Retinal Ganglion Cell Adaptation to Small Luminance Fluctuations

Daniel K. Freeman, Gilberto Graña, and Christopher L. Passaglia
Department of Biomedical Engineering, Boston University, Boston, Massachusetts

Submitted 19 August 2009; accepted in final form 8 June 2010

Freeman DK, Graña G, Passaglia CL. Retinal ganglion cell adaptation to small luminance fluctuations. J Neurophysiol 104: 704–712, 2010. First published June 10, 2010; doi:10.1152/jn.00767.2009. To add your address information, please visit the JNP website. Address for reprint requests and other correspondence: C. L. Passaglia, Dept. of Biomedical Engineering, Boston Univ., 24 Cummington St., Room 232, Boston, MA 02215 (E-mail: psagls@bu.edu).

INTRODUCTION

A ubiquitous property of biological systems is adaptation, and as a consequence, much research is devoted to elucidating the biophysical mechanisms underlying the phenomenon and understanding its role in normal system function. A well-documented example is luminance adaptation (also known as light adaptation), which increases or decreases the gain and dynamics of retinal neurons to maintain visual sensitivity and avoid response saturation as mean illumination level changes (Shapley and Enroth-Cugell 1984; Walraven et al. 1990). The mechanisms responsible for this sensitivity adjustment exist both within the photoreceptor cells (Dowling 1967;Perlman and Norman 1998; Pugh et al. 1999; Schneeveis and Schnapf 1999) and the retinal network (Cicerone and Green 1980; Dunn et al. 2007; Green and Powers 1982; Rushton and Westheimer 1962). Another mechanism of sensitivity adjustment at work in the retina is contrast adaptation. It modulates response gain and dynamics based on the variance of luminance in the scene (i.e., contrast), regardless of the mean luminance level (Baccus and Meister 2002; Chander and Chichilnisky 2001; Kim and Rieke 2001; Manookin and Demb 2006; Shapley and Victor 1978; Smirnakis et al. 1997). The mechanism has processes that operate both within and outside the classical receptive field of ganglion cells.

Although the evidence for luminance and contrast adaptation is ample and compelling, the extent to which the two mechanisms are physiologically distinct is not entirely clear. Luminance adaptation is generally described as a logarithmic process, which normalizes local variations in incident light intensity by the ambient level so that the retinal output faithfully represents the contrast of objects viewed in different lighting environments (Troy and Enroth-Cugell 1993). The process is often modeled using a quasi-linear approach, in which the retinal response to a stimulus is specified by a spatiotemporal filter that is parameterized by the steady-state retinal illumination (Purpura et al. 1990; Smith et al. 2008). It is known, however, that retinal neurons integrate luminance adaptive signals over a region of space about the size of their receptive field center (Cleland and Enroth-Cugell 1968). Given the small size of the luminance adaptation pool, it has been suggested that the process might be recruited under constant illumination conditions because head and eye movements across the visual scene would produce local fluctuations in mean light intensity over the retinal surface (Dunn and Rieke 2006). In support of the idea, the range of mean luminances within patches of natural scenes about the size of ganglion cell receptive field centers was found to differ by a factor of 2 within regions of sky and a factor of 10 within foliage backlit by sky (Frazor and Geisler 2006). These ranges are substantial and, based on ganglion cell and geniculate cell responses to luminance steps of similar amplitude (Mante et al. 2005; Wark et al. 2009; Yeh et al. 1996), they have the potential to recruit light adaptive mechanisms.

The aim here was to evaluate the hypothesis with in vivo recordings from retinal ganglion cells and directly assess how much luminance variation is needed to produce measurable changes in response gain. We show that rat ganglion cells adapt to relatively small fluctuations in local light intensity (>15% contrast), which is remarkable for a system that operates over several orders of magnitude. The sensitivity is comparable to that reported for temporal contrast adaptation in the retina (Baccus and Meister 2002; Chander and Chichilnisky 2001; Kim and Rieke 2001; Manookin and Demb 2006), raising the possibility that the phenomena may be the same or closely related. We find that the luminance adaptive mechanism is distinct though from spatial mechanisms of contrast adaptation. Because both modulate ganglion cell responsiveness, the two gain controls must act in concert under normal viewing conditions to dynamically shape the retinal output. In addition, we find differences in the adaptation profiles of ON and OFF cells, implying that the gain changes occur downstream of the photoreceptors, after the retinal signal is split into ON and...
off pathways. This inner retinal component of luminance adaptation is thus distinct from outer retinal components that are also quite sensitive (Lankheet et al. 1993; Lee et al. 2003). Together, the findings show that receptoral and postreceptoral mechanisms of luminance gain control play an active role in the dynamic encoding of visual scenes.

METHODS

Physiological preparation

The experimental procedures have been described in detail elsewhere (Freeman et al. 2008). Briefly, adult Brown Norway rats were anesthetized with an intraperitoneal injection of ketamine hydrochloride (49 mg/kg) and xylazine (1 mg/kg) that was supplemented intravenously at 28.6 and 0.6 mg/kg/h, respectively, infused at a rate of 1.6 ml/h. The pupil was dilated with 1% atropine sulfate, and a clear contact lens was placed over the eye to protect the cornea from drying. The animal was positioned in a stereotaxic apparatus, and a 5-mm hole was drilled in the skull over bregma. To prevent eye movements, which would cause the location of the ganglion cell receptive field to drift during the experiment, the animal was paralyzed with an intravenous injection of 8 mg gallamine triethiodide supplemented by a 24.3-mg/kg/h infusion. The animal was mechanically ventilated with room air at a rate that maintained end-tidal CO2 at a normal level. All procedures were approved by the Boston University Animal Care and Use Committee.

Recording and visual stimulation

Custom-made tungsten-in-glass microelectrodes were used to record extracellularly from rat retinal ganglion cell axons (Levick 1972). The electrode was advanced into the brain through a protective guide tube located 0.5 mm anterior to bregma for optic chiasm recording or 1.5 mm lateral to bregma for optic tract recording. A video monitor with 100-Hz frame rate (Multiscan 17se, Sony, 40.4 cm) was gamma corrected to linearize the input-output relation- ship of the monitor. The animal was mechanically ventilated with room air at a rate that maintained end-tidal CO2 at a normal level. All procedures were approved by the Boston University Animal Care and Use Committee.

RESULTS

The threshold for luminance adaptation was studied in rat retinal ganglion cells with a probed-sinewave stimulus paradigm, in which the luminance of a small spot matched in size to the receptive field center of recorded cells was sinusoidally modulated in time against a uniform gray background. The mean background luminance was the same for all experiments and within the photopic range of the animal. For various modulation phases, the spot was flashed brighter for ON cells or darker for OFF cells to probe for response adaptation. The flash interval was always >3 s, because initial experiments showed this gave independent probe responses. The stimulus paradigm has several attractive features. First, it has frequently been used in psychophysical studies, which have shown that a phase-
dependent modulation of flash sensitivity is indicative of luminance adaptation and a phase-independent reduction in sensitivity of contrast adaptation (Hood et al. 1997; Snippe et al. 2000; Wolfson and Graham 2006). This facilitates interpretation of our results, because the distinction between the processes blurs when small luminance fluctuations are involved. It also facilitates comparisons of our results to humans. Second, the probed-sinewave paradigm avoids onset and offset transients that can obscure responses to the probe stimulus if background luminance were stepped up and down. Third, it confines the adaptive signal to the receptive field center, isolating the actions of local luminance gain controls from the potentially confounding effects of contrast gain controls in the extraclassical receptive field of retinal ganglion cells (Enroth-Cugell and Jakiela 1980; Passaglia et al. 2001, 2009).

Adaptation to local luminance fluctuations

Figure 1 shows the effect of local luminance fluctuations on the sensitivity of a typical ON cell. The modulation waveform in this case was a 0.25-Hz sinewave of 35% contrast. The baseline sensitivity of the cell \(R_{\text{control}} \) was measured before and after the stimulus paradigm by flashing the spot against the unmodulated gray background (Fig. 1A). Flash contrast was fixed at 50% or less relative to this background so that probe responses were in the linear range of the cell based on measured contrast response functions (Fig. 1B). Data were excluded from analysis if \(R_{\text{control}} \) showed drift. Probed-sinewave responses \((R_{\text{sine}}) \) were quantified by subtracting the response to background modulation without flashes (Fig. 1C). The ratio of the two measurements \((R_{\text{sine}}/R_{\text{control}}) \) defined the change in response gain of the cell, which depended on the phase of flash presentation with respect to the local background modulation (Fig. 1D). The flash response grew by \(\sim 30\% \) when spot intensity decreased and shrank by roughly the same amount when spot intensity increased. This nonlinear behavior is indicative of a luminance adaptive process, which is known to counteract increases in light intensity with decreases in response gain and vice versa. The data show that the process is sensitive enough to modulate ganglion cell responsiveness even when local luminance fluctuates by a fraction of a log unit and scene luminance is basically constant.

It may be noted that flash contrast is defined here relative to the ambient light intensity. If flash contrast were instead defined relative to the instantaneous local luminance, it would not be constant. It too would vary sinusoidally in time. This raises an alternative interpretation of the results, which is that flash responses got smaller when spot intensity increased and larger when intensity decreased because flash contrast varied, and ganglion cells are known to act as contrast detectors. This interpretation does not, however, detract from the conclusion that spot modulation caused light adaptation. The system must still adapt to local luminance for flashes containing the same number of photons to produce responses of different size.

Sensitivity of luminance adaptation to stimulus contrast

The contrast of the sinewave was altered to determine the threshold amount of background modulation needed to measur-

![Figure 1](source)

FIG. 1. A: the response of an ON cell to a 100-ms flash (averaged over 10 presentations) on a uniform gray background presented both before (gray line) and after (dashed line) the probed sinewave stimulus. The average of these 2 responses (solid line) is used to estimate the amplitude of the control flash response \(R_{\text{control}} \). B: the response to a sinusoidally oscillating spot of 35% contrast and 0.25-Hz frequency (dashed line) and the response to the same sinusoid with a 100-ms flash presented at a phase of 315° (3.5 s) (solid line). Flash response amplitude is quantified as \(R_{\text{sine}} \). Above each response in A and B is an illustration of the stimulus. C: average response to 100-ms flashes of varying contrasts for ON cells (white circles, \(n = 6 \)) and OFF cells (dark circles, \(n = 6 \)). Response is normalized to the response at 100% contrast. D: response gain, or sensitivity, of the ganglion cell as estimated by the amplitude of the flash response presented at various phases of the sinusoid relative to the control \((R_{\text{sine}}/R_{\text{control}}) \).
ably activate the luminance gain control, and the results were averaged across all ON cells (n = 7 for 5% contrast, n = 8 for 15 and 25%, n = 9 for 35%). No change in response gain was detectable at 5% contrast, but the gain varied significantly above and below the baseline level for contrasts of 15% and higher (Fig. 2). These contrasts are within the threshold range for evoking a response from rat ganglion cells (Fig. 1B). Across the cell population, flash response amplitude was consistently reduced for phases that the spot was brighter than gray (45–135°) and enhanced for phases that the spot was darker than gray (225–315°). For the highest contrasts, the response enhancement was underestimated for certain dark phases as the modulated rate of some ON cells fell to zero (Fig. 4). That such low contrasts not only affected response gain but increased the gain for some phases makes it unlikely that static nonlinearities like spike rate clipping or saturation were involved. The data also provide little evidence for contrast adaptation. Such a process would suppress probe responses at all phases (Hood et al. 1997; Wu et al. 1997), but adaptation profiles appear fairly symmetric about the unity gain line at low contrast and are not centered markedly below.

The probed-sinewave experiment was also carried out for a population of OFF cells using a range of modulation contrasts (n = 8 for 5%, n = 6 for 15 and 25%, n = 7 for 35%). For these cells, the probe flash was darker than background so that the flash response was also an increase in spike rate. Because OFF cells have a lower maintained discharge than ON cells (Freeman et al. 2008), the background modulation often caused clipping of the probe response at zero firing rate for some modulation phases. The response clipping makes a decrease in gain hard to interpret. Nevertheless, an increase in responsivity above baseline was apparent for several flash phases at modulation contrasts of 15% or more (Fig. 3), indicating that OFF cells adapt to relatively small fluctuations in luminance as well.

The adaptation profiles of ON and OFF cells show a marked phase difference. Response enhancement was maximal in ON cells when the spot was darkest (~270°), whereas it was maximal in OFF cells when the spot transitioned from light to dark (~180°). If the gain control mechanism responsible for these changes resides in photoreceptors, the adaptation profiles of ON and OFF ganglion cells should be mirror opposites because the photoreceptor output would pass to both ON and OFF bipolar cells. The gain control thus seems distinct from outer retinal adaptation described in cone and horizontal cells (Lee et al. 2003; Schneeweiss and Schnapf 1999) and lies within the inner retinal circuitry. A likely site is the signal transfer from bipolar cells to ganglion cells. Postreceptor adaptation was recently localized to this junction in primate (Dunn et al. 2007), although it was not the dominant site for ganglion cells at photopic light levels. Based on our results, separate gain controls must exist for the ON and OFF pathways to have different adaptation profiles.

Independence of response adaptation from response rate

The effect of local background modulation on response gain was not coupled to its effect on mean firing rate. Figure 4 plots the rate modulation profile of ON and OFF cells for different contrasts. The profile was constructed by dividing the sinewave modulated rate with the resting rate and averaging across cells. ON cells tended to fire maximally at 45°, whereas OFF cells tended to fire maximally at 180°. The fact that ON and OFF cell responses at 0.25 Hz are not 180° apart is indicative of filtering differences between

FIG. 2. A–D: results of the probed-sinewave paradigm averaged over all ON cells for a sinusoidal frequency of 0.25 Hz and varying contrasts. The sensitivity oscillates above and below the baseline level, indicative of luminance adaptation. Best fit sinusoids of 0.25 Hz show the depth of modulation. Error bars indicate SE.
the ON and OFF pathways, which has been reported previously (Chichilnisky and Kalmar 2002). The rate modulation profile of ON cells was phase advanced by \(\frac{\pi}{2} \) with respect to their probe adaptation profile (cf. Figs. 2 and 4). This means that, when the modulated rate equaled the resting rate, the response gain was significantly reduced for some phases (135°) and elevated for others (315°). The response reduction at resting spike rates is additional evidence against the gain changes being a product of response compression. The phase difference between the two profiles also means that the effect was not a property of the ganglion cell spike generator, like spike frequency adaptation (O’Brien et al. 2002). This further limits the adaptive process to a site between bipolar cell and ganglion cell dendrites, at least for the ON pathway. The location is less certain for OFF cells. Although changes in response gain and firing rate were correlated, response clipping in this pathway could have masked a small phase difference between the probe adaptation and rate modulation profiles.

Temporal dynamics of luminance adaptation

To determine whether the observed sensitivity changes require the luminance to be modulated dynamically in time, spot luminance was held constant for several seconds at the levels specified by different phases of a 25%–contrast sine-wave, and response gain was probed at each phase in
random order. This gives the steady-state gain at each phase of the probed-sinewave experiment, and the results are shown in Fig. 5A (n = 5 ON cells). Ganglion cell sensitivity was reduced for an increase in standing contrast (45–135°) and enhanced for a decrease in standing contrast (225–315°), consistent with luminance adaptation. Thus the gain changes reported here do not require dynamic changes in luminance.

Luminance adaptation can span multiple timescales ranging from tens of milliseconds to several minutes (Walraven et al. 1990). We sought to determine the time scale of the luminance adaptation observed at low contrasts. However, estimating the speed of this mechanism in rats is complicated by the fact that the flash response can outlast the modulation period at high temporal frequencies. In addition, response clipping and phase locking are more pronounced at fast modulation rates (>1 Hz).

For stimulation at 1 Hz, ON and OFF cells both showed measurable luminance adaptation to 15% background modulation, as evidenced by the elevation in response gain above the baseline level for some probe phases (Fig. 5B). For a subset of ON cells that had a high maintained discharge rate (>30 imp/s), it was possible to probe faster speeds because the modulated response did not show distortion. For stimulation at 4 Hz, the sensitivity profile varied sinusoidally with phase as well (Fig. 5C). Together, the results show that luminance adaptation acts on a timescale of 500 ms in OFF cells and 125 ms in ON cells. There is also evidence of a phase-independent reduction of gain in the 1- and 4-Hz data. The shift was small (phase-averaged gain: 0.95 ± 0.09 for 4 Hz), but it could indicate the presence of temporal contrast adaptation at higher modulation frequencies.

Weber’s law behavior at low stimulus contrast

Retinal sensitivity has been shown to decrease in inverse proportion to light level over the photopic range, allowing ganglion cells to signal contrast instead of absolute luminance (Shapley and Enroth-Cugell 1984; Troy and Enroth-Cugell 1993). This behavior is referred to as Weber’s law and can be described by the equation

$$G_0 = \frac{\alpha}{L_0}$$

where G_0 is the baseline gain, L_0 is background light level, and α is a constant of proportionality. The relationship implies that increasing light level by a factor of 10, for example, would cause retinal sensitivity to decrease by a factor of 10. What has not been considered are the gain changes predicted by Weber’s law for stimuli of low-to-moderate contrast and the degree to which retinal ganglion cells achieve them.

Consider a ganglion cell viewing a sinusoidally modulated spot on a steady background. If the luminance of the spot at a
given point in time is \(L_1 \), the contrast of the spot relative to the background is

\[
C = \frac{L_1 - L_0}{L_0}
\]

Assuming that luminance adaptation is as fast as the luminance modulation, the fractional change in response gain \(F \) predicted by Weber’s law is

\[
F = \frac{G_1 - G_0}{G_0} = \frac{L_0}{L_1} - 1 = \frac{-C}{1 + C}
\]

where \(G_1 \) is the response gain at a luminance of \(L_1 \). This value is the same for any value of \(\alpha \) and for any background light level. Interestingly, the predicted gain changes are not symmetric about the baseline level (Fig. 6, line). For example, at 25% contrast, the gain gets 33% larger when the spot darkens but only 20% smaller when the spot brightens.

To evaluate whether ganglion cell adaptation to small luminance fluctuations maintains Weber’s law behavior, the maximum and minimum change in response gain measured for the 0.25-Hz modulation at each contrast was compared with Weber’s law (Fig. 6). Only ON cell data were considered because probe sensitivity profiles were not shifted much below baseline. This means that either the rat retina does not have contrast adaptive mechanisms or that these mechanisms require spatial intensity gradients within the receptive field to activate. We tested for spatial contrast adaptation by hemisecting the spot vertically and modulating the luminance of each half of the spot in counterphase. Because ganglion cells integrate signals linearly over their receptive field center, excitatory input from the bright and dark halves cancel, and the hemisected spot produces no modulated response to the background. At various phases of the counterphase modulation, both halves of the spot were flashed together to probe for response adaptation.

Figure 7 shows the results for a group of ON (\(n = 13 \)) and OFF (\(n = 8 \)) cells using 0.25-Hz counterphase modulation at 25% contrast. Interestingly, response gain was suppressed by ~40% for both cell types at all flash phases. This could reflect an asymmetry in luminance adaptation, except that the suppression for ON cells was larger than that for the probed-sinewave stimulus (Fig. 2), even though the adaptation field was split in two and adaptive signals from each field should partially cancel. Instead, the phase-independent reduction of response gain is evidence for a gain control mechanism within the receptive field that integrates luminance signals non-linearly and is thereby sensitive to spatial contrast. This is consistent with a study of contrast adaptation that used spatial contrast noise as the stimulus (Brown and Masland 2001). The striking dissimilarity of the sinewave and split-sinewave data implies that the spatial contrast and luminance gain controls are separate mechanisms mediated by distinct retinal circuits.

Discussion

Using a probed-sinewave stimulus, retinal ganglion cells in rats were shown to change their response gain for local luminance fluctuations as low as 15% contrast. Gain increases and

FIG. 6. The fractional change in ganglion cell sensitivity, \(F \), for the 0.25 Hz probed-sinewave stimulus (circles) as a function of background contrast. The solid line shows the change in response gain predicted by Weber’s law. Error bars give SE.

FIG. 7. Average response gain for ON (A, \(n = 13 \)) and OFF (B, \(n = 8 \)) cells as a function of modulation phase for the probed split-sine paradigm. For this paradigm, the spot was hemisected and the two halves were counterphase modulated sinusoidally in time. For a well-centered spot, the resting discharge of the cell is unaltered by the background modulation. Bars above the figure indicate the bright and dark phases for each hemifield. Probe response amplitude was measured before/after (\(R_{\text{control}} \)) and during (\(R_{\text{split}} \)) counterphase modulation of 0.25 Hz and 25% contrast. Error bars give SE.
decreases were both measured when local luminance, respectively, varied below and above the ambient level, indicating that the gain changes were mediated by a luminance adaptive process and not the result of contrast adaptation or response compression. The process was active at low contrasts in both on and off ganglion cells but differed in temporal phase between the two cell types. The phase difference places the site of adaptation downstream of the photoreceptors and in the retinal network. The ganglion cell spike generator can be excluded as a possible site for the on pathway as the gain changes were independent of firing rate. A similar conclusion could not be made for the off pathway because of response clipping. These findings are not based on any particular model of luminance gain control and are thereby free of modeling assumptions.

Relationship to physiological studies of retinal adaptation

The mammalian retina contains several mechanisms of luminance gain control, including photopigment bleaching, rod-cone signaling, receptor adaptation, and network adaptation. Although the gain changes described here could perhaps reflect a novel high-sensitivity mechanism, they are predicted by Weber’s law and more likely the product of network adaptation. The existence of such a mechanism has been shown (Dunn et al. 2007; Green and Powers 1982; Ichinose and Lukasiewicz 2007), but its threshold of activation has not been established because the state of retinal adaptation is varied in most studies by changing light level over orders of magnitude (Cleland and Enroth-Cugell 1968, 1970; Enroth-Cugell and Shapley 1973a,b; Enroth-Cugell et al. 1975). Within a given state, ganglion cell responses are considered to be approximately linear for subsaturating stimuli. We show here that network mechanisms of adaptation are engaged even by relatively small luminance fluctuations and that they are more than sensitive enough to modulate ganglion cell responses over the 2- to 10-fold range of local luminance levels typically found in a natural scene (Frazor and Geisler 2006). Their effects on response gain are apparent for fluctuations of ≥1 Hz for off cells and 4 Hz for on cells. This suggests that the adaptive mechanism examined here acts rapidly (<125 ms) and are thus fast enough to adjust retinal gain between saccadic eye movements (~200 ms) (Saito and Fukada 1986). In short, our results experimentally validate the hypothesis that luminance gain controls in the retina operate not just as we move from one lighting environment to the next but also as we scan a visual scene under constant ambient illumination (Dunn and Rieke 2006).

The findings raise the possibility that luminance gain controls could have been active in some studies of contrast adaptation. One argument advanced against this possibility is that such studies generally use white noise stimuli of constant mean intensity and no discernible change in cone or horizontal cell response gain was measured based on noise analysis (Baccus and Meister 2002). Nevertheless, it was recently shown that intensity changes that are insufficient to adapt photoreceptors can still induce luminance adaptation downstream in the retinal network (Dunn et al. 2007). It might also be argued that luminance adaptation acts too slowly to factor in contrast adaptation studies because a white noise stimulus varies rapidly in time. However, we show that network mechanisms of luminance gain control are fast. At the typical frame rates of white noise presentation, it can be expected that the mean input over the integration time of ganglion cells would fluctuate in time because the stimulus contains energy at all temporal frequencies. Given the remarkable sensitivity of the luminance gain control described here, if gain changes induced by luminance increments and decrements are asymmetric in strength (Fig. 6) or dynamics (Snippe et al. 2004), the mechanism could produce an adaptive effect like that reported of stimulus contrast, particularly in cases where the receptive field center is uniformly illuminated. How substantial the putative contributions might be is uncertain.

Our results provide weak evidence for temporal contrast adaptation within the receptive field of ganglion cells. Such a mechanism would cause phase-independent response suppression, but a downward shift in response gain was seen only for 4-Hz modulation and it was fairly weak (~5%). This finding is seemingly at odds with several contrast adaptation studies (Chander and Chichilnisky 2001; Baccus and Meister 2002; Beaudoin et al. 2007; Kim and Rieke 2001). In some cases, the disparity might be explained by differences in stimulus configuration, because many of these studies illuminated the entire retina, whereas the input was confined here to the receptive field center. Indeed, our results provide strong support for spatial contrast adaptation (Fig. 7) and are consistent with the few studies that introduced spatial contrast into the receptive field (Brown and Masland 2001; Mante et al. 2005). We did not study the lateral extent of this spatial contrast adaptation mechanism, so it may correspond to the contrast gain control that is known to operate within and beyond the receptive field of ganglion cells in other mammals (Enroth-Cugell and Jakiela 1980; Passaglia et al. 2001, 2009; Shapley and Victor 1978). Consistent with this idea, the bipartite spot experiment implies the involvement of nonlinear subunits like those that comprise the retinal contrast gain control. Also, spatial contrast adaptation acts on both X and Y cells, as does the contrast gain control.

Relationship to psychophysical studies of luminance adaptation

The probe-sinewave stimulus has been used extensively in psychophysics to study the dynamics of light adaptation. For modulated backgrounds of high contrast (>50%), human visual sensitivity to a spot of light flashed at different phases was shown to vary above and below the unmodulated baseline at photopic light levels (Hood et al. 1997; Wolfson and Graham 2006), indicative of luminance adaptation. In addition, for modulation frequencies >0.4 Hz, the sensitivity profiles are often offset to an overall higher threshold level (Hood et al. 1997; Snippe et al. 2000). This phase-independent reduction of sensitivity has been attributed to contrast adaptation (Snippe et al. 2000, 2004). Only two studies have used modulated backgrounds of <50% contrast, and their findings also show sinusoidal oscillations of threshold with an overall threshold elevation at higher frequencies (Shickman 1970; Wolfson and Graham 2001). Our physiological results confirm the psychophysical evidence that low-contrast stimuli can activate a local mechanism of luminance adaptation in the mammalian retina. However, our results do not provide support for a retinal origin to the perceptual effects of temporal contrast adaptation because ganglion cell sensitivity profiles showed a much smaller dc-offset from baseline compared with the psychophysical results. One reason for this may be a difference in stimulus configuration. In most psychophysical experiments, the modulated background is several times larger than the spot used to
measure visual sensitivity, whereas in our experiments, the background modulation was constrained to the same spot that probed the receptive field center sensitivity of ganglion cells. This means that retinal mechanisms that operate outside the classical receptive field center and surround, such as contrast gain control (Enroth-Cugell and Jakiela 1980; Passaglia et al. 2001, 2009; Shapley and Victor 1978), could have factored prominently in the psychophysical data but not ours. Hence, probed-sinewave experiments using low contrast background modulations that are co-spatial with the probe are needed to compare with our results more directly.

ACKNOWLEDGMENTS

We thank W. Heine for assistance with data collection and J. Dowling, J. Troy, and B. Werner for helpful input during the preparation of this manuscript.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

REFERENCES

J Neurophysiol • VOL 104 • AUGUST 2010 • www.jn.org

Downloaded from http://jn.physiology.org/ on April 20, 2017