connected to the fixation point (Fig. 1B). The stimuli differed only in the location of a small contour segment that connected the fixation point to one of the curves. During this task, we recorded single-unit activity in area FEF of two monkeys, after having classified the cells as visual (\(n = 17 \)), visuomovement (\(n = 15 \)), and movement (\(n = 17 \)) neurons based on a memory-guided saccade task (Bruce and Goldberg 1985). The centers of all the RFs were in the visual hemifield contralateral to the hemisphere where the neurons were recorded, at eccentricities ranging from 5 to 17°. We placed one of the circular saccade targets in the center of the neuron’s RF and the other, distractor circle at a position far from the RF.
Neuronal activity of visual-responsive cells during curve tracing

We will first examine the responses of the cells with a visual response (i.e., visual and visuomovement neurons). Figure 2A illustrates the response of an example visual FEF neuron evoked by the stimuli displayed in the top panels. The neuron's initial visual response (left) did not discriminate between the target (solid trace) and distractor curve (dashed trace). However, after a delay the response evoked by the target curve was enhanced relative to the response evoked by the distractor (P < 10⁻⁴, U test), while the monkey's gaze was still at the fixation point. At the time of saccade execution (right) the neuron's response was completely suppressed. We determined the latency of the neuron's visual response by fitting a function to the average response evoked by the target and distractor curves (gray fit in Fig. 2A, bottom). The visual latency, estimated as the time point where this function reached 33% of its maximum, was 49 ms. We determined the latency of the response modulation equivalently by subtracting the response evoked by the distractor from that evoked by the target and fitting a function to the response difference (black fit in Fig. 2A, bottom) and obtained a latency estimate of 109 ms, i.e., 60 ms after the onset of the visual response.

Figure 2C illustrates the response of a visuomovement cell during curve tracing. This neuron also exhibited an initial visual response, which occurred at a latency of 51 ms and which did not differentiate between the target and distractor curves. At a latency of 164 ms after stimulus onset, the response to the distractor curve was suppressed, whereas the response to the target was enhanced (P < 10⁻⁶, U test). This response enhancement reached a peak just before the time of the saccade (Fig. 2C, right).

The modulation of the neuronal response presumably reflects the selection of the target curve because the visual stimulus in the RF was similar across trials. The only difference between stimuli was a small connecting contour segment near the fixation point. We sought to exclude the possibility that the difference in this connecting segment contributed to the response modulation because FEF neurons have large RFs that are difficult to demarcate and that may even include the fixation point. We therefore included control trials that were randomly interleaved with the other trials. The control stimuli were truncated versions of the standard stimuli that included contour elements only in the vicinity of the fixation point, in addition to a single saccade target at a constant position outside the RF and not connected to one of the segments (Fig. 2, B and D, top panels). The difference between the two control stimuli was irrelevant for the monkey, but served to investigate the effect of the connected contour segment on visual activity. The responses evoked by these stimuli were similar (P > 0.05, U test) in both the visual (Fig. 2B) and the visuomovement neurons (Fig. 2D), indicating that the delayed response modulation in the main task is not caused by differences in the visually driven response.

We obtained highly similar results across the population of visual (n = 17) and visuomovement (n = 15) FEF neurons. Figure 3, A and B shows the normalized population response of each cell class, respectively, obtained by averaging across responses evoked by the target and distractor curves. The initial visual response occurred at a latency of 55 ms, with a 95% confidence interval of 45–109 ms (determined with a bootstrapping method; see METHODS) in visual cells (Fig. 3A, left) and at a latency of 50 ms (95% confidence interval: 41–102 ms) in visuomovement cells (Fig. 3B, left), and did not discriminate between the target and distractor curves. However, the response evoked by the target curve was enhanced over the response evoked by the distractor curve (P < 10⁻⁴, t-test) at a delay of 139 ms (95% confidence interval: 116–156 ms) after stimulus onset in visual cells and 152 ms (95% confidence interval: 145–187 ms) in visuomovement cells. At the time of the saccadic eye movement, the response evoked by the target curve decayed in visual cells (Fig. 3A, right), whereas it reached a peak in visuomovement cells (Fig. 3B, right).

We pooled together the responses of visual and visuomovement neurons because both cell classes exhibited a visual response and discriminated between the target and distractor curves at a similar latency. The population response pooled across these visual-related cells (n = 32), shown in Fig. 4A, had a visual latency of 50 ms (95% confidence interval: 47–94 ms) and it reflected the selection of the target curve at a delay of 147 ms (95% confidence interval: 139–158 ms). The population responses to the control stimuli were similar (Fig. 4A, right, P > 0.05, t-test), which demonstrates that the response modulation in the curve-tracing task is not caused by the difference in visual activity evoked by the contour elements close to the fixation point. The effects of visual selection were highly consistent across our sample of FEF visual-responsive neurons because 31 of 32 neurons responded significantly stronger to the target curve than to the distractor curve (P < 0.05, U test). We determined the strength of modulation of individual neurons, by computing a modulation index (MI) in a window from 150 to 400 ms after stimulus onset. MI was defined as the difference in response strength normalized to the average response: (R_T - R_D)/(|R_T + R_D|/2), where R_T and R_D are responses to the target curve and the distractor curve, respectively. The median of the MI distribution was similar in both visual and visuomovement cells (P > 0.05, U test) and was shifted to positive values (visual cells: median MI = 1.67, Fig. 4B, black bars; visuomovement cells: median MI = 1.68, Fig. 4B, gray bars), indicating that visual-responsive cells fire more action potentials if their RF is on the target curve. We also estimated the latency of the visual response and of the selection signal (response modulation) for individual neurons with a significant effect of attention (n = 31, i.e., 16 visual and 15 visuomovement cells). The distribution of the visual response latencies across visual and visuomovement cells was similar (median = 72 and 60 ms, respectively, P > 0.05, U test), as was the case for the distribution of the latency of response modulation (median = 153 and 164 ms, P > 0.05, U test). Across all these visual-responsive neurons (Fig. 4C), the distribution of visual latencies ranged from 34 to 145 ms, with a median of 67 ms (black arrow), whereas the latencies of the response modulation ranged from 91 to 272 ms, with a median of 164 ms (white arrow). We further examined whether there was a correlation between the latency and the strength of response modulation (MI) by computing a linear regression across the individual neurons. The result of this analysis (r² = 0.03, slope = 0.003 ± 0.007, intercept = 1.16 ± 1.28) indicated that the latency of the response modulation did not depend on the strength of the response modulation (P > 0.05),
confirming that our measure of the timing of the modulation is relatively insensitive to the modulation strength (see METHODS).

Neuronal activity of movement cells during curve tracing

We also recorded the activity of 17 FEF movement neurons. Figure 3C shows the population response when the neurons’ movement fields were located at the end of the target curve (solid trace) or distractor curve (dashed trace). Although movement neurons did not exhibit a visual response, the ongoing activity was suppressed when the stimulus appeared, irrespective of whether the target curve or the distractor curve was in the neurons’ movement field. However, prior to the saccade made to the circle at the end of the target curve in the movement field the response was enhanced, whereas it remained suppressed prior to a saccade made elsewhere.

Comparison between area FEF and area V1

In a previous study (Khayat et al. 2006), we recorded multiunit activity in area V1 of two monkeys using the same curve-tracing task and one of these monkeys also participated in the present experiment. Figure 5 shows the population responses in area V1 (n = 55 recording sites). The V1 visual response occurred at a latency of 41 ms (95% confidence interval: 39–42 ms; gray fit in Fig. 5A, bottom) and was followed by a response enhancement to the target curve (P < 10⁻⁶, t-test) at a latency of 144 ms (95% confidence interval: 138–162 ms; black fit). The response at most V1 recording sites was enhanced if it was evoked by the target curve (median MI = 0.23, Fig. 5B). However, the magnitude of this effect was significantly smaller than that in area FEF (MI = 1.67, P < 10⁻⁹, U test). We also estimated the latency of the visual response and of the response modulation for individual recording sites with a significant response enhancement to the target curve (n = 39, P < 0.05, U test, Fig. 5C). The visual latencies in area V1 ranged from 36 to 60 ms, with a median of 42 ms, which was significantly earlier than that in area FEF visual-responsive neurons (P < 10⁻⁶, U test; compare gray bars between Figs. 4C and 5C). The distribution of the latencies of the response modulation in area V1 (range, 113–247 ms) was, however, similar to that in area FEF (compare black bars between Figs. 4C and 5C). The median response modulation latency was 163 ms compared with 164 ms in area FEF (P > 0.05, U test).

At first sight, these results suggest that the selection signals in area V1 and area FEF have a similar time course. We next considered two possible caveats of our analysis. First, the selection of the animals or the amount of experience in the curve-tracing task might have caused a bias in the estimated latencies because the ideal comparison would have been between different areas recorded at the same time. To investigate the influence of these factors, we compared the FEF and V1 attentional latencies in the animal that participated in both studies. The latency of attentional modulation of visual-responsive cells in area FEF in this animal was 151 ms (n = 13), similar to the V1 latency observed by Khayat et al. (2006) of 148 ms (n = 40). The same animal also participated in another V1 study >2 yr later (Pooresmaeili et al., unpublished data) and the attentional modulation was 150 ms during these recordings (n = 27). Thus the timing of attentional modulation was stable across separated recording periods in this animal and comparable between areas V1 and FEF. Second, here we have compared single-unit data in area FEF to multiunit data in area V1. Although multiunit recordings sample number of single units and the population responses obtained with single- and multiunit recordings are therefore expected to be identical (Supér and Roelfsema 2005), we also analyzed multiunit responses in area FEF obtained with the method of the V1 study (Khayat et al. 2006). The FEF multiunit attentional latency in our sample of visual-responsive neurons was 154 ms, similar to the value obtained by pooling across single units (147 ms). We conclude that the similarity of the timing of attentional modulation in area V1 and FEF is not caused by a difference in the recording technique.
In the previous sections, the latencies of the visual responses and the attentional modulation were estimated as the time point where the fitted function reached 33% of its maximum. Because this 33% criterion (lat_{33}) is arbitrary, we also determined the time that the fitted function reached 25 and 50% of its maximum (lat_{25} and lat_{50}). The median latency of the visual response in our sample of FEF visual-responsive cells was $lat_{25} = 66$, $lat_{33} = 67$, and $lat_{50} = 78$ ms. In area V1, the median latency of the visual response was $lat_{25} = 40$, $lat_{33} = 42$, and $lat_{50} = 44$ ms. The visual latency in area V1 was significantly earlier than that in area FEF under each criterion ($P < 10^{-6}$, U test). The median latency of attentional modulation in our sample of FEF visual-responsive cells was $lat_{25} = 157$, $lat_{33} = 164$, and $lat_{50} = 178$ ms, and these values were similar to the latencies in area V1 $lat_{25} = 152$, $lat_{33} = 163$, and $lat_{50} = 171$ ms ($P > 0.05$, for all comparisons). Finally, to facilitate the comparison of our results with previous studies, we also determined the latency of the response modulation with a method used in these studies based on the significance of the difference in response evoked by the target and distractor curve (see METHODS) and found that the latency of the response modulation in FEF was identical to that in area V1; both latencies were 150 ms.

DISCUSSION

Previous studies showed that the responses of FEF neurons are modulated by attention during visual search and pop-out tasks (Bichot and Schall 1999; Murthy et al. 2001; Thompson et al. 1996,1997). Here we have extended these findings by showing neuronal correlates of the selection of relevant visual information in FEF in a different visual task. Moreover, we have determined the latency of the visual responses and of the selection signals in FEF and compared it to that in area V1. To our knowledge, this study is the first to examine and compare visual selection processes between the first cortical stage of visual processing and area FEF, which is at a relatively late stage involved in transforming visual signals into an oculomotor command, with the same task. We found that the latency of the selection of the target curve in area FEF is strikingly similar to that in area V1 (Khayat et al. 2004a, 2006; Roelfsema et al. 2003).

Neuronal responses in FEF during curve tracing

In the present study, we found that the latency of the visual response as well as the latency and strength of the selection signals of both visual and visuomovement FEF neurons were comparable. The responses triggered by the appearance of the stimulus in the RF had a latency of 50 ms when we averaged across our population of visual-responsive neurons, whereas the visual response latencies of individual neurons ranged from 34 to 145 ms, in accordance with a previous study showing that FEF is activated only slightly later than area V1 (Schmolesky et al. 1998). At a latency of 147 ms the response averaged across the population of visual-responsive neurons became comparable. The responses triggered by the appearance of the stimulus in the RF had a latency of 50 ms when we averaged across our population of visual-responsive neurons, whereas the visual response latencies of individual neurons ranged from 34 to 145 ms, in accordance with a previous study showing that FEF is activated only slightly later than area V1 (Schmolesky et al. 1998). At a latency of 147 ms the response averaged across the population of visual-responsive neurons became comparable. The responses triggered by the appearance of the stimulus in the RF had a latency of 50 ms when we averaged across our population of visual-responsive neurons, whereas the visual response latencies of individual neurons ranged from 34 to 145 ms, in accordance with a previous study showing that FEF is activated only slightly later than area V1 (Schmolesky et al. 1998). At a latency of 147 ms the response averaged across the population of visual-responsive neurons became comparable. The responses triggered by the appearance of the stimulus in the RF had a latency of 50 ms when we averaged across our population of visual-responsive neurons, whereas the visual response latencies of individual neurons ranged from 34 to 145 ms, in accordance with a previous study showing that FEF is activated only slightly later than area V1 (Schmolesky et al. 1998). At a latency of 147 ms the response averaged across the population of visual-responsive neurons became comparable.
FEF neurons between trials where monkeys made a saccade to the target of the visual search and trials where they made a saccade to another location. These studies found that the timing of the visual selection of the search target in area FEF did not depend on the planning of an eye movement to the target's location. We therefore consider it likely that the timing of the FEF response enhancement in the present curve-tracing task is an index of the visual attentional selection process, although we did not include conditions that permitted a dissociation between eye movement planning and attention shifts. The hypothesis of such an attention signal in area FEF and area V1 is in accordance with previous findings in human observers showing that visual attention is directed to all the contour elements of a traced curve (Houtkamp et al. 2003; Scholte et al. 2001).

Timing of selection signals in visual and frontal cortices in previous studies

Let us briefly consider the results of previous studies that measured the timing of selection signals in different cortical areas. One task that has been studied both in the visual cortex and in the frontal cortex is the “pop-out” visual search task where monkeys have to detect a target item with a unique feature among distractors that are different. Knierim and van Essen (1992), for example, investigated the responses in area V1 evoked by a line element with one orientation on a background of elements with another orientation. The responses of neurons in area V1 evoked by a line element that pops out were enhanced over the responses evoked by line elements with the same orientation as the background lines at a latency of 60 ms, which was only 20 ms after the onset of the visual response. Subsequent studies demonstrated that V1 responses evoked by larger figures composed of line elements with a distinct orientation are also enhanced, although this figure–ground response modulation occurs slightly later, at a latency of 80 to 120 ms after the appearance of the stimulus (Lamme 1995; Lamme et al. 1999). Moreover, Zipser et al. (1996) observed figure–ground modulation in area V1 for figures defined by color, motion, luminance, and disparity with comparable latencies in the range of 80 to 100 ms. Some studies on visual selection in area FEF also used pop-out search tasks with targets differing in color or motion from the distractors. The latency of the selection signal in area FEF in these studies ranged from 120 to 160 ms (Monosov et al. 2008; Sato et al. 2001; Thompson et al. 1996, 1997).

Therefore a direct comparison of the results in the visual and frontal cortices suggests that the visual cortex selects the pop-out target before the frontal cortex. We note, however, that such a conclusion may be premature because the visual stimuli differed substantially across studies. The FEF studies used circular arrays with a handful of clearly distinguishable items on a homogeneous background, whereas the V1 texture segregation studies used stimuli that were composed of thousands of small texture elements filling the entire display. Buschman and Miller (2007) made a direct comparison of the timing of pop-out search between lateral intraparietal area of the parietal cortex, area FEF, and the lateral prefrontal cortex. They found that the selection of the pop-out target in the parietal cortex preceded selection in the frontal cortex, although they did not report the average time course of the neuronal responses in the two structures aligned on stimulus appearance, but only the times that the selection signal became significant in individual neurons. This study has also been criticized because the timing of the selection signal in area FEF was later than that in other studies, a discrepancy that may be caused by difficulties in optimizing the stimulus display when recording from many neurons at the same time (Schall et al. 2007).

Another approach to test whether area FEF is responsible for the selection of pop-out stimuli was used by Monosov et al. (2008) who compared the timing of selection signals between spiking activity and the local field potential (LFP). In this study, the LFP was used as a measure for the synaptic input into area FEF. Interestingly, the appearance of the visual stimulus was first detectable in the LFP and slightly later in the spiking activity, whereas the selection of the relevant target item was first signaled by an increase in spiking activity of FEF neurons before it was detectable in the LFP. On the premise that spikes represent the output of a cortical area whereas the local field potential represents the input, these results suggest that target selection is determined locally within area FEF. However, this premise can be questioned because most of the synaptic input into a cortical column originates from the column itself (reviewed in Douglas and Martin 2004). It will therefore be of interest for future studies to investigate whether the timing of the selection signal in the LFPs in the visual cortex precedes that of the spikes, as predicted if the premise holds and if the selection signal indeed originates from area FEF.

Attentional control during curve tracing: who is in charge?

Here we compare the timing of visual responses as well as behavioral selection signals in the visual and frontal cortices with the curve-tracing task. Our results indicate that neuronal responses in area V1 and area FEF evoked by the target curve are enhanced over responses evoked by the distractor curve at approximately the same time. We note that the V1 and the FEF data were obtained in different animals and at different times and we might have been able to detect smaller differences in the timing of the selection signals had we simultaneously recorded neuronal activity in both structures. Nevertheless, in one of the animals we recorded V1 activity before and after the FEF recordings and found that the timing of the selection signals was comparable. We find the similarity in the time course of the selection signal in two areas at the opposite ends of the visual cortical hierarchy highly remarkable. Our results do not support theories proposing that a frontoparietal network that includes area FEF controls where attention is, whereas lower-level visual areas are the passive recipients of these control signals (Corbetta and Shulman 2002).

We hypothesize that the similarity of timing of the selection signal in area V1 and area FEF is caused by the dependence of the selection process on the representation of the target curve’s shape in the visual cortex. In the present study, the only difference between stimuli was the short contour element that connected the fixation point to one of the curves and the animals could have planned their saccade on the basis of this short contour element only. However, the monkeys had received extensive training with more complex stimulus sets before they entered into the present study. These stimulus sets contained stimuli differing at multiple locations, making it imperative to trace the entire target curve (see e.g., Figs. 6 and...
7 in Khayat et al. 2004b). In our V1 studies we used stimuli similar to those of the present study and we observed that the neuronal responses to all contour elements of the target curve are enhanced to the same degree, irrespective of whether the V1 receptive field fell on the beginning, the middle, or on the end of the target curve (Khayat et al. 2006; see also Khayat et al. 2004a). These results imply that the animals direct their attention to all contour elements of the curve. During curve tracing, attention is first directed to the initial segments of the target curve and it then gradually spreads along this curve until all contour elements are attended (Houtkamp et al. 2003). The horizontal connections between neurons in early visual areas can provide the substrate for this propagation because they interconnect neurons that respond to contour elements that are nearby and collinear and therefore likely to belong to the same curve (Bosking et al. 1997; Schmidt et al. 1997). Thus the spread of attention can be implemented as a propagation of the enhanced response through these connections (reviewed by Roelfsema 2006) and the small V1 RFS would equip the process with the high spatial resolution required when the relevant curve comes close to another curve. Neurons in FEF, on the other hand, are not selective for the features of stimuli, such as orientations, colors, or shapes, and they may therefore have to be informed by lower areas about the location of the target curve. Indeed, the enhanced representation of the target curve in area V1 occurs well before the eye movement response (Roelfsema et al. 2003), which is consistent with the possibility that the enhanced response observed in FEF during curve tracing originates from the visual cortex.

We do not suggest, however, that early visual areas are the only ones to exert control over the curve-tracing process because other areas might be involved in the decision to trace a curve or to engage in another task. We propose that the set of neurons that controls attention at a certain time point depends on the task demands (Buschman and Miller 2007; Roelfsema 2005). If there is a strategic reason to focus attention on a specific spatial location, feedback signals from area FEF may control the neuronal activity in lower visual areas, whereas the FEF response enhancement may rely on activity in the visual cortex in tasks that require information from the visual scene like visual search or curve tracing.

An attractive theoretical possibility that follows from the above-cited considerations is that the response modulations observed in many areas of the visual, parietal, and frontal cortices during attention-demanding tasks reflect the continuous interareal exchange of information through the dense network of feedforward and feedback connections (Felleman and van Essen 1991). These reciprocal interactions might cause the system to behave like an attractor network where different network nodes carry information about the task goal and the visual stimulus (Hamker 2005; Usher and Niebur 1996). In such a system, the selection of the behaviorally relevant stimulus can be seen at multiple levels at approximately the same time when the system settles into an attractor state.

ACKNOWLEDGMENTS

We thank K. Brandsma and J. C. de Feiter for technical assistance.

GRANTS

This study was supported by a Human Frontier Science Program grant and a Netherlands Organization for Scientific Research VICI grant awarded to P. R. Roelfsema.

REFERENCES

Schall JD, Paré M, Woodman GF. Comment on top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 318: 44b, 2007.

