
During production, Figs. 4 and 6 were switched. The final published article incorrectly shows Fig. 6 with the legend to Fig. 4 and Fig. 4 with the legend to Fig. 6. The two figures are correctly numbered and given with their legends here.

FIG. 4. Contribution of multimodal brain activity to sensory ERPs. PICA was used to break down ERPs of each participant into a set of multimodal and modality-specific ICs. *Left:* the spider chart shows the respective contribution of multimodal activity (expressed as the percentage of explained ERP variance) to the four sensory ERPs (represented on the four axes). Each colored line represents a single participant. Note how this multimodal activity contributes significantly to the four sensory ERPs in each participant. *Right:* the time course of multimodal activity, backprojected on the scalp and expressed as global field power (μV²), is shown in the middle graphs (group average). Whatever the sensory modality of the eliciting stimulus, multimodal activity forms two peaks, whose scalp topographies are maximal at the vertex (top scalp maps). Note (bottom waveforms) how multimodal activity (thick line) explains the greater part of the ERP recorded at the scalp vertex (thin gray line).

FIG. 6. Time course and scalp topography of modality-specific brain activity contributing to sensory ERPs. *Top row:* the group average time courses of multimodal (in gray) and modality-specific (in color) activities are shown in the cumulative stacked waveforms, backprojected on the scalp and expressed as the signal global field power (μV²). *Bottom row:* average contribution of modality-specific brain activities (colored waveforms) to the ERP recorded from electrode Cz (thin gray waveform). Note how the contribution of somatosensory, auditory, and visual-specific activity is largely confined to the early part of the ERP time course. The scalp maps show the scalp topography of the main peaks of modality-specific brain activity. Somatosensory-specific activity appeared as a negative peak distributed over central and parietal regions, and maximal over the hemisphere contralateral to the stimulated side. Auditory-specific activity appeared as negative peak symmetrically distributed over central, frontal, and temporal regions. Visual-specific activity appeared as a positive peak followed by a negative peak, each peak showing a distinct scalp topography. The 1st peak of visual-specific activity was maximal over occipital areas. The 2nd was more largely distributed over parietal, temporal, and occipital areas and was maximal over the hemisphere contralateral to the stimulated side.