Corticospinal excitability during preparation for an anticipatory action is modulated by the availability of visual information

Welber Marinovic,1,2 Campbell S. Reid,1 Anna M. Plooy,1 Stephan Riek,1 and James R. Tresilian3
1Perception and Motor Systems Laboratory, School of Human Movement Studies, and 2Perception Laboratory, School of Psychology, University of Queensland, Queensland, Australia; and 3Department of Psychology, University of Warwick, Warwick, United Kingdom

Submitted 10 August 2010; accepted in final form 30 November 2010
plausibility of this interpretation is based on the following reasoning. During temporal preparation activation is thought to build up as the anticipated time of response initiation approaches and can only be sustained at an optimal level for short periods (Los and Van den Heuvel 2001). The greater the accuracy with which the time of response initiation can be anticipated, the shorter the time for which readiness need be maintained at the optimal level (Alegria 1974; Muller-Gethmann et al. 2003), as the period of preparation can be coordinated with the time at which the response initiating signal occurs. Performance is typically very precise (low variability) in interception and coincidence-anticipation tasks under full view conditions (Schmidt 1969) but less precise when the target is occluded (reviewed in Tresilian 1995). This implies that the time of response initiation can be anticipated with greater precision in full view conditions but less precisely in occluded view conditions. To accommodate this lack of precision, the period during which preparatory activity is sustained at a high level could be extended as found in earlier studies (Alegria 1974; Carlsen and Mackinnon 2010; Muller-Gethmann et al. 2003). A sustained high level of activity before movement initiation would take longer to suppress, which would lead to greater suppression times in the occluded view condition.

We report the results of two experiments in which we attempted to test this idea. Participants performed both a coincidence-anticipation task (full view condition) and a prediction-motion task (occluded view condition). Their ability to suppress responses was examined under these conditions. In experiment 1, we sought to replicate our previous behavioral finding that the minimum suppression time is greater during occlusions and also looked for direct evidence for higher levels of response-related activity by testing corticospinal excitability using single-pulse transcranial magnetic stimulation (TMS; Chen et al. 1998; Leocani et al. 2000). In experiment 2, we sought to examine whether we could find evidence of higher levels of corticospinal excitability when the task did not involve response suppression.

MATERIALS AND METHODS

Subjects

Twelve volunteers participated in the experiments (4 of whom took part in both experiments), and all gave their informed consent before commencement of the study, which was approved by the local Ethics Committee of the University of Queensland. All participants reported normal or corrected to normal vision and stated they were right handed. Their ages ranged from 21 to 34 yr (mean = 29.3 yr, SD = 5.4 yr).

Experiment 1

Task and apparatus. Participants were seated in a comfortable chair in front of a computer screen with support for the arms and hands as depicted in Fig. 1. Support for the hands was purposefully built to allow the participants to remain comfortable with their hands in a pronated position throughout the experiment. The participants were required to abduct their right index finger against a force transducer, placed beside their right hand on the hand rest, at the precise moment they judged a moving target (50 × 25 pixels) would make contact with a stationary target (25 × 50 pixels) positioned at the right side of a monitor screen as shown in Fig. 2. In one block of trials, occluded view (OV), the target disappeared from view 500 ms before reaching the stationary target as shown in Fig. 2A. In another block of trials, full view, the moving target was visible throughout its entire trajectory until it reached the stationary target at the right side of the monitor screen as shown in Fig. 2B. In both conditions, the moment of contact was indicated by the stationary target changing from green to red. A stop signal would appear on the screen in 40% of the trials in both conditions as shown in Fig. 2C. The participants were instructed to remain at rest when this event occurred. The moving target took 2,000 ms to move from the left to the right side of a 19-in. monitor screen (85-Hz refresh rate, 1,024 × 768 resolution) located 0.9 m away from the participants as shown in Fig. 1. Visual stimuli were generated with Cogent 2000 Graphics (http://www.vislab.ucl.ac.uk/cogent_2000.php) running in MATLAB 7.5.

Procedures and design. Before the experimental blocks, the participants were trained to abduct their index fingers at the correct time. During practice, they initially performed 50 trials without stop signals and then another 24 trials where each stop signal was pseudorandomly presented twice (practice was provided for both blocks). Feedback about inhibition failures (for stop-signal trials) and about temporal error (go trials with no TMS) was provided during training and experimental blocks. The participants were informed that they failed to inhibit their actions during no-go trials when force transducer levels exceeded three standard deviations from baseline levels. The experiment was run in two blocks: a) occluded view, and b) full view. In the occluded view block, the moving object disappeared from view 500 ms before its arrival at the contact point as shown in Fig. 2A. In the full view block, the moving object was seen until it reached the contact point as shown in Fig. 2B. Following practice, one-half of the participants began the experiment with block a and one-half with block b. The participants performed 150 trials for each experimental block (300 total). In each block, on 60 trials (40% of total), a red stop sign (stop signal) suddenly appeared on the screen (210 × 210 pixels) as shown in Fig. 2C, and it served to inform the participants that they were to inhibit the initiation of their movements.
Although the frequency of stop signals in the present study was lower than that used in our previous studies (Marinovic et al. 2009a; Marinovic et al. 2010), we anticipated that the 40% chance of a stop signal would be sufficient to create an expectation on the participants to halt their actions. The stop signal appeared pseudorandomly on the monitor screen at various times (100, 134, 171, 205, 241, and 276 ms) before the exact moment in which the moving target contacted the stationary target and remained at its initial position until the end of the trial. We presented 10 trials for each stop-signal interval in each block. Feedback about whether or not they succeeded to inhibit their movements after stop-signal trials was provided to motivate the participants to attend to the stop signal. The remaining trials were go trials where the participants were required to be as accurate as possible to synchronize the onset of their movements with the arrival of the moving target at the contact point. On 40 of the go trials (26.6% of total), single-pulse TMS was delivered to the left primary motor cortex at the optimal position to elicit a motor-evoked potential (MEP) in the first dorsal interosseous (FDI) muscle of the right hand. TMS was delivered at four intervals (201, 173, 146, and 120 ms) before the exact moment at which the moving target contacted the stationary target (expected time of movement onset) in the full view and occluded view conditions. We delivered TMS on 10 trials for each of the four intervals. In the remaining go trials (33.3% of total), no TMS was delivered. For these go trials, the participants were given feedback about their temporal error to initiate their movements with the arrival of the moving target at the contact point. Feedback for these trials was provided to encourage the participants to achieve optimal performance and avoid using strategies that could increase their chances to inhibit their actions more easily (e.g., delaying movement onset to increase the stop-signal interval).

TMS stimulation. Before the participants were given instructions about the task, the TMS intensity was established for each participant by finding the lowest stimulation intensity that could reliably elicit a peak-to-peak MEP of \(~1\) mV in the first dorsal interosseous muscle (primary agonist in the task). This criterion was particularly preferred for this experiment, as it allows for the detection of both an increase and decrease in excitability (Bestmann et al. 2004). The position of the coil over the specific site of stimulation was held in place by one experimenter. To increase the spatial accuracy of the stimulation over the target area, we used an image-guided frameless stereotactic neuronavigation system (StealthStation; Medtronic), which provided online guidance to the person holding the coil in place. MEPs were recorded from the FDI and the abductor digiti minimi (ADM) of the right hand using disposable Ag-AgCl electrodes. The electromyogram (EMG) signal was amplified, band-pass filtered between 30 and 1 kHz (Grass P511 isolated amplifier), sampled at 2000 Hz, and stored on computer. The torque transducer data was time locked to the collection of the EMG signal and also sampled at 2000 Hz.

Data analysis. In experiment 1, the variables of interest were the presence of movement during stop-signal trials, which was indicated by torque level exceeding three standard deviations from baseline levels for \(>40\) samples. Amplitude of the mean peak-to-peak MEP was expressed as a proportion of those at rest. Temporal error was defined as the difference between movement onset and the time the moving target arrived at the designed location (negative = early). Variable temporal error was defined as the standard deviation of the temporal error over a series of trials.

Data regarding the presence of movements during stop-signal trials was first analyzed through a repeated-measures ANOVA. As the percentage of inhibited trials follows a binomial distribution, we used the arcsine squared root transformation to analyze this variable as recommended by Hogg and Craig (1995). The mean transformed percentage of successful inhibitions were submitted to 2 (view condition: full view and occluded view) × 6 (stop-signal interval: 100, 134, 171, 205, 241, and 276 ms) repeated-measures ANOVA. A Tukey’s honestly significant difference post hoc test \((P \geq 0.05)\) was conducted to determine the locus of significant differences involving more than two means. After this analysis, the nontransformed percentage of inhibited trials was used to obtain inhibition functions. The probability of inhibiting the response for each time at which the stop signal was presented was fitted with a cumulative Gaussian by using a maximum likelihood fitting procedure. The time required to halt the movement was defined as the point in the inhibition function at which the probability of inhibiting the action was 0.5. The time to inhibit was then corrected for each participant based on the constant temporal error obtained in control trials (trials without a stop signal or TMS). The corrected values in which the inhibition functions reached 0.5 for the two experimental blocks were then compared using a paired \(t\)-test.

To analyze peak-to-peak MEP amplitude, we first calculated the time interval between TMS delivery and the onset of voluntary EMG contraction so that trials could be temporally binned in relation to the actual interval between TMS and voluntary movement onset. Any trial in which voluntary contraction was found to occur before magnetic stimulation was discarded from further analysis. These were more common for stimulations occurring closer to the expected time of arrival of the moving target at the determined contact point. MEP amplitudes were binned into three intervals of equal width (101–150, 151–200, and 201–251 ms). The means of the MEPs amplitude of the
temporally binned trials were submitted to 2 (view condition: full view and occluded view) × 3 (binned interval: 101–150, 151–200, and 201–251 ms) repeated-measures ANOVA. A Tukey’s honestly significant difference post hoc test (\(P > 0.05 \)) was conducted to determine the locus of significant differences involving more than two means. Constant temporal error and variable temporal error in both experimental blocks were compared via paired t-tests, as only control trials were used to analyze the participants’ performance during go trials.

Experiment 2

The task, apparatus, and procedures were identical to those employed in experiment 1 with the exception of the following details. No stop signals were presented during the two experimental blocks (full view and occluded view). Therefore, participants were only required to synchronize their movements with the arrival of the moving target at the contact point on the monitor screen. Before the experimental session, the participants performed 50 trials to learn the appropriate time of movement onset and they were informed about their temporal error after all trials. The participants performed a total of 120 trials in each experimental block. In each block, TMS was applied pseudorandomly on 40 trials (33.3% of total) to the left primary motor cortex at the optimal position to elicit a MEP in the FDI muscle of the right hand. The times of single-pulse magnetic stimulation were the same as those used in experiment 1. For experiment 2, we recorded EMG data only from the FDI muscle.

Data analysis. In experiment 2, the variables of interest were as follows: the amplitude of the mean peak-to-peak MEP expressed as a proportion of those at rest and the constant temporal error. The procedures to analyze these variables were the same as those used in experiment 1. In experiment 2, due to the lack of data points within the longest interval across all participants we only analyzed two intervals (101–150 and 151–200 ms).

RESULTS

Experiment 1

The mean constant temporal error (SD) for the full view block was \(-1.9 \text{ ms (SD 21.2)}\), whereas for the occluded view block it was \(-16.6 \text{ ms (SD 25.3)}\). A paired t-test failed to show a significant difference between these means: \(t(7) = 1.42, P = 0.196, r = 0.22 \). This result seems to suggest that there was no predisposition for the participants to initiate their actions earlier or later than expected in a particular block. The mean variable temporal error (SD) was 35.0 ms (SD 11.1) in the full view block and 56.6 ms (SD 14.3) in the occluded view block. The paired t-test revealed a significant difference between these means: \(t(7) = 6.98, P < 0.001, r = 0.93 \). As expected (see Introduction), the participants showed greater variability to time their responses in the absence of continuous visual motion information.

The repeated-measures ANOVA on the transformed percentage of inhibited trials found a significant main effect of viewing block: \(F(1,7) = 14.3, P = 0.007, \eta^2 = 0.67 \). This main effect indicates that the participants suppressed more movements in the full view block than in the occluded view block. There was also a significant main effect of stop-signal interval: \(F(5,35) = 48.74, P < 0.001, \eta^2 = 0.87 \). The post hoc test of this effect showed that the success rate to suppress movement initiation increased in both blocks as the time available to halt the actions increased. Furthermore, ANOVA also showed that the interaction between viewing block and stop-signal interval was statistically significant: \(F(5, 35) = 5.46, P < 0.001, \eta^2 = 0.44 \). The post hoc comparisons for this interaction indicated that the participants inhibited more movements in the full view block at 171, 205, 241, and 276 ms before the arrival of the movement target at the arrival location. At earlier times, however, there were no differences between full view and occluded view blocks as shown in Fig. 3A. This pattern of results is very similar to that we reported previously with a similar anticipatory task (Marinovic et al. 2010), where no magnetic stimulation was employed and the probability of response suppression was relatively higher than that we used in the present study.

![Fig. 3. A: mean percentage of successfully inhibited responses as a function of the stop-signal (SS) interval. Black circles represent the full view block (FV). Grey circles represent the occluded view block (OV). *Significant contrasts between FV and OV. Error bars represent 95% confidence intervals. B: inhibition functions for the group data. Curves are the cumulative Gaussian functions that best fit the data. Black lines represent the inhibition function for the full view block (FV). Grey lines represent the inhibition function for the occluded view block (OV). Error bars represent SE of the group mean.](http://jn.physiology.org/)

J Neurophysiol • VOL 105 • MARCH 2011 • www.jn.org
Figure 3B shows the inhibition functions for the group mean. As shown in Fig. 3B, a 0.5 probability of inhibiting a prepared response occurred later for the occluded view condition compared with the full view condition. This pattern was consistent for all participants. Following Slater-Hammel procedures (1960), the mean constant temporal error of each participant was used to adjust the time required to inhibit 0.5 of the responses. The mean (SD) adjusted time to inhibit a response in the full view block across participants was 173.8 ms (SD 35.5), whereas in the occluded view block the mean was 227.7 ms (SD 33.6). A paired t-test comparing these means showed that the minimum time required to suppress the response was significantly shorter in the full view than in the occluded view block: $t(7) = 5.68, P < 0.001, r = 0.82$. This difference in suppression time between full view and occluded view blocks (∼54 ms) is similar to that we reported previously (Marinovic et al. 2010), even though the probability of having to inhibit an upcoming action was lower in the present study.

Figure 4 shows peak-to-peak MEP amplitude ratio for the two muscles recorded (FDI and ADM) as well as the mean time of stimulation in each experimental condition. The repeated-measures ANOVA on the peak-to-peak MEP amplitude of the FDI muscle (see Fig. 4A) showed a significant main effect of viewing block: $F(1,7) = 6.67, P = 0.036, \eta^2_p = 0.49$. This main effect of viewing block indicates that the participants reached significantly higher levels of excitability in the occluded view block than in the full view block. There was also a significant main effect of time of stimulation: $F(2,14) = 30.06, P < 0.001$, and $\eta^2_p = 0.81$. This main effect of time of stimulation shows that excitability levels increased for the FDI muscle for both blocks as the time of stimulation became closer to movement onset time. There was also a significant interaction between viewing block and time of stimulation for the FDI muscle: $F(2,14) = 4.40, P = 0.032, \eta^2_p = 0.39$. A post hoc test of this interaction indicated that excitability was higher in the occluded view block than in the full view block at the shortest time of stimulation (101–150 ms). For the ADM muscle (see Fig. 4B), the repeated-measures ANOVA showed a significant effect of viewing block: $F(1,7) = 6.10, P = 0.042, \eta^2_p = 0.47$, but no main effect of stimulation time: $F(2,14) = 0.10, P = 0.906, \eta^2_p = 0.01$. This significant main effect of viewing block seems to suggest that there was a smaller amount of corticospinal suppression on M1 for the ADM muscle in the occluded view block, which was not contingent on the time of stimulation. There was no significant interaction between viewing block and time: $F(2,14) = 0.10, P = 0.905, \eta^2_p = 0.01$.

As the mean time of stimulation between conditions could affect the results (e.g., a lower mean time of stimulation could lead to higher corticospinal excitability), we also compared the mean time of stimulation in both blocks to examine whether a bias was evident. The repeated-measures ANOVA on the mean time of stimulation showed no significant main effect of viewing block: $F(1,7) = 0.61, P = 0.460, \eta^2_p = 0.08$. This result indicates that there was no evident trend in relation to the time of stimulation between viewing blocks. ANOVA found a significant main effect of time of stimulation: $F(1,14) = 574.50, P < 0.001, \eta^2_p = 0.99$. The post hoc test showed that each mean time of stimulation within each bin was significantly different from each other. This main effect simply shows, as expected, that the mean time of stimulation was significantly different between the three temporal bins. There was no interaction between viewing block and time of stimulation: $F(2,14) = 3.67, P = 0.052, \eta^2_p = 0.34$.

To determine whether baseline pre-TMS EMG activity was associated with differences in MEP amplitude, we calculated the root mean square EMG activity for 250 ms before TMS in both experimental blocks. For the FDI muscle, a paired t-test comparing the mean pre-TMS EMG activity during full view (0.0060 SD 0.0012 mV) and occluded view (0.0068 SD 0.0019 mV) blocks failed to detect a significant difference between the means: $t(7) = 1.26, P = 0.246, r = 0.18$. In addition, the 99% confidence interval for the difference between means included zero: CI = (−0.003 to 0.002), which indicates that the true value for this difference was indeed very small. For the ADM muscle, the paired t-test comparing the mean pre-TMS EMG activity for the full view (0.0068 SD 0.0032 mV) and occluded view (0.0071 SD 0.0038 mV) blocks also failed to find a significant difference between means: $t(7) = 1.04, P = 0.332, r = 0.13$. Again the 99% confidence interval for the difference between means included zero as a possible value, which suggests any possible difference between means was negligible [99% CI = (−0.005 to 0.005)]. Thus not only did we fail to detect significant difference between blocks in relation to pre-TMS EMG activity (which seems to be in agreement with the confidence intervals for the difference between means), but also the values observed for both blocks were very small and well within previously reported values for RMS EMG at rest (e.g., Moller et al. 2009). These results suggest that differences
in MEP amplitude between full view and occluded view blocks were unlikely to be caused by an increase in pre-TMS EMG activity.

We also analyzed EMG amplitude and time-to-peak EMG during control and TMS trials to test whether our results could have been affected by the systematic programming of different responses during motor preparation. Table 1 shows the mean values of EMG amplitude and time-to-peak amplitude of the rectified and low-pass filtered (50 Hz cutoff) EMG for the full view and occluded view blocks during control and TMS trials in Experiment 1. A 2 (type of trial: control and TMS) by 2 (view condition: full view and occluded view) repeated-measures ANOVA on the EMG amplitude showed no main effect of type of trial: $F(1,7) = 0.74, P = 0.415, \eta^2 = 0.09$; nor viewing condition: $F(1,7) = 0.01, P = 0.895, \eta^2 = 0.03$. The interaction between type of trial and viewing condition was also nonsignificant: $F(1,7) = 1.01, P = 0.345, \eta^2 = 0.12$. Similarly, ANOVA on the time-to-peak EMG revealed no significant main effect of type of trial: $F(1,7) = 1.40, P = 0.278, \eta^2 = 0.16$; nor viewing condition: $F(1,7) = 0.002, P = 0.961, \eta^2 = 0.00$. The interaction between type of trial and viewing condition was also nonsignificant for this variable: $F(1,7) = 2.32, P = 0.175, \eta^2 = 0.25$. Thus different levels of corticospinal excitability between full view and occluded view blocks are unlikely to be explained by differences in the prepared motor output, as any effect there could have been there was too small to be detected.

Experiment 2

The constant temporal error in the full view block was -6.9 ms (SD 22.1) and in the occluded view block it was 4.3 ms (SD 26.0). A paired t-test of the means obtained in both blocks was not statistically significant: $t(7) = 1.14, P = 0.289, r = 0.15$. This indicates that, on average, the participants initiated their movements at similar times in both experimental blocks. The mean variable temporal error (SD) was 37.8 ms (SD 6.4) in the full view block and 79.3 ms (SD 20.4) in the occluded view block. The paired t-test showed a significant difference between these means: $t(7) = 6.53, P < 0.001, r = 0.92$. As in experiment 1, this indicates that visual information aided the participants to better time their responses during the full view block.

Figure 5 shows peak-to-peak MEP amplitude ratio for the FDI muscle and the mean time of stimulation in each experimental condition. The repeated-measures ANOVA on the peak-to-peak MEP amplitude for the FDI muscle (see Fig. 5A) showed no statistically significant main effect of viewing block: $F(1,7) = 1.65, P = 0.240, \eta^2 = 0.19$. There was, however, a significant main effect of time of stimulation: $F(1,7) = 12.58, P = 0.009, \eta^2 = 0.64$. Once again, this main effect of time of stimulation indicates that excitability levels for the FDI muscle increased as the time of stimulation became closer to movement onset time. There was no interaction between viewing block and time of stimulation: $F(1,7) = 1.68, P = 0.235, \eta^2 = 0.19$. In experiment 2, therefore, we once again found the effect of time on the excitability levels but failed to replicate the effect of viewing block obtained in experiment 1, where we found higher corticospinal excitability in the occluded view block. As for experiment 1, we also compared the mean time of stimulation obtained in the two temporal bins in both blocks. The repeated-measures ANOVA on this variable again showed, as expected, a significant main effect.
of time of stimulation: \(F(1,7) = 131.78, P < 0.001, \eta^2_p = 0.95. \) There was no main effect of viewing block: \(F(1,7) = 0.82, P = 0.395, \eta^2_p = 0.10, \) which indicates a bias in terms of time of stimulation was unlikely to have occurred. The interaction between viewing block and time of stimulation was also nonsignificant: \(F(1,7) = 0.32, P = 0.584, \eta^2_p = 0.04. \)

The paired \(t \)-test comparing baseline pre-TMS EMG activity on FDI in the full view (0.006 SD 0.001 mV) and occluded view (0.007 SD 0.005 mV) blocks was not significant: \(t(7) = 0.53, P = 0.606, r = 0.03. \) The 99\% confidence interval for the difference between means ranged from \(-0.006\) to 0.004, which indicates the possible true value for the difference between blocks was close to zero. Table 1 shows the mean values of the rectified and low-pass filtered (50 Hz) EMG amplitude and time-to-peak EMG for the full view and occluded view blocks during control and TMS trials in experiment 2. As with experiment 1, the repeated-measures ANOVA on the EMG amplitude showed no main effects of type of trial (control vs. TMS): \(F(1, 7) = 2.67, P = 0.146, \eta^2_p = 0.27, \) and viewing condition (full view vs. occluded view): \(F(1,7) = 0.85, P = 0.385, \eta^2_p = 0.11. \) The interaction between type of trial and viewing condition also failed to reach significance: \(F(1,7) = 0.29, P = 0.607, \eta^2_p = 0.04. \) ANOVA on the time-to-peak EMG showed a significant main effect of type of trial: \(F(1,7) = 12.09, P = 0.010, \eta^2_p = 0.63; \) but failed to show a main effect of viewing condition: \(F(1,7) = 3.38, P = 0.108, \eta^2_p = 0.28. \) The interaction term for this variable was nonsignificant: \(F(1,7) = 3.11, P = 0.121, \eta^2_p = 0.31. \) These results indicate that time-to-peak EMG occurred sooner during TMS trials than control trials but that this effect was independent of the viewing condition. Therefore, the analyses of pre-TMS EMG activity, EMG amplitude, and time-to-peak EMG seem to indicate that differences between experiments are unlikely to be due to pre-TMS activity or the prepared motor response.

DISCUSSION

Experiment 1 replicated our previous finding that minimum suppression time is greater when the coincidence timing task involved motion extrapolation (occluded view) than when it did not (full view). Single pulse TMS was applied on certain trials to assess whether the level of corticospinal excitability before response onset differed between the occluded view and full view conditions. The results showed that the evoked potentials in the FDI muscle, primary agonist in the experimental task, were of smaller relative amplitude in the full view condition than in the occluded view condition. This difference was not detectable when TMS was delivered \(>200 \) ms before response onset and was not observed in a muscle unrelated to task performance (ADM). These findings indicate that task-specific corticospinal excitability was greater immediately before response onset in the occluded view condition. In both conditions, the MEPs in FDI were greater the shorter the interval between TMS delivery and movement onset, indicating a buildup of corticospinal excitability immediately before response initiation (Chen et al. 1998; Coxon et al. 2006; Leocani et al. 2000; MacKinnon and Rothwell 2000).

The finding that corticospinal excitability (as assessed by relative MEP amplitude) was greater in the occluded view condition is consistent with the hypothesis that greater levels of preparatory response activation are responsible for the longer minimum suppression times in this condition. An inhibitory signal triggered by the stop signal would need to suppress greater program circuit activity in the occluded view condition than in the full view condition. The involvement of the corticospinal system in these processes was demonstrated by Coxon et al. (2006), who showed that the intentional inhibition of anticipatory actions is exerted at a cortical level and that inhibitory networks within M1 contribute to response suppression after a stop signal is delivered. The results from experiment 1 show that corticospinal excitability reached higher levels and developed more quickly in the occluded vision condition during the interval from 200 to 100 ms before response onset (Fig. 4A). The hypothesis described in the Introduction was that due to greater temporal uncertainty in the occluded view condition, preparatory response related activity would start to develop earlier and be sustained at higher levels for a longer duration in this condition. Although there was evidence for higher levels being sustained for longer, there was no evidence that activation buildup began earlier in the occluded view condition as relative MEP amplitudes were similar at times \(>200 \) ms before response onset. Thus the hypothesis was only partially supported by the results of experiment 1: rather than starting to develop earlier, response-related activity in the occluded view condition appears to have developed at a faster rate. We can speculatively suggest that there was an increased inhibitory activity within M1 that reduced the rate of development of response-related activation during the full view block. The fact that we found evidence of decreased excitability levels for the ADM muscle during the full view block in relation to the occluded view block and that generalized inhibition is easier to perform than selective inhibition (Coxon et al. 2007) supports this possibility. Further experiments should examine the contribution of excitatory and inhibitory inputs to the overall level of activation within M1 during different viewing conditions (full view vs. occluded view).

The results of experiment 2 did not provide any support for the hypothesis that preparatory response-related activity would be greater in the occluded view condition: although relative MEP amplitude was greater on average in the occluded view condition, the difference was not statistically significant. What experiment 2 does indicate is that the differential corticospinal excitability in the different viewing conditions is affected by whether or not the person expects that they might have to suppress the response. When the person is in a task situation in which suppression might be required (experiment 1), differential corticospinal excitability was observed; when suppression was never required (experiment 2), the differential excitability was much reduced (not statistically detectable).

The manipulation of visual information (full view vs. occluded view) in the experiments reported raise the possibility that different visual streams were employed during the different experimental conditions (see Tresilian 1995). There is a body of evidence suggesting that the dorsal visual stream is mainly responsible for vision-for-action, whereas the ventral visual stream is responsible for vision-for-perception (see Goodale 2008; Milner and Goodale 2008; Milner and Goodale 2006). One can hypothesize, therefore, that the difference in corticospinal excitability between the conditions may be due to the two conditions involving the dorsal and ventral streams and that the former allows a more controlled buildup of response-related activation. Bosco et al. (2008) have recently presented
evidence that the dorsal stream provides internal timing signals used for interceptions and its disruption by means of TMS over MT/V5+ can be detrimental to performance in this type of task. Merchant and colleagues (2004a,b) also found evidence that area 7a of monkeys, located in the inferior parietal lobule in the dorsal visual stream, can provide timing signals to trigger interceptions. Our results seem to be consistent with the controlled buildup hypothesis in the sense that when using the dorsal visual system to trigger interceptive actions (Bosco et al. 2008; Merchant et al. 2004a,b), people can maintain (lower) levels of corticospinal excitability that allow for faster response inhibition (van den Wildenberg et al. 2010). We believe, however, that it would be unreasonable to assume that the relatively long delay (54 ms) to inhibit interceptions during motion extrapolation is caused entirely by differential corticospinal excitability given the speed of neurotransmission in the cerebral cortex (e.g., Perez and Cohen 2009). As we have suggested in a previous study (Marinovic et al. 2010), reduced neural resources during mental extrapolation could increase the reaction time to the stop signal and also contribute to this delay. A combination of neuroimaging (e.g., fMRI and EEG) and behavioral approaches may allow further insight into the underlying mechanisms and processes behind this phenomenon.

In conclusion, the experiments presented here demonstrate that timed responses to a moving target can be suppressed more quickly (as indexed by shorter minimum suppression times) when the target is visible up to the moment the response is made than when it is occluded from view. Furthermore, shortly before response initiation, corticospinal excitability was found to be lower in the full view condition, which may have made the anticipatory timing action more easily suppressed in this condition. This reduced corticospinal excitability during the full view condition, however, was more evident when lower levels of activation of M1 favored the success in the task.

ACKNOWLEDGMENTS

This research was supported by an Australian Research Council Grant to J. R. Tresilian and A. Plooy.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

REFERENCES

Marinovic W, Plooy AM, Tresilian JR. The time course of direction specification in brief interceptive actions. Exp Psychol 1–9, 2009b.