Activation of subthalamic neurons by contralateral subthalamic deep brain stimulation in Parkinson disease

Harrison C. Walker,1,2 Ray L. Watts,1 Christian J. Schranda,1,2 He Huang,1 Stephanie L. Guthrie,1 Barton L. Guthrie,3 and Erwin B. Montgomery, Jr.1,2

1Division of Movement Disorders, Department of Neurology, 2Department of Biomedical Engineering, and 3Division of Neurosurgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama

Submitted 15 March 2010; accepted in final form 17 December 2010

THE REMARKABLE SUCCESS of deep brain stimulation (DBS) surgery when best medical therapy is insufficient or suboptimal demonstrates the importance of electrophysiologically based treatments for neurological and psychiatric disease (Deuschl et al. 2006; Weaver et al. 2009; Vidaliniet al. 2005; Serrvello et al. 2008; Visser-Vandewalle 2007). Despite this, little is known about how the response of neurons to DBS improves symptoms.

Although unilateral subthalamic nucleus (STN) DBS most dramatically reduces the cardinal symptoms of Parkinson disease (PD) in the extremities contralateral to the stimulating electrode, several studies have shown mild but often sufficient improvement in ipsilateral motor function as well (Alberts et al. 2008b; Chung et al. 2006; Nakamura et al. 2007; Tabbal et al. 2008; Walker et al. 2009). Tabbal et al. demonstrate with objective kinematic measures and rater blinding that the improvement in ipsilateral motor function from unilateral STN stimulation is present in a relatively large sample of patients whose stimulator had been placed at a median of 8.7 mo (range 4.2–11 mo) before motor testing, and Walker et al. demonstrate bilateral effects from unilateral STN stimulation on timed measures of bradykinesia at up to 12 mo postoperatively (Tabbal et al. 2008; Walker et al. 2009). Additionally, the results of Alberts et al. (2008a) demonstrate that ipsilateral force control is improved by unilateral STN DBS during the performance of bimanual motor tasks. In total, these studies indicate that the mild ipsilateral improvement in motor function from unilateral STN DBS is not merely a transient phenomenon that attenuates during the initial postoperative months.

The mechanism for motor benefit from subcortical brain stimulation is unknown. Investigation of the neuronal activity in the unstimulated STN on the opposite side of the brain may be relevant to ipsilateral clinical benefit and provide a unique perspective to study DBS mechanisms of action. Therefore, we tested the hypothesis that unilateral STN DBS alters the neurophysiology of the contralateral STN during staged placement of a second DBS electrode on the opposite side of the brain in patients with advanced idiopathic PD.

Recent biochemical, metabolic, and electrophysiological evidence in animal models and patients with movement disorders suggests that a lesion effect or local inhibition alone is unlikely to explain the therapeutic mechanism of DBS (Garcia et al. 2003; Hashimoto et al. 2003; Hilker et al. 2008; Karimi et al. 2008; Windels et al. 2000; Montgomery and Gale 2008). Computer modeling of the biophysical properties of neurons and experimental evidence in biological studies have suggested that DBS results in local inhibition in the cell bodies in direct proximity to the DBS electrode, but that efferent axons, afferent axons, and fibers of passage in the region of stimulation are likely to be activated as well (Hashimoto et al. 2003; Mont-gomery and Gale 2008; Grill et al. 2008; McIntyre et al. 2004a; McIntyre et al. 2004b; McIntyre and Grill 2002; Hammond et al. 2008; Anderson et al. 2003; Iremonger et al. 2006; Kita et al. 2005; Maurice et al. 2003; Tai et al. 2003; Montgomery 2006). Neurophysiological approaches have related changes in rhythmic neuronal activity in the basal ganglia-thalamic-cortical (BG-Th-CTX) system with the remarkable efficacy of DBS, including antidromic activation, oscillations, resonance, beat amplification, suppression of misinformation by overwriting neuronal activity (misinforma- tion-ablation), and synchronization/desynchronization (McIntyre et al. 2004b; Hammond et al. 2008; Li et al. 2007; Brown 2003; Bar-Gad et al. 2003; Montgomery 2007; Montgomery and Baker 2000). Assuming that changes in the activity of the contralateral STN during unilateral STN DBS are causally related in some way to the ipsilateral improvement in motor function, characterization of such changes in STN activity may
provide important insights into the therapeutic mechanisms of action of DBS.

METHODS

This study received prior approval by the Institutional Review Board at the University of Alabama at Birmingham. Inclusion criteria required a diagnosis of idiopathic PD consistent with the UK Brain Bank Criteria. Additional inclusion and exclusion criteria for DBS surgery for PD have been described extensively elsewhere (Deuschl et al. 2003). Patients previously had unilateral STN DBS and were undergoing a second contralateral STN DBS placement. The patients were in the “practically defined off” medication state (following an overnight fast from their anti-Parkinson medications) as a matter of routine care for the surgical procedure (Langston et al. 1992).

Microelectrode recordings. All experimental recordings were obtained with the patient awake and at rest. Microelectrode recordings (MER) were recorded through platinum-iridium microelectrodes with impedances between 0.4 and 1 mΩ (FHC, Bonham, ME) using standard amplification and filtering (low frequency cutoff 350 Hz, high frequency 6 kHz, gain 25,000; Alpha Omega Engineering, Jerusalem, Israel), and analog-to-digital conversion occurred at a sampling rate of 24 kHz. MER identified the boundaries of the sensorimotor STN for targeting of the DBS electrode using methods described previously (Baker et al. 2004). Upon encountering typical STN activity, two stimulation paradigms were tested for 120 s each. First, the contralateral STN stimulator was activated in continuous mode at high frequency settings (160 Hz) that previously were determined to be clinically effective in the outpatient setting as described in the context of another study (typically monopolar or bipolar configuration, 3.5 V, pulse width of 60 μs) (Walker et al. 2009). Second, lower frequency stimulation (30 Hz) was delivered from the stimulator with otherwise identical settings. Baseline STN activity was recorded for 120-s intervals before, between, and following the two stimulation conditions. A schema for the intraoperative STN MER experiments during staged STN DBS surgery is shown in Fig. 1.

Stimulation artifact removal and identification of neuronal waveforms. Validated MER analysis software developed by Montgomery et al. (2005) was used offline to identify the stimulation artifact peaks (Fig. 2A), calculate the mean evoked potential for the individual occurrence of the stimulus in the analog data (Fig. 2B). Because the inherent variability of the immediate fast component of the stimulus artifact made subtraction difficult, this brief interval (typically less than 1 ms in duration) was set to zero. A semiautomated parsing routine discriminated the neurons in the deartifacted data based on waveform morphology using a validated, heuristically driven template-matching algorithm to attribute the neuronal action potential waveforms to individual neurons (Montgomerie et al. 2005). Action potential waveforms associated with individual neurons were visually inspected to assure appropriate discrimination. Additionally, neuronal discrimination was verified by constructing an auto-correlogram for each neuron; failure to demonstrate a refractory period in the auto-correlogram indicates that the waveforms of two or more neurons were inappropriately attributed to a single neuron. Similarly, cross-correlograms between all pairs of discriminated neurons at the same recording site demonstrated no evidence of a refractory period, and, consequently, minimizing a risk of discriminating a single neuron into two or more neurons.

Data analysis. A number of analysis techniques were used to evaluate whether the activity of subthalamic neurons was altered by contralateral STN DBS. Analog raster plots center epochs of the analog data (the continuous microelectrode recording data) around an event of interest such as the stimulus pulse or the action potential waveforms associated with a specific neuron. This allows visualiza-
Several additional analysis techniques were used to evaluate the short latency (≈1 ms), temporally precise responses observed in the discreet raster plots (Figs. 3A and 4). First, the analog histograms of individual neurons in Fig. 2, C and D, described previously demonstrate the presence of the stimulation artifact at a short latency before the neuronal waveforms. Second, analog raster plots were constructed conditionally, to only display action potentials from an individual neuron occurring within 1 ms after the contralateral stimulus pulse (Fig. 5A). Third, the data was visually inspected in the continuous data and in the analog rasters to verify the presence of the action potential waveforms (Fig. 3, C1 and C2 and Fig. 5, A and B). Fourth, collision analyses were employed, as described by other authors, to evaluate whether the observed short latency responses are consistent with direct axonal activation by the stimulus (Li et al. 2007). Collision occurs when a neuron discharges spontaneously immediately before a stimulus pulse and prevents the propagation of the antidromic response to the recording site because of the absolute refractory period. In the collision analyses, epochs of data were grouped conditionally based on whether there was an action potential within 3 ms before the contralateral STN DBS pulse or not. Poststimulus histograms of discharge probability were then constructed to characterize the response of the neuron over time with respect to the stimulus pulse for both conditions (Fig. 5, C1 and C2). Additionally, the proportion of successful collision events was calculated by dividing the proportion of the contralateral stimuli that were followed by the short latency neuronal response in the two conditions. Fifth, the probability of whether a short latency response occurred after 160 and 30 Hz contralateral STN DBS was analyzed statistically with one-way ANOVA with neurons as subjects and the stimulation conditions as factors (Fig. 6B). A test of normality showed that the probabilities of a short latency response (within 1 ms of the stimulus pulse) were not normally distributed; therefore, the data were log transformed to achieve normality.

The total continuous discharge frequency for each neuron was calculated during the resting state and during 160 and 30 Hz contralateral stimulation. The calculation of total discharge frequency in each of the stimulation conditions takes into account the brief period of flattening during the fastest component of the stimulus artifact transient. The discharge frequencies of each neuron in the stimulation conditions and the resting state were evaluated using one-way ANOVA with repeated measures with neurons as subject and the stimulation conditions as factors, and the Bonferroni method was used for pairwise comparison. A test of normality showed that the discharge frequencies were not normally distributed; therefore, the data were log transformed to achieve normality. The P value required for statistical significance for this and all other statistical tests in this work was set at 0.01 a priori for multiple comparisons.

RESULTS

Descriptive data for the subjects who participated in the study are contained in Table 1. Age and duration of disease were rounded to the nearest decade to protect subject anonymity. Recordings were obtained from a total of 58 STN neurons.

The discharge pattern of STN neurons is altered by contralateral STN DBS. The responses of a representative individual neuron to contralateral 160 Hz STN DBS are illustrated in the discrete raster plot and histogram in Fig. 3, A and B, and in analog rasters in Fig. 3, C1 and C2. There is an absence of neuronal activity immediately during the fastest component of the DBS pulse lasting from −0.2 ms before to 0.8 ms after stimulus onset due to loss of signal from the removal of the brief, fastest component of the stimulation artifact. In general, there are four changes in neuronal activity the poststimulus rasters and histograms during high frequency DBS illustrated explicitly in Fig. 3. First, there is activation of STN neurons.
that is tightly coupled temporally to the contralateral stimulus at a short latency of \(~0.8\) ms. Although it may appear that a pair of action potentials occur on the same row in the raster, only single action potentials follow any individual DBS pulse. The raster has the appearance of two dots together because of the very large number of rows corresponding to each stimulation pulse. Second, in many neurons there is a reduction of activity compared with baseline following the second response at a latency of \(~2\) ms. Third, there is an increase in neuronal activity \(~3\) ms after the DBS pulse lasting \(~1.5\) ms. In contrast to the temporal precision of the short latency responses, the Z-score-adjusted histogram shows a more sustained increase in neuronal activity during the interval \(~3–5\) ms after the stimulus pulse during stimulation. Fourth, in many neurons, following the increased activity \(~3\) ms after the DBS pulse, there is a reduction in neuronal activity. In Fig. 3B, Z-score-adjusted histograms quantify each of these changes in the discharge pattern of a neuron with DBS at 160 Hz vs. DBS off. Figure 3 displays analog raster plots of consecutive action potentials of the same neuron in its resting state with DBS on at 160 Hz (Fig. 3C1) and with DBS off (Fig. 3C2, pseudostimulation). These rasters display the raw data before stimulus artifact subtraction to demonstrate the effects of 160 Hz contralateral stimulation on the discharge pattern of the STN neurons. These alterations in the pattern of neuronal discharges by contralateral STN DBS were seen consistently between neurons in individual neurons and across subjects (Fig. 4).

The first response in the discrete rasters occurs at a short, fixed latency relative to the contralateral stimulus pulse of \(~1\) ms, which suggests that the axons of STN neurons may be activated by the contralateral stimulus pulse. The analog histograms of individual neurons discussed previously in Fig. 2, C and D, demonstrate the short latency between the stimulus artifact and the action potentials of these neurons. Note that during 160 and 30 Hz stimulation, the stimulus artifact (gray arrows) appears in the raster at a short latency (\(~1\) ms) before the action potential waveform, demonstrating that the action potentials are more likely to occur at a precise short latency with respect to the onset of the contralateral stimulus pulse. Furthermore, the amplitude of the stimulus artifact pulse is smaller relative to the action potential amplitude during 30 Hz stimulation, because the ratio of the number of neuronal discharges to stimulation spikes is smaller when the stimulation frequency is lower. Finally, the morphologies of the action potentials with DBS off and in the deartifacted data with DBS on are identical. This verifies the consistency of the morphology of the action potential in the various stimulation conditions. If the short latency responses measured during stimulation were artifactual, they would likely manifest unique waveform morphologies that would be present only during the stimulation conditions and not during the resting state. This was not the case. Analog rasters demonstrate that the action potentials measured during stimulation have identical morphologies to the action potentials measured during the resting state when there was no stimulus pulse (Fig. 2, C and D).

To further evaluate the possibility whether the short latency responses represent axonal activation of STN neurons by contralateral STN DBS, analog rasters centered on the stimulation pulse were generated in Fig. 5A to display action potentials occurring within 1 ms of the stimulus pulse. These rasters display epochs where the STN neuronal discharge follows the high frequency contralateral STN stimulus within 1 ms of the onset of the contralateral stimulus pulse. Note that
discharges of this individual neuron can be seen in the raw analog data in the data still containing the stimulation artifact (Fig. 5A). Similar short latency responses are evident in the discrete rasters for other representative neurons in response to both 160 and 30 Hz contralateral stimulation in Fig. 4. Furthermore, collision analyses show a decreased probability of a neuronal discharge in the first millisecond following the DBS pulse occurring in the epochs with an action potential preceding the DBS pulse by 3 ms vs. the epochs without an action potential in the 3 ms preceding the DBS pulse (Fig. 5, C1 and C2). The proportion of successful collision events in this example was 0.81. Finally, axonal activation of neurons should be robust and relatively independent of stimulation frequency. This property was examined by calculating the probabilities of these short latency discharges for each neuron in response to both 160 and 30 Hz stimulation. The mean probability of a short latency response following contralateral STN DBS pulse during 160 Hz (0.031 ± 0.038) and 30 Hz (0.036 ± 0.048) stimulation was not significantly different (P = 0.47, Fig. 6B, 1-way repeated measures ANOVA with Bonferroni pairwise comparison). Given the difference in the mean probability, a power calculation suggests that a type II statistical error is unlikely, as more than 1,400 neurons would have to be sampled to result in a P value of less than 0.01 using a paired t-test, assuming power of 0.8.
Total discharge frequency is dependent on stimulation frequency. The total discharge frequency over the entire stimulation epoch across all neurons from all subjects was greater during 160 Hz contralateral STN stimulation (12.3 ± 1.7 Hz) than during 30 Hz stimulation (10.6 ± 1.7 Hz, \(P = 0.006 \)) and the resting state (9.7 ± 1.5 Hz, \(P < 0.001 \), 1-way repeated measures analysis of variance, with pairwise comparisons using the Bonferroni method, data expressed as means ± SE, Fig. 6A). During 160 Hz contralateral stimulation, 42 out of 53 neurons (79.25%) discharged at a higher frequency than during the resting state, and the remaining neurons (19.75%) discharged at a lower frequency. There was a trend towards a higher discharge frequency during low frequency stimulation vs. the resting state (\(P = 0.054 \)). A power calculation using the pairwise comparison suggests that 10 more neurons with a similar response to low frequency stimulation would be required to achieve a \(P \) value less than 0.01 using a paired \(t \)-test assuming power of 0.8, supporting a trend towards higher discharge frequencies during low frequency DBS compared with no stimulation.

DISCUSSION

There are two primary findings from this study. First, therapeutic 160 Hz unilateral STN DBS results in increased contralateral STN activity. If one assumes that a change in STN activity is causally related to the contralateral limb improvement (in the limb ipsilateral to the DBS), then these data are consistent with activation and not local inhibition as the therapeutic mechanism of DBS, because the discharge frequency was increased and not decreased during high frequency DBS of the contralateral STN. The observation agrees with the results of Novak et al. (2009) who analyzed multiunit STN activity and compared high frequency contralateral STN stimulation with the resting state. Second, the discharge pattern of STN neurons is altered by contralateral STN DBS, including fixed, short latency responses consistent with antidromic activation. Although the total discharge frequency of STN neurons was greater during contralateral 160 Hz STN DBS, the most prominent change in the discreet data was the alteration of the firing patterns of the neurons in response to stimulation. Combined, these observations demonstrate that both the precise timing and
demonstrating that action potentials in neuronal somas and there are considerable data from computational simulations (et al. 2003; Montgomery 2006; Filali et al. 2004). Additionally, output from the targeted structure (Hashimoto et al. 2003; Tai et al. 2009). In contrast, recordings from downstream structures (Beurrier et al. 2001), whereas another did not (Carlson et al. 2008) and suggest that output activation without local inhibition underlies the therapeutic effects of DBS, at least with regard to the ipsilateral improvement in motor function provided by unilateral STN DBS.

A study in a mouse model of PD demonstrated with selective expression of optically activated ion channels that the excitation and inhibition of cortex and cortical projection neurons rather than STN neurons themselves was associated with changes in motor function (Gradinaru et al. 2009). Other studies in a rodent model of PD, in non-human primates, and in patients with PD show evidence for antidromic activation of neurons in frontal cortex by STN DBS with intracellular recordings, local field potentials, electroencephalography, and transmagnetic stimulation (Montgomery and Gale 2008; Montgomery 2006; Li et al. 2007; Ashby et al. 1999; Baker et al. 2002; Kuriakose et al. 2009). Additionally, functional magnetic resonance imaging studies are most consistent with a local increase in the BOLD signal at the site of the stimulus, whatever implications this may have about the underlying synaptic activity (Hilker et al. 2008; Karimi et al. 2008). At the least, these studies coupled with our findings emphasize the importance of considering axonal activation and other alterations of network activity as an important component of the therapeutic mechanism of DBS.

That the total discharge rate of individual STN neurons is increased during contralateral high frequency STN stimulation vs. the resting state is opposite the prediction of the rate model of Albin and DeLong (1995; Wichmann and Delong 2006). The rate model would instead predict immediate worsening of motor function in the extremities in response to the observed increase in STN neuronal activity, which has not been observed in clinical studies evaluating motor function in the ipsilateral arm. Gradinaru et al. found that both subcortical electrical stimulation and motor cortex activation but not changes in STN neuronal activity improved motor function in a mouse model of PD (Gradinaru et al. 2009). Additionally, another study showed no difference between the resting STN neuronal activity in PD patients vs. patients with epilepsy (Montgomery 2008), and a recent study did not show the predicted decrease in STN discharge frequency during STN DBS in patients with PD (Carlson et al. 2009). Functional imaging studies have shown an increase in metabolic activity in the subthalamic region during STN DBS and decreased metabolic activity in motor cortical areas, findings compatible with STN activation, not inhibition (Hilker et al. 2008; Karimi et al. 2008; Hershey et al. 2003; Haslinger et al. 2005; Arai et al. 2008).

The discharge frequency of individual neurons in this work is lower in general than that reported in some previous studies of STN activity. In our analyses, we used quantitative and objective criteria to discriminate individual neurons, and these
The finding of axonal activation of STN neurons by contralateral STN DBS. Prior anatomical studies have demonstrated that STN axons are myelinated, which would be consistent with the short latency responses observed in these subjects (Chang et al. 1984; Kita and Kitai 1987). In addition to occurring at a fixed, short latency, antidromic responses are characterized by independence from stimulus frequency (Fig. 6B) and by the demonstration of collision. Had the antidromic responses been anticipated a priori, further experiments would have been conducted with longer stimulation trains to accumulate a larger number of neuronal discharges. A potential limitation of this study is that we did not have the capability to deliver DBS pulses in response to spontaneous action potentials, because the implanted DBS system is a clinical device. Consequently, in many examples there was a limited number of potential collision events.

The fixed, short latency responses observed in this study are most consistent with axonal activation of STN neurons by contralateral STN DBS. Prior anatomical studies have demonstrated that STN axons are myelinated, which would be consistent with the short latency responses observed in these subjects (Chang et al. 1984; Kita and Kitai 1987). In addition to occurring at a fixed, short latency, antidromic responses are characterized by independence from stimulus frequency (Fig. 6B) and by the demonstration of collision. Had the antidromic responses been anticipated a priori, further experiments would have been conducted with longer stimulation trains to accumulate a larger number of neuronal discharges. A potential limitation of this study is that we did not have the capability to deliver DBS pulses in response to spontaneous action potentials, because the implanted DBS system is a clinical device. Consequently, in many examples there was a limited number of potential collision events.

The finding of axonal activation of STN neurons by contralateral STN DBS suggests that there are projections of STN neurons that cross the midline in the vicinity of the contralateral (stimulated) STN. Whether these axons terminate in the contralateral STN or are in route elsewhere is unknown. Most studies of the anatomical projections within the basal ganglia do not address contralateral projections or the trajectory of the projections. Consequently, the relative lack of demonstrated projections from the STN to the vicinity of the contralateral STN should not be construed as evidence against this. The results of Parent and Smith (1987) indicate that subthalamic neurons project bilaterally to either the substantia nigra pars reticularata or to the pedunculopontine region, so it remains possible that the short latency responses we observe result from stimulation of these fibers of passage. Regardless, the demonstration of antidromic activation is in fact evidence in favor of such projections. A prior study showed evidence for antidromic activation of neurons in the thalamus by DBS of the internal segment of the globus pallidus, and anatomical studies have born out that anatomical projections from the thalamus to the pallidum exist (Montgomery 2006; Sidibe et al. 1997).

An intriguing aspect of the antidromic responses observed in this study is that they did not occur with high probability following the DBS pulse (typically following less than 5% of stimulation pulses), a phenomenon that has been demonstrated in the thalamus in a human in response to globus pallidus DBS and in studies in animal models (Montgomery 2006; Li et al. 2007; Chomiak and Hu 2007). There are a number of potential explanations for this observation. It is possible that contralateral DBS activates distal elements of axon collaterals beyond branch points, such that the biophysical properties of these branch points decrease the likelihood of generation of an action potential at the soma, as has been described both experimentally and in computer simulations (Grill et al. 2008; Montgomery 2006; Montgomerie et al. 2006; Chomiak and Hu 2007; Barron and Matthews 1935; Parnas 1972; Grossman et al. 1979; Beaurrier et al. 1999). Additionally, Chomiak and Hu demonstrated that the probability of antidromic potentials invading the soma is also dependent on the resting membrane voltage. This may hold particular relevance in the STN, where fluctuations in the resting membrane potential have been described previously (Beaurrier et al. 1999).

An important observation from this study is the change in the discharge pattern of STN neurons during contralateral STN DBS. Following the short latency antidromic response described previously, there is a decrease in activity in many neurons, which most likely represents the refractory period following the action potentials associated with antidromic action potentials. The longer latency responses seen at 3–5 ms after the stimulus pulse observed in this study are most suggestive of orthodromic synaptic activation because of their dependence on stimulation frequency, their longer latency relative to the antidromic responses, and their more broad temporal distribution. Since stimulation was delivered continuously and with a constant interstimulus interval in these experiments, we cannot discount the possibility of a “wrapping” effect where the increased activity actually is due to

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Duration of Disease (years)</th>
<th>Gender</th>
<th>Stimulation Site</th>
<th>Recording Site</th>
<th>Stimulator Settings</th>
<th>Medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>30</td>
<td>M</td>
<td>L STN</td>
<td>R STN</td>
<td>3+, 1−, 3.0 V, 60 μs, 160 Hz</td>
<td>carbidopa/levodopa, trihexyphenidyl, gabapentin</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>M</td>
<td>R STN</td>
<td>L STN</td>
<td>3+, 3−, 3.3 V, 90 μs, 160 Hz</td>
<td>carbidopa/levodopa, entacapone, pramipexole, pramipexole, gabapentin</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
<td>M</td>
<td>R STN</td>
<td>R STN</td>
<td>3+, 2−, 3.8 V, 90 μs, 160 Hz</td>
<td>carbidopa/levodopa, entacapone, pramipexole, pramipexole, gabapentin</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
<td>F</td>
<td>L STN</td>
<td>R STN</td>
<td>3+, 3−, 2.5 V, 60 μs, 145 Hz</td>
<td>carbidopa/levodopa, trihexyphenidyl, gabapentin</td>
</tr>
<tr>
<td>60</td>
<td>20</td>
<td>F</td>
<td>R STN</td>
<td>L STN</td>
<td>3+, 0−, 3.3 V, 60 μs, 160 Hz</td>
<td>carbidopa/levodopa, rosinol, propolol</td>
</tr>
<tr>
<td>60</td>
<td>30</td>
<td>M</td>
<td>L STN</td>
<td>R STN</td>
<td>3+, 1−, 3.3 V, 60 μs, 160 Hz</td>
<td>carbidopa/levodopa, entacapone, propranolol</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>M</td>
<td>L STN</td>
<td>R STN</td>
<td>1−, 1−, 1.7 V, 90 μs, 185 Hz</td>
<td>carbidopa/levodopa, ropinirole</td>
</tr>
</tbody>
</table>

STN, subthalamic nucleus. *Rounded to nearest decade; †means ± SD.
earlier DBS pulses. Whether the activation of STN neurons occurs 3–5 ms after the preceding stimulus, or whether they are longer latency responses that occur based on the recent stimulation history in some integer multiple of the apparent latency is unclear. The fifth and final response observed in the discrete rasters is a decrease in activity following the broad increase in activity ~3 to 5 ms after the stimulus pulse described previously. This decrease in activity most likely represents a refractory period following the increase in activity preceding it, absence of neuronal activity because of the flattening of the subsequent stimulation artifact, or a combination of both.

The alterations of STN neuronal activity by contralateral DBS observed in this study add to considerable experimental evidence and modeling studies suggesting that DBS has widespread effects in the central nervous system beyond its local effects near the site of the stimulus. Model simulations of the mechanism of DBS based on the biophysical properties of neurons, action potential initiation, and the stimulus pulse suggest that complex responses to DBS occur, with either excitation or inhibition of cell bodies proximal to the stimulus and both antidromic and orthodromic activations of efferent axons and fibers of passage (McIntyre et al. 2004a; McIntyre et al. 2004b). Additionally, distant effects of DBS have been appreciated in studies using microelectrode recordings at various anatomical sites, local field potentials, cortical evoked potentials, and functional imaging (Hashimoto et al. 2003; Karimi et al. 2008; Anderson et al. 2003; Montgomery 2006; Li et al. 2007; Filli et al. 2004; Baker et al. 2002; Hershey et al. 2003; Hanajima et al. 2004; Hahn et al. 2008; Liu et al. 2002). Our findings provide information about the effects of STN DBS on the bilateral BG-Th-CTX motor system and emphasize that complex alterations in network activity are likely to underlie the remarkable therapeutic efficacy of DBS. In total, these findings suggest that the therapeutic mechanism of DBS may have little to do with the STN itself and instead be related to alteration of activity in fibers of passage near the STN or activation of more distant output structures and in turn the entire BG-Th-CTX system.

ACKNOWLEDGMENTS

The authors acknowledge the patients who participated in this research.

GRANTS

This work was supported in part by grant funding from National Institute of Neurological Disorders and Stroke (H. C. Walker, K23-NS-067053-01), the American Parkinson Disease Association, the Sartain Lanier Family Foundation, the Charles Ackerman Parkinson Research Fund at University of Alabama at Birmingham (UAB), the Dr. Sigmund Rosen Scholarship in Neurology (E. B. Montgomery), and the UAB Parkinson Research Fund.

DISCLOSURES

Erwin B. Montgomery, Jr. serves as a consultant to Boston Scientific and St. Jude Neumodulation.

REFERENCES

J Neurophysiol • VOL 105 • MARCH 2011 • www.jn.org

Downloaded from http://jn.physiology.org/ by IP 10.220.33.2 on October 25, 2016

