Combinatorial Responses Controlled by Synaptic Inhibition in the Cerebellum Granular Layer

Jonathan Mapelli,* Daniela Gandolfi,* and Egidio D’Angelo
Department of Physiology, University of Pavia and National Consortium for the Physics of Matter, Pavia, and Brain Connectivity Center, Istituto Neurologico IRCCR Fondazione C. Mondino, Pavia, Italy

Submitted 22 July 2009; accepted in final form 5 November 2009

Mapelli J, Gandolfi D, D’Angelo E. Combinatorial responses controlled by synaptic inhibition in the cerebellum granular layer. J Neurophysiol 103: 250–261, 2010. First published November 11, 2009; doi:10.1152/jn.00642.2009. The granular layer of cerebellum has been long hypothesized to perform combinatorial operations on incoming signals. Although this assumption is at the basis of main computational theories of cerebellum, it has never been assessed experimentally. Here, by applying high-resolution voltage-sensitive dye imaging techniques, we show that simultaneous activation of two partially overlapping mossy fiber bundles (either with single pulses or high-frequency bursts) can cause combined excitation and combined inhibition, which are compatible with the concepts of coincidence detection and spatial pattern separation predicted by theory. Combined excitation appeared as an area in which the combination of two inputs is greater than the arithmetic sum of the individual inputs and was enhanced by γ-aminobutyric acid type A (GABA_A) receptor blockers. Combined inhibition was manifest as an area where two inputs combined resulted in a reduction to less than half of the activity evoked from either one of the two inputs alone and was prevented by GABA_A receptor blockers. The combinatorial responses occupied small granular layer regions (~30 μm diameter), with combined inhibition being interspersed among extended areas of combined excitation. Moreover, the combinatorial effects lasted for tens of milliseconds and combined inhibition occurred only after termination of the stimuli. These combinatorial operations, if engaged by natural input patterns in vivo, may be important to influence incoming impulses organizing spatiotemporal spike sequences to be relayed to Purkinje cells.

In addition to single-neuron properties, specific network connectivity is expected to play a critical role for circuit computation (Buzsáki 2006; Churchland and Sejnowski 1992; McNaughton et al. 1989). In the hippocampal dentate gyrus, which preprocesses perforant-path signals to be relayed to CA3 neurons, operations like pattern completion and separation have been reported (Bakker et al. 2008; Fynh et al. 2007; Galvan et al. 2008; Leutgeb et al. 2007). In the cerebellum granular layer, incoming neural signals are preprocessed before being relayed to the Purkinje cells (Eccles et al. 1967). It was suggested that a combinatorial rearrangement of connections would reroute multiple inputs through partially overlapping channels, thus inspiring the idea that the convergence of inputs and lateral inhibition would allow combinatorial operations like coincidence detection and spatial pattern separation (Albus 1971; Fujita 1982; Marr 1969, 1971). Despite their critical importance and recurrent use in cerebellar computational theories (e.g., see Gibson et al. 1991; Torioka 1980; Tyrrell and Willshaw 1992), these properties have not yet undergone experimental assessment.

METHODS

Neuronal circuit analysis has recently been fostered by techniques revealing the spatiotemporal organization of activity inside and across neuronal ensembles (Brecht et al. 2004; Buzsáki 2004; Nicolelis et al. 2003). VSD imaging allows one to record electrical activity over extended neuronal circuits with high stability and spatiotemporal resolution (Berger et al. 2007; Cohen and Yarom 1998; Contreras and Llinás 2001; Derdikman et al. 2003; Ferezou et al. 2006; Grinvald and Llinares 2001; de Zeeuw et al. 2000; Zhou et al. 2007). In this work, VSD imaging has been performed in acute cerebellar slices. It should be noted that, although VSD and intrinsic fluorescence techniques have been applied to investigate molecular layer and Purkinje cell responses (Chen et al. 2005; Cohen and Yarom 1998; Ebner et al. 2005; Elias et al. 1993; Rokni et al. 2007; Staub et al. 1994; Yae et al. 1992), the spatiotemporal dynamics of granular layer activation were never previously considered in detail.

Experimental techniques

Acute cerebellar slices were obtained from 18- to 25-day-old Wistar rats as previously reported (D’Angelo et al. 1995, 1999).
Briefly, rats were anesthetized with halothane (Sigma; 0.5 ml in 2 dm³ for 1–2 min) before being killed by decapitation. The cerebellum was gently removed, fixed on a plastic support with cyano-acrylic glue, and immersed into a cold (2–3°C) cutting solution. Slices (220 μm thick) were cut in the sagittal plane. The cutting solution contained (in mM): K-glutonate 130, KCl 15, EGTA 0.2, Hepes 20, and glucose 10 (pH 7.4 with NaOH). Slices were incubated for about 1 h before recordings at 31°C in oxygenated Krebs solution containing (in mM): NaCl 120, KCl 2, MgSO₄ 1.2, NaHCO₃ 26, KH₂PO₄ 1.2, CaCl₂ 2, glucose 11 (pH 7.4 when equilibrated with 95% O₂–5% CO₂). When needed, the extracellular solution was added with the γ-aminobutyric acid type A (GABAₐ) receptor blocker, 10 μM bicuculline (Sigma), the N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor blockers, 50 μM d-2-amino-5-phosphonvaleric acid (d-APV or simply APV; Tocris Cookson), and 10 μM 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline-2,3-dione (NBQX; Tocris Cookson). The dye (Di-4-ANEPPS; Molecular Probes) was dissolved and stocked in Krebs with 50% ethanol (Sigma) and 5% Cremophor EL (a castor oil derivative; Sigma). Slices for optical recordings were incubated for 30 min in oxygenated Krebs solution added with 3% Di-4-ANEPPS stock solution mixed with 50% fetal bovine serum (Molecular Probes).

Slices were gently positioned in the recording chamber and were immobilized with a nylon mesh attached to a platinum Omega wire to improve tissue adhesion and mechanical stability. Perfusion of standard extracellular solution (2–3 ml/min) maintained at 32°C with a feedback temperature controller (Thermostat HC2, Multi Channel Systems, Reutlingen, Germany) was performed during the recording session. In most experiments, the chamber embodied a multielectrode array for simultaneous recording and stimulation (MEA 60 Multi Channel Systems; see Mapelli and D’Angelo 2007 for further details). In some experiments, VSD was combined with whole cell recordings (WCNs; for details see Nieus et al. 2006). The MEA and VSD signals showed a clear congruence (cf. Fig. 1), demonstrating the effectiveness of VSD in detecting membrane potential changes. Moreover, granule cell excitation in WCNs correlated with the VSD signal (cf. Fig. 2). MEA and WCNs performed on granule cells did not reveal any significant difference between stained and unstained slices in terms of electrophysiological parameters (data not shown; see also Staub et al. 1994; Tominaga et al. 2000).

The mossy fibers were stimulated with square voltage pulses (±4–8 V; 200 μs) delivered either individually or in trains (100 or 500 Hz). Voltage pulses were usually applied through couples of MEA electrodes (STG 1008, Multi Channel Systems). The advantage of this arrangement was that the 60 MEA electrodes allowed us to select multiple stimulation sites in the same experiment. During coupled VSD and patch-clamp recordings, stimulation was performed by using a bipolar tungsten electrode connected to a pulse generator through a stimulus isolation unit.

VSD recordings and VSD signals

The recording chamber was installed on an upright epifluorescence microscope (BX51W1, Olympus, Europa, Hamburg, Germany), equipped with a ×10 (UM Plan FL 0.3 numerical aperture [NA]) or ×60 (LUM Plan FL 0.9 NA) objective (see Tominaga et al. 2000). The light was generated by a halogen lamp (150 W, MHE-G150L, Moritex, Tokyo, Japan) controlled by an electronic shutter (model 0, Copal, Tokyo, Japan) was passed through an excitation filter (λ = 530 ± 10 nm), projected onto a dichroic mirror (λ = 565 nm), and reflected toward the objective lens to illuminate the specimen. Fluorescence generated by the tissue was transmitted through an absorption filter (λ >590 nm) to the charge-coupled detector (CCD) camera (MICAM01, Scimedia, Brainvision, Tokyo, Japan). The whole imaging system was connected through an I/O interface (MICAM01, Brainvision) to a PC controlling illumination, stimulation, and data acquisition. Given the MICAM01 chip resolution (64 × 96 pixels, each with 30 × 30-μm² surface), the ×10 objective and the ×0.35 C-mount adapter, the final magnification was ×3.5, yielding an imaging area of 579 × 850 μm² and a pixel size of about 9 × 9 μm². Full-frame image acquisition was performed at 1 kHz. Data were acquired and displayed by Brainvision software and signals were analyzed using routines written in MATLAB (The MathWorks, Natick, MA) and IGOR Pro (WaveMetrics, Lake Oswego, OR).

At the beginning of recordings, a calibration procedure was adopted to ensure homogeneity across experiments. The dynamic range of the CCD camera was calibrated by measuring background fluorescence and setting the average light intensity in the absence of stimulation to 60% of the saturation level. When VSD acquisition was started, the optical baseline was sampled for 55 ms before triggering electrical stimulation. The baseline was used to measure the initial fluorescence intensity (F₀) by averaging eight consecutive frames. The relative fluorescence change (ΔF/F₀) was then calculated for each timeframe and data analysis was performed on ΔF/F₀ values. The stimulation intensity was chosen so that the maximum granular layer response measured 0.5–1% ΔF/F₀. VSD signal analysis was performed on the initial 70 min of the experiments, during which F₀ remained almost stable, indicating little photobleaching (Fig. 1B).

The signal-to-noise (S/N) ratio was improved by averaging 16 consecutive acquisitions at the stimulus repetition frequency of 0.2 Hz. Given maximal ΔF/F₀ ≈ 1% and noise σ = ±0.1% (n = 12 slices), the S/N ratio was about 10-fold, ensuring a reliable measurement of peak response amplitude. The VSD fluorescence depends on the relative surface and density of the electrogenic elements of the granular layer. The granule cell/Golgi cell ratio is 500:1 for number of cells (Eccles et al. 1967; Harvey and Napper 1991) and 3:50 for cell surface (D’Angelo et al. 1999; Dieudonné 1998). This yields a 30-fold larger electrical surface for granule cells, which thus had to determine most of the signal.

Following stimulation, ΔF/F₀ reached its maximum amplitude in 3–5 ms, corresponding to the early component of the local field potential (N₂a wave) and to the first granule cell spike (Fig. 2; cf. Mapelli and D’Angelo 2007). The VSD was therefore able to reveal the occurrence of spikes in the appropriate time window. After about 5 ms, circuit inhibition depresses granule cell responses. Thus analysis of the effects of excitation and inhibition could be performed in 5-ms periods (i.e., by averaging five consecutive acquisition frames) beginning with the stimulus. This temporal averaging procedure provided a further S/N improvement without introducing significant error in terms of granule cell firing control (see Figs. 5–8 and Supplemental Material).²

The correlation between VSD signals and neuron membrane potential changes was analyzed by performing simultaneous WCNs from granule cells (as in Mapelli and D’Angelo 2007). To this aim, the VSD signals were collected from 16 binned pixels arranged in a 4 × 4 array and a granule cell was recorded from the core of the same area (Fig. 2, A and B). This comparison showed a direct nearly linear relationship between intracellular membrane potential and VSD signal. It should be noted that, since the VSD signal was 1) collected from numerous granule cells, 2) averaged over several acquisitions, and 3) sampled at 1 frame/ms, it could not reveal the precise shape of the action potential (e.g., the fast raise and subsequent afterhyperpolarization [AHP]). The VSD signal was modulated by the contribution of the excitatory glutamate NMDA and AMPA receptors and by the inhibitory GABAₐ receptor (see Fig. 3 for details), revealing its sensitivity to subthreshold integration of synaptic inputs.

Data analysis: threshold setting and noise evaluation

An automatic spot selection procedure was implemented to remove subjectivity and to efficiently extend analysis over all spots and all experiments. The granular layer response to single (Rₛ₁, Rₛ₂) and double stimuli (Rₛ₁+ₛ₂) was compared with a threshold set at 35% of

² The online version of this article contains supplemental data.
the maximum normalized response \((T_{35}) \) to discriminate signals from noise. A second threshold was set at 70% of the maximum normalized response \((T_{70}) \) to identify strongly responding regions (see Fig. 2). Combined excitation was identified as the case in which

\[
\begin{align*}
RS_1 & < T_{35} \\
RS_2 & < T_{35} \\
RS_{1 \& 2} & > T_{70}
\end{align*}
\]

Cases in which just \(RS_1 \) or \(RS_2 \) was below threshold were not considered, since those could be nonresponding rather than contributing regions to the combined response. Combined inhibition was identified as the case in which

\[
\begin{align*}
RS_1 & > T_{70} \\
RS_2 & > T_{70} \\
RS_{1 \& 2} & < T_{35}
\end{align*}
\]

For comparison, the case of single threshold crossing at \(T_{70} \) was also considered.

Since recordings are affected by noise, a lower limit for signal detection was determined by assuming that VSD maps lacked any internal structure. To simulate this condition, data matrices were generated from a uniform random distribution (MATLAB, The MathWorks) to form random maps \((64 \times 96 \text{ pixels}, \text{equivalent to MICAM01 chip size}) \). Random numbers were scaled to match the fluorescence fluctuation recorded experimentally. Then, random maps were processed using \(T_{35} \) and \(T_{70} \) as for single- and double-threshold analysis of real data (see preceding text), thereby calculating the percentage of activated area that would be detected with a casual pattern. The amount of combined excitation and combined inhibition calculated in this way was marginal compared with that of the experimental data and was devoid of any specific time courses (Fig. 8, dashed lines), indicating that noise did not considerably affect the detection of combinatorial operations.

The extension of active areas was calculated by measuring the number of pixels crossing the \(T_{70} \) threshold of the maximum normalized response. The area variation following various treatments was measured as the relative difference between experimental conditions.

RESULTS

General properties of VSD signals

In this work we have used VSD imaging to assess the impact of double-bundle stimulation on cerebellar granular layer responses. The VSD signal generated by mossy fiber stimulation rapidly invaded the granular layer (Fig. 1A). The VSD signal was made of spots of activity grouped into clusters of irregular, often elongated shape occupying wide sectors of the granular layer. The spot diameter \((32.54 \pm 4.62 \mu m; n = 47 \text{ spots, } 8 \text{ slices})\) was estimated by setting a 70% threshold to delimit the spot contour. By using this measure to generate artificial spots at appropriate distances, mathematical simulations allowed us to reconstruct the spot/cluster structure (see Supplemental Material), suggesting that spots were indeed elementary functional units of the granular layer and that relevant combinatorial effects had to be searched at the spot level.

The origin of the VSD signal was assessed by a comparison with extracellular field potentials, which were simultaneously recorded with a multielectrode array (MEA) placed under the slice \((n = 6; \text{Fig. 1A; cf. Mapelli and D’Angelo 2007}) \). The MEA had electrodes separated by 100 \(\mu m \), which could not reveal the spot-based structure of the granular layer response. Nonetheless, after appropriate filtering, the VSD became similar to MEA maps \((n = 6 \text{ experiments}) \), demonstrating that VSD and MEA were likely to

FIG. 1. The relationship between voltage-sensitive dye (VSD) and multielectrode array (MEA) signals. **A**, top left: parasagittal slice of the cerebellar vermis placed on the MEA. mf, mossy fiber; gl, granular layer; PC, Purkinje cells; ml, molecular layer. The white rectangle delimits the area detected by the camera, which is shown in the other panels. **Bottom:** MEA electrical map (see Mapelli and D’Angelo 2007). Right, top: optical maps of evoked granular layer activity obtained with VSD imaging. Bottom: same VSD recording after spatial filtering to match the MEA result. In these and the following maps, black dots indicate the pair of stimulating electrodes, dashed white lines represent the PC, and continuous white line indicates MF. **B:** time course of VSD amplitude \((\Delta F/F_0) \) in a region of interest (ROI). Data are means \(\pm SE \) \((n = 10) \). Note stability of the VSD signals over time.
be generated by the same signal sources. The VSD response to mossy fiber stimulation remained stable for >1 h, with a modest (<5%) decay possibly caused by photobleaching (Fig. 1B).

To assess the activity state of neurons generating the VSD signal, whole cell recordings were performed from granule cells in the core of responding areas (Fig. 2A), both in the control condition (n = 4) and with 10 μM bicuculline (n = 5). The granule cells showed excitatory postsynaptic potentials (EPSPs) and EPSP–spike complexes in variable proportions, depending on the stimulation intensity (cf. D’Angelo et al. 1995). At low intensity, the VSD signal taken from the ROI surrounding the patch electrode had a shape and size reflecting that of the EPSP. At higher intensity, EPSP–spike complexes dominated the granule cell responses and the VSD response increased accordingly. However, the VSD response remained slower and proportionately smaller than the average intracellular electrical response. This was probably due to a series of factors, including the 1) limited sampling frequency of the system (typically 1 kHz), 2) the predominance of granule cells making EPSPs over those making spikes, 3) the time scattering of spikes in different cells, and 4) inhomogeneity between core and periphery of the ROI. Despite this limitation, the intensity of VSD responses in an excited area was directly proportional to the average change in intracellular membrane potential (Fig. 2B), indicating that single granule cell activity is correlated with the ensemble population signal (see Grinvald and Hildesheim 2004 for a similar observation in the neocortex). It was thus possible to identify a threshold at 70% of maximum VSD signal amplitude ideally separating subthreshold responses from spikes. This separation has to be interpreted in statistical terms, so that crossing the 70% threshold means considerably raising the probability of transiting from a nonspiking to a spiking regime in granule cell responses.

Delayed inhibition in granular layer responses

It has recently been proposed that inhibition in granule cells could be delayed with respect to mossy fiber excitation generating the so-called time-window effect (D’Angelo and DeZeeuw 2009). Since this could have an impact on combinatorial responses generated by double-bundle stimulation, the granular layer response was assessed at different times by modifying the efficiency of the principal mechanisms regulating granule cells activity—i.e., the number of active mossy fibers and the strength of the excitatory and inhibitory loops (Fig. 3).

The active area was analyzed in two neighboring time periods (0–4 and 5–9 ms), which are critical for the emergence of the window effect (Kanichay and Silver 2008; Mapelli et al. 2007). Although recruiting additional mossy fibers by increasing stimulation (D’Angelo et al. 1995; Sola et al. 2004) sorted a similar effect in these time windows (65.1 ± 26.5% at 0–4 ms vs. 71 ± 23.8% at 5–9 ms; P = 0.87, n = 4 slices, paired t-test), differential regulation was observed by altering the excitatory/inhibitory balance. Following application of the GABA_A receptor blockers 10 μM bicuculline (n = 10) or 10 μM gabazine (n = 4), which reduce the strength of Golgi cell–granule cell connections (Mapelli et al. 2009; Fig. 3B), the extension of granular layer activity increased more in the second than in the first time period (18.5 ± 5.8% at 0–4 ms vs. 188.7 ± 25.2% at 5–9 ms; P < 10^−6, n = 14 slices, paired t-test). After the first 4 ms, inhibition regulates the effectiveness of excitation mostly by controlling NMDA channel unblock and regenerative activation of the NMDA current (D’Angelo et al. 1995; Mapelli et al. 2007). Accordingly, following application of the NMDA receptor antagonist 50 μM APV (n = 4) (Fig. 3D), the extension of granular layer activity decreased more in the second than in the first time period (−18.7 ± 8.7% at 0–4 ms vs. −48.3 ± 5.1% at 5–9 ms; P < 0.01, n = 4 slices, paired t-test).

The time course of changes induced by the different treatments was measured in representative areas corresponding to visually identified spots. By simply raising the stimulus intensity, the granular layer response changes observed at peak were maintained for ≥50 ms (53.3 ± 14.6 vs. 46.7 ± 9.9%, n = 4, P <
However, application of 10 μM bicuculline or 10 μM gabazine (n = 4) caused a much smaller signal increase at peak than after 50 ms (32.2 ± 5.1 vs. 123.9 ± 33.4%; n = 14 experiments; P < 0.01, paired t-test; Fig. 3A). Consistently, application of 50 μM APV caused a much smaller signal decrease at peak than after 50 ms (−28.1 ± 6.9 vs. −57 ± 11.1%; n = 4, P < 0.01, paired t-test; Fig. 3C).

Therefore the action of inhibition arose with a delay of about 5 ms and persisted for ≥50 ms. The excitatory/inhibitory balance in this delayed period of the response was regulated by GABA_A (inhibitory) and NMDA (excitatory) receptors. Any responses were finally suppressed by 10 μM NBQX (Fig. 3C), indicating that AMPA receptors provided the necessary depolarization triggering the response. These observations indicate that the general mechanism of regulation of the granular layer response (Armano et al. 2000; Mapelli and D’Angelo 2007; for review see D’Angelo and DeZeeuw 2009) can be observed using VSD imaging.

Double-bundle stimulation reveals combinatorial operations in the granular layer

The structural organization of the cerebellum granular layer suggests that it should be able to perform combinatorial operations on incoming mossy fiber inputs. On the one hand, combined excitation generated by convergent inputs could enhance activation in specific granule cell subsets. On the other hand, the Golgi cells converging through lateral connections onto some granule cell subsets could generate combined inhibition. These effects have been predicted to generate, as computational counterpart, coincidence detection and spatial pattern separation (Albus 1971; Fujita 1982; Marr 1969).

Figure 4A shows a typical double-bundle experiment. As a whole, the overlapping area was more excited when the two bundles were activated together rather than independently (the increase was 42.7 ± 12.4%; n = 12 slices; P < 0.05, paired t-test;
of spots performing combined excitation or combined inhibition was also observed in these cases. In particular, combined excitation was manifest as a persistent enhancement of the combined response during and after stimulation, whereas combined inhibition was characterized by an initial growth followed by a marked decline of the combined response just after the end of the stimulus train (cf. Fig. 5, B and C).

The ability of neurons to making spikes implies sharp nonlinear transitions in the intensity of responses. With combined excitation the combined response to single stimuli was significantly larger than the sum of the individual responses (by 47.6 ± 8.9%; n = 25 ROI, n = 5 slices, P < 0.001, paired t-test), whereas with combined inhibition the combined response was smaller than the sum of the individual responses (by −85.4 ± 1.6%; n = 25 ROI, n = 5 slices, P < 0.001, paired t-test) and usually even of individual responses themselves. Similarly significant statistics were observed for responses to train stimulation, as shown in Fig. 5 (inset histograms). Thus combined excitation and combined inhibition are compatible with the concepts of coincidence detection and spatial pattern separation predicted by theory (Albus 1971; Fujita 1982; Marr 1969).

Stability, time course, and extension of combinatorial responses

A quantification of the extension of combinatorial operations was obtained by measuring the granular layer activity changes across a double (T35–T70) threshold (cf. Fig. 2B and METHODS). This generated an ideal separation between high- and low-probability spiking areas and allowed us to detect the combi-
Combinatorial operations automatically without the intervention of subjective spot selection and to efficiently extend analysis over all detectable spots in all the available experiments. Clustered groups of pixels showed characteristic spatiotemporal evolution of the combinatorial operations (Fig. 6, A and B). During the 20–25 ms following the stimulus, the extension and intensity of responses evolved following slightly different time courses in the individual clusters (Fig. 6, A and B). Combined inhibition often showed oscillations that could correspond to reverberation of inhibition through local circuit loops (see Discussion). Similar results were obtained using single stimuli as well as bursts at 100 and 500 Hz (data not shown). Combined excitation and combined inhibition occupied, as a proportion of the commonly activated area, respectively,

![Combinatorial responses elicited by repetitive stimulation. Average time course of VSD signals taken from the ROIs (27 × 27 μm²) showing similar patterns of activation (either combined excitation or combined inhibition) in response to the stimulation of mossy fibers (A) with a single pulse (n = 5), (B) with a 500-Hz burst (n = 5), and (C) with a 100-Hz burst (n = 5). Left: average time course of VSD signals showing combined excitation. Right: average time course of VSD signal showing combined inhibition. The plots show single-bundle stimulation (gray dots) and double-bundle stimulation (black dots) and dashed lines indicate the stimulus times. Note that, with all patterns, the double-bundle response is enhanced in ROIs performing combined excitation, but is reduced in ROIs performing combined inhibition. The insets show the VSD signals generated by 500- and 100-Hz bursts compared with single-pulse stimulation (scale bars 0.2% ΔF/F₀, 50 ms). The histograms show % peak change, demonstrating supralinear increase during combined excitation and reduction during combined inhibition (P < 0.01 between A + B and A&B in all the experimental conditions, paired t-test).](#)
45.2 ± 8.7 and 2.04 ± 0.54% with single stimuli (n = 10 slices), 49.35 ± 10.34 and 3.44 ± 1.4% with 500-Hz bursts (n = 5 slices), and 51.96 ± 11.8 and 3.65 ± 1.35% with 100-Hz bursts (n = 10 slices). It should be noted that, by adopting a single T70 threshold criterion, combined excitation marginally increased, whereas combined inhibition increased up to around 15% of the commonly activated area, suggesting that this latter process was especially underestimated in our analysis. Nonetheless, in general, regions performing combined inhibition were less extended than those performing combined excitation (cf. Figs. 4 and 7).

Regulation of spatiotemporal dynamics by repetitive stimulation and synaptic inhibition

The maps reported in Fig. 7 show the distribution of areas performing combined excitation and combined inhibition. With all stimulus patterns, combined inhibition was scattered in several spots over the activated area in common to the two stimuli. The average time course of combinatorial operations averaged over all the spots in the same category is shown in Fig. 8. With all stimulus patterns, combined excitation arose rapidly and progressively declined after the stimuli. Conversely, combined inhibition was almost absent during stimulation but arose soon thereafter.

The delayed occurrence of combined inhibition suggested that it was dynamically regulated by synaptic inhibitory loops, which in the granular layer can provide both delayed activation and lateral inhibition (D’Angelo and DeZeeuw 2009; D’Angelo et al. 2009). To test this hypothesis, double-bundle stimulation experiments were continued with the application of 10 μM bicuculline to block GABAergic transmission from Golgi to granule cells. After application of bicuculline, combined inhibition was almost entirely abolished, whereas combined excitation increased (Figs. 7 and 8). With single stimuli, the change induced by bicuculline in combined inhibition was maximal at 10–20 ms (−95.1 ± 4.9%; n = 12, P < 0.001, paired t-test). Significant differences were also induced by bicuculline using repetitive stimulation, with maximum significant changes in combined inhibition occurring 20–40 ms after the end of 500-Hz bursts (−100%, n = 5, P < 0.0001, paired t-test) and 50–80 ms after the end of 100-Hz bursts (−65.5 ± 11.4%, n = 11, P < 0.01, paired t-test). In the same time periods, there were also significant changes in coincidence detection but in the opposite direction (single stimuli, 55.87 ± 5.9%; n = 12, P < 0.01; 500-Hz bursts, 104.3 ± 7.9, n = 5, P < 0.01; 500-Hz bursts, 56.3 ± 10.4, n = 11, P < 0.02, paired t-test). This result supports the important role of synaptic inhibition to modulate combinatorial operations in the granular layer.

Discussion

The central observation in this study is that the cerebellum granular layer can perform two combinatorial operations—combined excitation and combined inhibition—controlled by the relative intensity of synaptic inhibition. The combinatorial effects lasted for tens of milliseconds and combined inhibition occurred in specific granule cell subsets only after stimulation was terminated. Combined excitation and combined inhibition provide the first demonstration that combinatorial operations compatible with those predicted by theory, coincidence detection and spatial pattern separation (Albus 1971; Marr 1969), could actually take place in the cerebellum granular layer.
The key role of local circuit inhibition for determining granular layer combinatorial operations was supported by several observations. First, in combined inhibition elicited by single mossy fiber pulses, the 4- to 5-ms delay coincides with the time required to enable mossy fiber → Golgi cell → granule cell feedforward inhibition (Barmack and Yakhnitsa 2008; Kanichay and Silver 2008; for review see D’Angelo 2008). The oscillatory responses observed in certain areas are reminiscent of similar effects generated by recurrent activity in the granule cell → Golgi cell → granule cell feedback inhibitory loop (e.g., see Maex and DeSchutter 1998). Second, inhibition revealed a differential control over the two operations, in that combined excitation was enhanced, whereas combined inhibition was abolished by blocking GABAA receptors. The multiform inhibition-dependent dynamics shown by network responses are in keeping with predictions generated by large-scale models of the granular layer (Medina and Mauk 2000; S. Solinas and E. D’Angelo, unpublished observations).

The spatial properties of ensemble granular layer activity revealed details on a scale one order of magnitude smaller than previously reported using extracellular field recordings (Mapelli and D’Angelo 2007; Morissette and Bower 1996; Shambes et al. 1978). The combinatorial operations were manifest in small cell aggregates (called spots), with an apparent diameter around 30 μm. The size of the spots is in matching with “granular layer units” determined by branching of mossy fibers, which form clusters of rosettes in the sagittal plane (Eccles et al. 1967; Sultan 2001; Sultan and Heck 2003). The occurrence of combinatorial operations in multiple scattered areas suggests specific local circuit topologies. In areas showing combined excitation, mossy fiber convergence onto granule cells needs to be predominant (D’Angelo et al. 1995; Jörntell and Ekerot 2006) over convergence onto Golgi cells, so that Golgi cells can only proportionately reduce granule cell activation. Conversely, in areas showing combined inhibition, the convergence of mossy fibers onto Golgi cells needs to be predominant over convergence onto granule cells, so that Golgi cells can generate effective and strong inhibition during double-bundle stimulation. It is likely that these effects require lateral inhibition (for a general discussion see Buzsáki 2006), which has indeed been reported in the cerebellum granular layer (Mapelli and D’Angelo 2007).

The kinetics of combinatorial operations also suggest the involvement of specific cellular and circuit properties. During high-frequency bursts, the granular layer response increased without being blocked by inhibition. This effect indicates that Golgi cell activity does not usually prevail over mossy fiber excitation during the burst, in line with the observation of protracted granule cell firing in response to sensory stimuli (Chadderton et al. 2004; Jörntell and Eckerot 2006; Rancz et al. 2007). The marked adaptation characterizing Golgi cell discharge (Solinas et al. 2007a,b) and the presynaptic inhibition of

![Figure 7](http://jn.physiology.org/)

FIG. 7. The spatial organization of combinatorial responses: dependence on synaptic inhibition. *Left:* pixels performing combined inhibition (white) are scattered among pixels performing combined excitation (black) in response to the stimulation of mossy fibers (A) with a single pulse, (B) with a 100-Hz burst, and (C) with a 500-Hz burst. The data were taken when combined inhibition was maximal (10 ms from the stimulus in A, 20 ms from the end of the burst in B, 50 ms from the end of the burst in C). *Right:* application of 10 μM bicuculline abolished combined inhibition.
GABA release through metabotropic glutamate and GABAB receptors (Mapelli et al. 2009; Mitchell and Silver 2003) could decrease the efficiency of granule cell inhibition during the burst. Second, after termination of the stimulus, the presence of delayed responses implies that granule cell excitation is protracted and that inhibition can strongly interfere with this late response. This effect is likely to reflect the interplay of the NMDA receptor-mediated conductance, which generates an afterdepolarization lasting for as long as 100 ms (see Fig. 2A; D’Angelo et al. 1995), and the GABA receptor-mediated conductance, which can also last for a similar time (see Fig. 2A; Eccles et al. 1967; Maffei et al. 2002) due to spillover-mediated activation of α6 receptors (Rossi and Haman 2003). Actually, the NMDA current is weakly regenerative and its depolarizing effect can be effectively turned off by raising the granule cell input conductance through GABA_A receptor opening (Mapelli and D’Angelo 2007).

Combined excitation and combined inhibition may be regulated by several factors determining the excitatory/inhibitory balance of granule cells in vivo. The intensity and distribution of the mossy fiber inputs, the partially independent control of granule and Golgi cells from different receptive fields (Jörntell and Ekerot 2002), and the block of Golgi cell activity by stellate cells (but perhaps also by Purkinje cells and Lugaro cells: Barmack and Yakhnitsa 2008; for review see D’Angelo 2008) leave ample space for the spatiotemporal organization of combinatorial operators. Moreover, synaptic plasticity in granular layer circuit synapses may generate new configurations by controlling the local excitatory/inhibitory balance (D’Angelo and DeZeeuw 2009; Hansel et al. 2001; Mapelli and D’Angelo 2007). Finally, it should be noted that the effectiveness of inhibition, and therefore of combined inhibition, may be larger in the intact tissue than that in the present experiments, since connections made by laterally oriented Golgi cell axons are severed at the slice border. It follows that the major role of the Golgi cells may indeed be that of generating surround inhibition implementing spatial pattern separation rather than performing gain control over mossy fiber inputs (cf. Prsa et al. 2009).

Combined excitation and combined inhibition are likely to represent the counterpart of coincidence detection and spatial pattern separation defined in Motor Learning Theory (Albus...
1971; Gibson et al. 1991; Marr 1969, 1971; Torioka 1980; Tyrrell and Willshaw 1992) and may therefore bear several implications for cerebellar circuit functioning. Coincidence detection and spatial pattern separation may contribute to generate the output spike patterns to be relayed to Purkinje cells (D’Angelo and DeZeeuw 2009; Pouille et al. 2001). In that the properties observed in vitro are exploited by natural patterns in vivo (e.g., see Prsa et al. 2009; van Kan 1993, 1994), spatial pattern separation may be particularly relevant to processing sequences of bursts rather than individual bursts, preventing certain granular cell groups from being reactivated by a second input occurring within some tens of milliseconds. Thus the long-sought spatiotemporal filtering predicted by theory (Fujita 1982) may work as a device regulating cycles of circuit reactivation in center–surround geometry. This in turn would promote selection of Purkinje cells (Brunel et al. 2004; de Solages et al. 2008; Steuber et al. 2007) during presentation of complex spatiotemporal mossy fiber patterns. It should also be noted that the present circuit mechanism may implement logical operations (including “Exclusive OR” [XOR]; Churchland and Sejnowski 1992), an aspect deserving further experimental and theoretical analysis.

Acknowledgments

We thank Dr. S. Fusi and Dr. L. Sacconi for critical comments on an early version of the manuscript and G. Ferrari for technical support.

Grants

This work was supported by a National Consortium for the Physics of Matter NEUROIMAGE grant and European Union Grant SENSOPAC FP6-IST028056. D. Gandolfo is a recipient of a Projects of National Interest fellowship of the Italian Ministry for Education, University, and Research.

References

D’Angelo E. The critical role of Golgi cells in regulating spatiotemporal integration and plasticity at the cerebellum input stage. Front Neurosci 2: 35–46, 2008.

