State-Dependent Effects of Stimulus Presentation Duration on the Temporal Dynamics of Neural Responses in the Inferotemporal Cortex of Macaque Monkeys

Koorosh Mirpour1 and Hossein Esteky1,2
1School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Niavaran; and 2Research Center for Brain and Cognitive Sciences, School of Medicine, Shaheed Beheshti University, Tehran, Iran

Submitted 10 November 2008; accepted in final form 27 June 2009

Miropr K, Esteky H. State-dependent effects of stimulus presentation duration on the temporal dynamics of neural responses in the inferotemporal cortex of macaque monkeys. J Neurophysiol 102: 1790–1800, 2009. First published July 1, 2009; doi:10.1152/jn.91197.2008. During natural vision, stimuli are viewed for different durations as the state of brain activity changes over time. Here we studied the effects of stimulus presentation duration on cell responses (n = 259) in three subdivisions of the inferotemporal (IT) cortex of fixating macaque monkeys as neural baseline firing rates varied over the course of recording. First, cell responses to the presentation of 120 images were tested, and four images that elicited significant responses with various degrees of effectiveness were selected for further study. Then the four selected images were presented to the monkeys for five different presentation durations (18, 70, 140, 210, and 350 ms). We found that depending on the magnitude of neural baseline activity, stimulus presentation duration affected the response properties and efficiency of neural information processing in the IT cortex. Short stimulus presentation durations elicited phasic responses consisting of rhythmic activation and inactivation, which conveyed a lower amount of stimulus information, particularly following higher baseline firing rates. Longer presentation durations elicited a sustained pattern of response and carried a greater amount of information, particularly at lower baseline firing rates. Finally, a significantly higher proportion of cells in the posterior IT compared with the anterior IT had a tendency to have high baseline activity, recruit stronger phasic responses and convey less information. It is plausible that during natural vision, as stimuli with various exposure durations affect the visual system, top-down influence or competition within local neural networks differentially influences the function of IT cells by changing their baseline activity.

INTRODUCTION

The inferior temporal cortex (IT) is the final purely visual area along the ventral visual pathway in primates and is thought to be essential for recognition of complex visual objects (Afraz et al. 2006; Baylis et al. 1987; Desimone et al. 1984; Gross 1994; Kiani et al. 2007; Logothetis 1998; Tanaka et al. 1991). Several studies suggest that information about stimulus shape evolves dynamically over the temporal course of neural responses in the ventral visual pathway. It has been shown that IT cells convey different types and levels of information across the temporal course of their responses (Allred and Jagadeesh 2007; Kiani et al. 2005; Kovacs et al. 1995; Sugase et al. 1999; Tamura and Tanaka 2001; Tovee et al. 1993). Similar results have been reported in the lower areas of the ventral visual pathway (Gawne et al. 1991; Hegde and Van Essen 2004, 2006; Muller et al. 2001).

Recognition of objects depends on the duration of exposure to the stimuli. Many studies have shown that the mean duration of fixation in free visual search and object recognition tasks is ~200 ms, depending on stimulus properties and task difficulty (Enoch 1959; Ford et al. 1959; Gould 1973; Jacobs 1986; Luria and Strauss 1978; Zelinsky and Sheinberg 1997). For example, it has been shown that fixation durations <70 ms result in missing the fixated target in a visual search task (Hooge and Erkelens 1996). In addition, human visual object recognition performance declines as the stimulus presentation duration decreases (Grill-Spector and Kanwisher 2005). The steepest decline in performance occurs in presentation times <70 ms. The impact of stimulus presentation duration on cortical cell responses has been shown previously in the primary visual cortex of monkeys (Gawne et al. 1991; Muller et al. 2001). In addition, it has been observed that the reliability of the primary visual cortex (V1) and IT neural discrimination between two stimuli increases with increasing stimulus presentation duration (Allred and Jagadeesh 2007; Zohary et al. 1990). Allred and Jagadeesh showed that the pattern of IT cell responses and the amount of information they convey is affected by the stimulus exposure duration (Allred and Jagadeesh 2007).

However, stimulus presentation duration is only one of many parameters that can affect the temporal dynamics of neural responses. It is not clear how these different parameters interact to govern the way the visual cortex processes sensory information. For example, it has been shown that the baseline firing rate of cortical cells changes spontaneously (Dehaene and Changeux 2005), but the role of fluctuations in baseline activity in cortical sensory processing is not well understood. During natural vision, in addition to these spontaneous changes in baseline activity, contextual parameters such as expectation, attention, and familiarity with the viewing condition and/or the effect of preceding or simultaneously viewed stimuli can change the baseline brain activity. Emerging evidence indicates that baseline activity is controlled by top-down mechanisms and that it can affect sensory processing and the subjects’ behavior. For example, higher and more correlated baseline activity in V1 cells is shown to be correlated with higher stimulus detection performance by monkeys (Super et al. 2003). Several other studies have shown that spontaneous and evoked changes of baseline neural activity affect cortical sensory processing in rodents’ barrel cortex and cats’ V1 (Haider...
et al. 2007; Leger et al. 2005; Petersen et al. 2003; Sachdev et al. 2004; Timofeev et al. 1996). However, little is known about the effect of neural baseline activity on high-level sensory processing in the IT cortex of primates. In particular, there have been no studies to investigate the concurrent impact of stimulus exposure duration and the spontaneous change of the state of neural activity on sensory processing and neural response dynamics.

Here we studied the effects of stimulus form and presentation duration on IT cell responses as their baseline firing rates fluctuated over the temporal course of the recording. We found that the amount of information conveyed by IT cells depended on presentation durations and the level of the cells’ baseline activities, particularly during the later part of responses. High baseline activity was followed by phasic responses, which consisted of rhythmic activation and inactivation and conveyed a lower amount of stimulus information. At low baseline activities, the neural responses were more sustained and carried a higher amount of information.

METHODS

Subjects

Two male adult macaque monkeys (Macaca mulatta) were used in this study. All experimental procedures were performed in accordance with the guidelines on the care and use of laboratory animals of the Iranian Society for Physiology and Pharmacology and the National Institutes of Health.

Recording

We recorded single-unit responses from the IT area in awake monkeys during a passive fixation task, using the same experimental procedures as described previously, (Afraz et al. 2006; Kiani et al. 2005) except when mentioned otherwise. In brief, head restraints and recording chambers were stereotaxically implanted under aseptic conditions on the dorsal surface of the skull of the monkeys while the animals were anesthetized with sodium pentobarbital. After recovery, single units were recorded with tungsten electrodes (FHC). The electrodes were advanced with an Evarts-type manipulator (Narishige) from the dorsal surface of the brain through a stainless steel guide tube inserted into the brain down to 10–15 mm above the recording sites. The recording sites were localized using the MRI images acquired before the surgery and electrophysiological criteria defining white/gray matter borders. The recording sites were evenly distributed at the anterior 11–20 mm in one monkey and 7–19 mm in the other one over the ventral bank of the superior temporal sulcus and the ventral convexity up to the medial bank of the anterior middle temporal sulcus. The cortical sulci were located using the MRI images. Subdivisions of the IT cortex were defined using the location of cortical sulci as illustrated by Tanaka and colleagues (Saleem and Tanaka 1996; Saleem et al. 2000; Tamura and Tanaka 2001). All neurons located in the cortical area between the medial bank of the anterior middle temporal sulcus (amts) and lateral to the lower lip of the superior temporal sulcus (sts), including the lateral bank of the amts, were considered as the anterior inferotemporal cortex (Tea). The posterior border of the Tea was defined as the first sagittal section in which the amts appeared in the MRI images. All neurons located in the cortical area between the medial bank of the anterior middle temporal sulcus (amts) and lateral to the occipitotemporal sulcus (ots) were considered as the posterior inferotemporal cortex (TeP). The posterior and anterior borders of the TeP were defined as anterior to the pmts and posterior to the amts. Fig. 1 represents a schematic that illustrates the location of the subdivisions of the recorded IT neurons in this study.

The action potentials from single units were isolated in real time by a template matching algorithm (Worgotter et al. 1986). The monkey had to fixate the eyes, with a precision of ±2° on a 1° circular fixation spot presented at the center of the display. The eye position was measured by an infrared system which allowed a precision of 1° in the measurement of eye position (i_rec, http://staff.aist.go.jp/k.matsuda/eye/).

Visual stimuli

The stimuli were 120 photographs of natural and artificial objects isolated on a gray background. The stimulus set consisted of simple geometrical shapes and complex multicolored pictures presented on a computer graphics display. We presented visual stimuli in two stages. In the first stage, 120 stimuli were presented in a pseudorandom order each repeated five times. It should be noted that we did not use any visual masks following stimulus presentation. The stimuli were colorful photographs of natural and artificial objects isolated on a gray background. They extended to 7 × 7° of visual angle. Each block started with appearance of a 1° fixation point in the center of the display. When the monkeys maintained their gaze at the fixation point for 200 ms, the fixation point disappeared, and after a 300-ms delay, presentation of the stimulus sequence started. Each stimulus was presented for 210 ms, with a 400-ms interstimulus interval. The sequence stopped when the monkey broke the gaze fixation, and a new block started with the reappearance of a fixation point. The monkeys were rewarded with a drop of juice every 1–3 s during the fixation.

To test the effect of stimulus presentation duration, four stimuli were selected from the images that evoked statistically significant...
responses: the stimulus that evoked the largest response (called the best or optimal stimulus hereafter) and three stimuli (called suboptimal stimuli hereafter) that evoked the highest response magnitudes in the following ranges: 50–75, 25–50, and <25% of the largest response. In all analyses of the results, the effect of stimulus strength was calculated using these four different stimuli for each neuron.

The response magnitudes were calculated as the average firing rate within a 430-ms window, starting at 71 ms after the stimulus onset. The significance of the responses to an individual stimulus was determined by comparing the individual response magnitude with the average firing rate of 300 ms of spontaneous activity before the stimulus onset ($P < 0.05$, $t$-test).

Spike data from 685 neurons were collected for the first stage of the experiment from the right (monkey Sh) and left (monkey Jn) hemispheres of two monkeys. Among all recorded neurons, 388 cells had stimuli that evoked responses within the range of 50–75, 25–50, and <25% of the largest response and were used for further study in the second stage of the experiment. In this stage, when the monkeys maintained their gaze at the fixation point for 200 ms, the fixation point disappeared, and after a 300-ms delay, the presentation of the stimulus sequence started. Each of the four selected stimuli was shown to the monkey 15 times for five different stimulus presentation durations: 18, 70, 140, 210, and 350 ms. Stimuli and presentation durations were pseudorandomly interleaved. The interstimulus interval was 1,300 ms from stimulus onset in all conditions. The sequence stopped when the monkey broke the gaze fixation and a new block started with the appearance of a fixation point (Fig. 2). The monkeys were rewarded with a drop of juice every 1–3 s during the fixation.

Stimulus selectivity in the second phase was defined as the significant response (compared with activity 0–50 ms poststimulus) to the best stimulus for at least four of the five stimulus presentation durations ($P < 0.05$, $t$-test). All of the cells with significant responses in this stage were used for further data analysis ($n = 259$).

**Data analysis**

INDICES. In each trial, the early and late phases of the responses were defined as 60–240 and 250–550 ms from the stimulus onset, respectively. We used three parameters for comparing the two phases of responses as follows: the response peak magnitude was calculated as the maximum response value of the normalized and smoothed spike density function during the early or late phase of responses, the peak latency was defined as the time from stimulus onset to the response peak magnitude, and the average firing rate was defined as the mean firing rates of the normalized spike density function during the initial (60–240 ms) and late phases (250–550 ms).

To investigate the effects of stimulus presentation duration on the oscillatory activity of neurons, we calculated the oscillation score in the theta band (4–8 Hz) as proposed by Muresan and colleagues (Muresan et al. 2008). Oscillation scores estimate the degree to which a neuron is oscillating in a given frequency band relying on autocorrelation histograms computed on individual trials of spike trains. For calculating the oscillation score in the theta band, first, autocorrelation histograms (ACHs) for individual trials were calculated with a bin size of 1 ms and a time lag of $\pm 1.024$ ms. The maximum height of the central peak ($lag = 0$) solely indicates the firing rate of the neuron, which is a confounding factor for the analysis of the oscillation score. For removing the effect of the central peak in the ACH at lag zero, we had to calculate the left and right boundaries of central peak. First, we calculated the slow-smoothed ACH by convolving the ACH with a Gaussian kernel with $\sigma = 10$ ms. Then the slope of the slow-smoothed ACH was calculated using the first-order derivative. The left and right boundaries of the central peak were calculated on negative and positive time lags by finding the time lags around lag zero so that the slope of the slow-smoothed ACH was $\pm 10^\circ$. Because the ACH is a symmetric histogram, the left boundaries were in negative time lags, and right boundaries were in positive time lags. Slow-smoothed ACHs were only used for calculating the left and right boundaries of the central peak. For calculating the oscillation score, we used the fast-smoothed ACH, which is the ACH smoothed by a Gaussian kernel with $\sigma = 2$ ms. The central peak from the left to the right boundary of the fast-smoothed ACH was replaced by the values of the slow-smoothed ACH at the time lag of the left (or right) margin of the central peak. Then the frequency spectrum was computed on the fast-smoothed ACH with the central values removed. Then the oscillation score was calculated as the ratio between the peak magnitude in the frequency band of interest (4–8 Hz) and the mean magnitude of the spectrum. The theta frequency band, 4–8 Hz, was chosen based on the qualitative observation of histograms of frequency spectra plotted for individual trials and the population average. Consistent with our observation, Rollenhagen and Olson have shown that the IT of the macaque monkey responds to visual stimuli by firing action potentials in a series of sharply defined bursts at a frequency of $\sim 5$ Hz (Rollenhagen and Olson 2005). The efficiency of the oscillation score was tested for the theta band by its creators (for more details about the calculation and evaluation of oscillation scores, see Muresan et al. 2008).

To examine the effect of baseline firing rates on oscillation scores, we calculated simulated oscillation scores by shuffling the spike times of each trial 1,000 times while keeping the firing rate constant. Then we calculated the oscillation score for each shuffled trial. The mean of 1,000 shuffled oscillation scores was assigned to each trial as the simulated oscillation score. Oscillation scores that are calculated with this method estimate the degree to which a single spike train is oscillating in a given frequency band regardless of the spikes’ temporal structure.

To investigate the oscillatory properties of spike trains without having the confounding effect of the firing rate, we defined an oscillatory threshold for each trial. To calculate the oscillatory threshold, we shuffled the spikes of each trial 1,000 times in a way that the firing rate remained the same. Then we calculated the oscillation score for each shuffled trial. The average of these 1,000 simulated oscillation scores plus 2 SD were assigned to each trial as the oscillation threshold for that trial. If the oscillation score of a recorded trial was greater or equal to the oscillation threshold of that trial, it was considered as an oscillatory trial. If the oscillation score of a recorded trial was less than the oscillation threshold of that trial, it was considered as a nonoscillatory trial. Because the threshold for the oscillatory trials was calculated based on the firing rate of each individual trial, the confounding effect of firing rate on the number of the oscillatory trials was minimal.

To study the amount of information conveyed by each cell, we calculated the response modulation index (RMI) as described by
Hegde and Van Essen (2004). The RMI was calculated within 50-ms bins of raw data (nonnormalized, nonsmoothed). For calculation of RMI during each bin, first we calculated the $F$-statistic of the cell’s responses to the four stimuli presented in the second stage of the experiment. The $F$-statistics were calculated with the following formula: $F = \frac{MS_{between}}{MS_{within}}$ where the $MS_{between}$ is the stimulus-to-stimulus variance across trials and the $MS_{within}$ is the average trial-to-trial variance for each stimulus. The $F$ statistic can be interpreted as a measure of the amount of information conveyed about the stimuli or the signal-to-noise ratio. We randomized the responses across the stimuli and recalculate the $F$ statistic to correct the deviations of the $F$ statistic from normality and for calculation of significance. The randomization process was repeated $10^5$ times. The RMI index was defined as the actual $F$ statistic divided by the average $F$ statistic from $10^5$ randomization rounds. For estimating the significance of the RMI in each bin of each cell response, the one-tailed $P$ value was calculated as the proportion of times the average $F$ statistic from randomization rounds exceeded the actual $F$ statistic (Hegde and Van Essen 2004, 2006).

For calculating the RMI values, the spikes in response to the presentation of each stimulus were divided into 20 consecutive time bins of 50 ms extending from 0 to 1,000 ms after the stimulus onset. Then the indices were calculated for each bin. For calculation of cumulative RMI values, each bin was extended backward to the stimulus onset time, then the RMI indices were calculated.

**NORMALIZING AND SMOOTHING.** In plotting the population histograms and calculating the one-way ANOVA for each cell, the average firing rates (within 0–1,000 ms poststimulus) of 15 repetitions of each stimulus for each presentation duration were normalized to a maximum of 1.0. Then the given responses were used as a 1-ms resolution spike density function. Qualitatively similar results were observed when any of the reported analyses were done using the raw instead of normalized firing rates. For the calculation of the peak magnitude and peak latency, the normalized spike density functions were convolved by a Gaussian kernel ($\sigma = 5\,\text{ms}$).

**RESULTS**

Here we studied the effect of stimulus presentation duration and baseline activity on the stimulus selectivity and the temporal pattern of neural responses in the IT of two macaque monkeys during a passive fixation task. The recording sites were distributed along the anterior parts of the IT (TE) and the lower bank of the superior temporal sulcus (STS) extending over the anterior posterior 11–20 mm in monkey Jn and 7–19 mm in monkey Sh. Altogether, we examined the responses of 259 IT cells by presenting four visual stimuli for five different presentation durations (see **METHODS** for details).

**Temporal course of firing rate**

The activity patterns of two sample neurons in response to their preferred stimuli with five different presentation durations are illustrated in Fig. 3. Responses of IT cells consisted of brief excitatory activity that peaked around 140 ms (139.73 ± 32.93 ms; called the “initial burst” hereafter; Fig. 3, thick arrows) and was sometimes followed by a period of inactivation or inhibition (i.e., activity below baseline) that reached its minimum around 250 ms (248.69 ± 42.41 ms; called the “trough” hereafter; Fig. 3A, long arrows) and a later excitatory peak around 370 ms (371.59 ± 80.20 ms; called the “2nd burst” hereafter; Fig. 3, thin arrows). The presence and magnitude of these and other response components depended on the stimulus effectiveness, presentation duration and cell’s baseline activity as described in the following text.

Responses of most of the recorded IT cells (250 of 259) contained the initial burst component. The stimulus presentation duration had no significant effect on the peak magnitude of the initial burst, the onset peak latency and the mean firing rate measured during a window of 60–240 ms (1-way ANOVA; $P > 0.05$). The initial burst was also observed when other suboptimal stimuli were presented but its peak magnitude and mean firing rate decreased, regardless of presentation duration as less effective stimuli were presented ($P < 0.01$; Fig. 4, thick arrow). There was a weak, but significant, correlation between the trough and initial burst peak magnitudes (correlation coefficient $= -0.18$; $P < 0.001$). This significant correlation suggests that stronger stimuli may invoke stronger inhibition.

The response magnitude of the second burst was also increased as more effective stimuli were presented (Fig. 4, thin arrow). However, this effect was observed only for long (140,

![FIG. 3. Peristimulus time histograms of 2 exemplar neurons. A: a neuron with oscillatory responses particularly at shorter presentation durations. B: a neuron with the tendency to produce more sustained responses. Each histogram is an averaged poststimulus time histograph (PSTH) response of 1 exemplar neuron to 15 repetitions of the best stimulus. The values indicated above the top row of PSTHs depict the stimulus presentation duration. PSTHs bin size is 1 ms. The initial burst, 2nd burst, and trough are depicted by a thick arrow, thin arrow, and long arrow, respectively. Troughs are not depicted in sample B because troughs were not prominently seen in neurons without strong oscillatory activity.](http://jn.physiology.org/ by 10.2203.33.1 on October 27, 2016)
210, and 350 ms; 1-way ANOVA; \( P < 0.01 \) and not brief (18 and 70 ms) presentation durations (\( P > 0.05 \); compare the 2nd burst in Fig. 4, A and B, with C–E). The peak magnitude, the onset latency and the average firing rate of the second burst were significantly different between the presentation durations (1-way ANOVA; \( P < 0.05 \)).

Initial observation of the data suggested a clear relationship between the stimulus presentation duration, the presence and magnitude of the trough, and the rhythmic pattern of IT cell activity. Some cells showed rhythmic phases of sequential excitation and inactivation or inhibition (Fig. 3A), whereas others showed less oscillatory responses (Fig. 3B). Different degrees of rhythmic activity were observed in each individual neuron. Brief presentation durations with preferred stimuli elicited rhythmic activity more often than did long presentation durations. Similar patterns were observed in the cell population (Fig. 5). The rhythmic activity was mainly observed in the brief presentations (\( \leq 70 \) ms) with three to four excitatory peaks that had a peak-to-peak time interval of \( \approx 200–300 \) ms (Fig. 5).

To investigate the relationship between the stimulus presentation duration and the rhythmic pattern of cell activities, we calculated the “oscillation score” for each trial within the theta frequency band (4–8 Hz). In brief, we first calculated the ACHs of each individual trial. Then a fast Gaussian kernel was used to smooth the ACH and to remove high-frequency noise. Then for the sole purpose of detecting the boundaries of the central peak, a slow Gaussian kernel was applied. Using this information, the central peak was efficiently removed from the buffer containing the fast smoothing, which was then subjected to FFT. Eventually, the oscillation score was computed as the ratio between the highest frequency magnitude within the band of interest and the average baseline magnitude of the spectrum. Oscillation scores that were calculated with this method estimate the degree to which a neuron oscillates in a given frequency band (for more detail, see METHODS) (see also Murc-san et al. 2008).

Figure 6 shows the distribution of oscillation scores from trials in three sample neurons with different oscillation score values. Increases in the stimulus presentation duration shifted the distribution of the oscillation score toward lower values (Fig. 6, A–C). The average oscillation score of all neurons at each condition is plotted in Fig. 6D. In general, we observed that presenting stimuli for shorter durations resulted in higher neural oscillatory activity (Figs. 4 and 6).

To test the significance of this effect, we calculated the average oscillation scores of all trials for each presentation duration. Then we performed a two-way ANOVA analysis on the oscillation scores with stimulus strength and stimulus presentation duration as the factors. Results of the two-way ANOVA showed that both stimulus strength and presentation duration had a significant effect on the average oscillation scores of the neurons, but there was no interaction between the two factors (\( P = 0.0002, P \ll 0.0001 \) and \( P = 0.9 \) for stimulus strength, stimulus presentation duration and their interaction, respectively).

To investigate the effect of baseline activity on the oscillatory activity of neurons, we calculated the average firing rate of a 200-ms window before stimulus presentation as the baseline activity of each trial. Figure 7 illustrates the relationship between the oscillation score and the baseline activity. In Fig. 7A, the average oscillation scores are plotted against the...
average baseline activity of cells and show a positive correlation \(r = 0.7, P < 0.0001\). The histograms presented in Fig. 7A represent the number of cells that contributed to the scatter plot. Figure 7B plots the average oscillation score of the neurons with similar average baseline activity. The correlation coefficient between the average oscillation score and the average baseline activity of neurons was smaller for the brief stimulus presentation durations (18 and 70 ms) compared with the long presentation durations (210 and 350 ms; correlation coefficient of 18, 70, 140, 210, 350 presentation duration conditions were 0.75, 0.76, 0.63, 0.67, 0.56, respectively with \(P < 0.0001\) in all cases).

Figure 7C shows the correlation between the average oscillation score and the baseline activity of neurons for 18- and 350-ms stimulus presentation durations. To examine the simple effect of the baseline firing rate on the oscillation score without the impact of the temporal structure of the spikes, we calculated simulated oscillation scores by shuffling the spike times of each trial 1,000 times while keeping the firing rate constant. Then we calculated the oscillation score for each shuffled trial. The mean of 1,000 shuffled oscillation scores was assigned to each trial as a simulated oscillation score. There was a negative correlation between the baseline activity of neurons and the simulated oscillation scores \((r = -0.1; P < 0.0001; \text{see METHODS})\). The same trend was obtained when trials from each individual condition (each stimulus presentation duration and stimulus strength, separately) were used for this analysis.

To investigate the oscillatory properties of different subdivisions of the IT cortex without the potential contamination of response rates, we defined an oscillatory threshold for each trial independent from spike rate (see METHODS). We found that the number of oscillatory neurons in three different areas were significantly different (1-way ANOVA; \(P = 0.01\)). Tukey-Kramer post hoc analysis revealed that the number of oscillatory neurons was significantly lower in the TEa compared with the TEp. Figure 8 illustrates the average number of oscillatory trials across stimulus presentation durations and subdivisions of the IT cortex.

In addition, the average baseline activity of oscillatory and nonoscillatory trials was significantly different based on a \(t\)-test with a \(P\) value \(< 0.0001\) [mean \pm SE of baseline activity in oscillatory and nonoscillatory conditions were 6.74 \pm 0.15 and 7.65 \pm 0.06 (spike/s), respectively].

**RMI**

To compare the effect of the stimulus presentation durations on the amount of information conveyed by each cell over the temporal course of its responses, we calculated the RMI. The RMI is based on the \(F\) ratio and provides an explicit measure of the signal-to-noise ratio. In short, the RMI was defined as the actual \(F\) statistic divided by the average \(F\) statistic calculated from \(10^5\) randomization times. For estimating the significance of the RMI, the one-tailed \(P\) value was calculated as the proportion of times the average \(F\) statistic from randomization rounds exceeded the actual \(F\) statistic in a given time window (see METHODS) (see also Hegde and Van Essen 2004, 2006).

We calculated the mean RMI values for different stimulus presentation durations. There was no significant difference in the mean RMI during the early phase of responses (from stimulus onset to 225 ms poststimulus) among five different stimulus presentation durations according to a one-way ANOVA \((P > 0.05)\). Interestingly, there was a systematic and statistically significant increase in the RMI values during the later part of responses as stimulus presentation durations were longer (Fig. 9A). The RMI values of different stimulus presentation durations were significantly different within a time window of 225–675 ms (ANOVA; \(P < 0.05\)). The bold line in Fig. 9A represents the time bins in which the RMI values showed a
significant difference \((P < 0.05)\) among stimulus presentation durations. Note that the RMI values declined with a slower pace at the early stage of the responses to long stimulus presentation durations compared with the brief presentation durations (Fig. 9A). The same trend was observed in cumulative RMI values. The significant difference of the cumulative RMI values among stimulus presentation durations was started at the 325 ms bin (Fig. 9B).

To test the relationship between the pattern of activity and the amount of information conveyed by the neural code, we calculated the cumulative RMI value of 400 ms after stimulus onset. There was a significant negative correlation between the cumulative RMI value and the number of oscillatory trials in each neuron \((P < 0.0001 \text{ and } r = -0.11)\). This suggests that neurons with a higher capacity for oscillation convey less information about stimuli. To confirm the relationship between oscillatory activity and information conveyed about stimuli, we calculated the average oscillation score for each neuron. Then we divided neurons into two groups, the first group with average oscillation scores greater than the median oscillation score of the population and the second group with average oscillation scores less than the median oscillation scores of the population. The average RMI values during a 70- to 550-ms window of first group was significantly smaller than second group. To examine the role of different IT subdivisions in visual information processing, we calculated the cumulative RMI value of 400 ms after stimulus presentation duration and cortical area, had a significant effect on the RMI values during the first 550 ms of the response \((P < 0.0001 \text{ in both cases})\), whereas there was not any significant interaction between factors \((P = 0.21)\). Post hoc analysis of the results revealed that the “long presentation duration” and the “TEa” conditions had significantly higher RMI values compared with other conditions. Consistent with this result, we found that the number of oscillatory neurons in three different areas were significantly different \(1\)-way ANOVA; \(P = 0.01\). Tukey-Kramer post hoc analysis revealed that the number of oscillatory neurons was significantly lower in the TEa compared with the TEp (Fig. 8). To examine the temporal dynamics of cell responses in the different IT subdivisions as the stimulus presentation duration was changed, we performed a two-way ANOVA using the RMI values of variable time windows starting from stimulus onset with a length of 50–
1,000 ms increasing with 5-ms steps. We found that the effect of area appeared from the time window length of 100 ms, but the stimulus presentation duration effect appeared much later from the time window length of 225 ms.

The monkeys were required to maintain fixation within a 4° window during stimulus presentation and the following gray interval. It is possible that more frequent eye movements during or following the brief stimulus presentation cause larger degrees of neural oscillations. To address this issue, we calculated the number of saccades inside fixation window (i.e., 1–4°) during the first 1,000 ms after stimulus onset. Saccades were identified as eye movements with velocity of >25°/s for ≥15 consecutive milliseconds. From 388 recording sessions, in only one session (0.25%), the average number of saccades was significantly different among different presentation durations (ANOVA, P < 0.05).

**FIG. 7.** The average oscillation scores plotted against the average baseline activity. A: each point in the plot represents 1 neuron. The average baseline activity (horizontal axis) was plotted against the average oscillation score (vertical axis). - - - , the linear fit to the data (r = 0.7, P < 0.0001). The distribution of the average oscillation score and baseline activity of neurons are plotted at distinct levels of baseline activity (horizontal axis) for resolution of 1 spike/s. The baseline levels containing ≤3 neurons are omitted from the plot. In total, 21 neurons (from 259) are omitted from the plot. - - -, the linear fit to the data (r = 0.8, P < 0.0001). SEs represent the variability of oscillation scores for each baseline rate. C: each symbol in the plot represents 1 neuron. The average baseline activity (horizontal axis) was plotted against average oscillation score (vertical axis) for brief and long (350 ms) stimulus presentation duration by ○ and □, respectively. - - - , the linear fit to ○ (r = 0.75, P < 0.0001). ---, the linear fit to □ (r = 0.56, P < 0.0001).

**FIG. 8.** The average number of oscillatory trials across neurons. The average number of oscillatory trials of 259 neurons is plotted as the function of stimulus presentation duration for each subregion of the inferotemporal cortex (IT). The error bars denote ± 1 SE.

**FIG. 9.** The amount of information conveyed by IT cells over the temporal course of their responses. A: the average response modulation index (RMI) was calculated by averaging the RMI values of individual IT cells across different stimulus presentation durations. B: the average cumulative RMI was calculated by averaging the cumulative RMI values of individual IT cells across different stimulus presentation durations. The bold line in each graph illustrates time bins in which the RMI or cumulative RMI values showed significant differences between five different stimulus presentation durations (P < 0.05). The error bars indicate ± 1 SE.
recognition. However, the lack of object discrimination tasks in suggests an important role for these late responses in object responses following the initial peak (250 ms poststimulus) 70 ms) there was no information in the IT cell presentations (/H11349 presentation times). The steepest decline in performance occurs in Kanwisher 2005; Kovacs et al. 1995; Rieger et al. 2005; Rolls the stimulus presentation duration decreases (Grill-Spector and identification performance of humans rapidly declines as task (Hooge and Erkelens 1996). Also object categorization between two stimuli increases with increasing the stimulus is thought to be related to top-down phenomena such as attention. The baseline activity of V1 cells prior to stimulus presentation is stronger and the amount of synchrony between cells is larger in trials when the monkey detects the stimuli compared with trials in which it does not detect the stimuli (Super et al. 2003). However, other conflicting results have been reported for the effect of the state of baseline neural activity on cortical sensory processing (Haider et al. 2007; Leger et al. 2005; Petersen et al. 2003; Sachdev et al. 2004; Timofeev et al. 1996). While studies in the rodent somatosensory system have shown strongly diminished responsiveness of cortical neurons when baseline activity is high (Petersen et al. 2003; Sachdev et al. 2004), a recent study shows that higher neural activity preceding the presentation of stimuli enhances responsiveness and scaling of the contrast response function in cat V1 cells (Haider et al. 2007). Consistent with the former reports, our results show that when there was a higher level of baseline activity, rhythmic responses were evoked that contained less information compared with when the baseline activity was low. Also, a similar relationship between high baseline firing rates and oscillatory activity in the IT is evident in Fig. 12 of Rollenhagen and Olson (2005). These data show that presentation of a stimulus before a flanker increases the baseline firing rate of IT cells and results in higher oscillatory activity following the flanker presentation compared with when the flanker is presented alone. A better understanding of the interaction between baseline activity fluctuations at both the network and single-cell level is needed to explain how global or regional brain activity can affect the information processing properties of single cortical cells by changing their baseline activity. It has been suggested that the fluctuation in baseline activity and the resulting change in the response properties of cortical cells could be related to rhythmic changes in the global baseline brain activity that are thought to be related to top-down phenomena such as attention (Destexhe et al. 2003; Hasenstaub et al. 2005; Ho and Destexhe 2000; McCormick et al. 2003; Shu et al. 2003). Indeed increases in baseline neural activity have been shown in primate cortical visual areas during selective attention (Luck et al. 1997; McMains et al. 2007; Reynolds et al. 2000; Williford and Maunsell 2006).

**Impact of baseline firing rate on cortical sensory processing and object recognition**

Even in the absence of sensory inputs, cortical cells show structured patterns of spontaneous activity (Dehaene and Changeux 2005). The functional significance of these fluctuations is not well understood. Emerging evidence suggests that changes in the baseline activity of neurons are controlled by top-down mechanisms and that they can affect sensory processing. For example, the examination of monkey V1 cell responses during a figure-ground detection task shows that baseline neural activity influences both cell responses and the monkey’s behavior. The baseline activity of V1 cells prior to stimulus presentation is stronger and the amount of synchrony between cells is larger in trials when the monkey detects the stimuli compared with trials in which it does not detect the stimuli (Super et al. 2003). However, other conflicting results have been reported for the effect of the state of baseline neural activity on cortical sensory processing (Haider et al. 2007; Leger et al. 2005; Petersen et al. 2003; Sachdev et al. 2004; Timofeev et al. 1996). While studies in the rodent somatosensory system have shown strongly diminished responsiveness of cortical neurons when baseline activity is high (Petersen et al. 2003; Sachdev et al. 2004), a recent study shows that higher neural activity preceding the presentation of stimuli enhances responsiveness and scaling of the contrast response function in cat V1 cells (Haider et al. 2007). Consistent with the former reports, our results show that when there was a higher level of baseline activity, rhythmic responses were evoked that contained less information compared with when the baseline activity was low. Also, a similar relationship between high baseline firing rates and oscillatory activity in the IT is evident in Fig. 12 of Rollenhagen and Olson (2005). These data show that presentation of a stimulus before a flanker increases the baseline firing rate of IT cells and results in higher oscillatory activity following the flanker presentation compared with when the flanker is presented alone.
Functional significance of baseline activity and neural oscillation

Visual memory (Nakamura et al. 1991, 1992) and interaction between competing stimuli (Rollenhagen and Olson 2005) affect oscillatory activity in the IT cortex. Modeling studies suggest that as the strength of the inhibition between competing neuronal pools is increased, the pattern of network behavior shifts to an oscillatory mode (Moldakarimov et al. 2005). In our study, changing the strength of the stimulus (by using less effective stimuli and decreasing the stimulus presentation duration) caused higher levels of neural oscillation. We suggest that the strength of inhibition between competing neuronal assemblies might be affected by the state of baseline activity and the resulting differential recruitment of inhibition following stimulus presentation.

Responses of individual IT cells contained a larger amount of sensory information about an individual stimulus and carried a relatively sparser neural code when stimuli were presented for longer durations as well as when more effective stimuli were presented. The sustained activity evoked by more effective stimuli that were presented for longer durations can be conveyed to downstream sites more easily due to a decrease in the inhibitory rhythmic volley, allowing the stimulus to recruit higher-order neurons more easily. On the other hand, brief stimulus presentations could recruit higher levels of IT cell response coherence by setting off synchronous activity within the IT cell population, making efficient use of the distributed information and thus improving recognition performance as has been shown in the lower visual areas (Super et al. 2003).

Functional difference of IT subdivisions

The number of oscillatory trials was lower and the amount of information was higher in the TEa compared with the TEp, particularly for longer presentation durations. The pattern of cortico-cortical connections is largely different between the TEp and the Tea, prompting investigators to suggest a differential functional role for these IT subdivisions (Morel and Bullier 1990). But little is known about the functional differences between these areas (Tamura and Tanaka 2001). Our results clearly show functional differences between the subdivisions of the IT, suggesting that each cortical area may play a unique role in visual object recognition.

Potential impact of saccades on neural oscillation

The monkeys in our study were required to maintain fixation within a 4° window during stimulus presentation and the following gray interval. Our finding that the number of small amplitude saccades (in range of 1–4°) was not significantly different among different stimulus presentation durations indicates that such eye movements are not causing the oscillatory neural activities reported in this study. But it is still possible that microsaccade eye movements within the fixation window affected the reported response properties of IT neurons in this study. Due to the lack of fine eye movement data, we cannot directly rule out the possibility that more frequent microsaccades occur following the brief stimulus presentation causing larger degrees of neural oscillations. However, this seems unlikely as it has been shown that microsaccades have no effect on IT neural activity (Leopold and Logothetis 1998) and that they do not affect the low-frequency oscillation of IT cell responses (Rollenhagen and Olson 2005). In addition, our finding that the oscillation is correlated with higher baseline activity (which is not related to, or affected by, stimulus presentation duration) suggests that microsaccades do not play a role in the reported results.

In conclusion, our results demonstrate that depending on the magnitude of baseline firing rate, stimulus presentation duration affected the response properties and efficiency of neural information processing in IT cortex. Given that, it is plausible that during natural vision top-down influence or competition within local neural networks differentially influence encoding properties of IT cells by changing their baseline activity.

Acknowledgments

We thank Dr. James Bisley for useful comments on the manuscript.

References


Hooge IT, Erkelens CJ. Control of fixation duration in a simple search task. Percept Psychophys 58: 969–976, 1996.


