Developmental profile of slow hand movement oscillation coupling in humans

Katherine M. Deutsch,1 John A. Stephens,1 and Simon F. Farmer1,2,3
1Department of Physiology, University College London and 2The National Hospital for Neurology and Neurosurgery, London, and 3Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, London, United Kingdom

Submitted 4 August 2010; accepted in final form 23 February 2011

Deutsch KM, Stephens JA, Farmer SF. Developmental profile of slow hand movement oscillation coupling in humans. J Neurophysiol 105: 2204–2212, 2011. First published February 23, 2011; doi:10.1152/jn.00695.2010.—In adults, slow hand and finger movements are characterized by 6- to 12-Hz discontinuities visible in the raw records and spectra of motion signals such as acceleration. This pulsatile behavior is correlated with motor unit synchronization at 6–12 Hz as shown by significant coherence at these frequencies between pairs of motor units and between the motor units and the acceleration recorded from the limb part controlled by the muscle, suggesting that it has a central origin. In this study, we examined the correlation between this 6- to 12-Hz pulsatile behavior and muscle activity as a function of childhood development. Sixty-eight participants (ages 4–25 yr) performed static wrist extensions against gravity or slow wrist extension and flexion movements while extensor carpi radialis muscle electromyographic (EMG) and wrist acceleration signals were simultaneously recorded. Coherence between EMG and acceleration within the 6- to 12-Hz frequency band was used as an index of the strength of the relation between central drive and the motor output. The main findings of the study are 1) EMG-acceleration coherence increased with increases in age, with the age differences being greater under movement conditions and the difference between conditions increasing with age; 2) the EMG signal showed increases in normalized power with increases in age under both conditions; and 3) coherence under movement conditions was moderately positively correlated with manual dexterity. These findings indicate that the strength of the 6- to 12-Hz central oscillatory drive to the motor output increases through childhood development and may contribute to age-related improvements in motor skills.

motor control; children; electromyography

IN HUMANS, MUSCLE CONTRACTIONS during static limb posture and movement contain oscillations with a frequency between 6 and 12 Hz (Elble and Randall 1976; Vallbo and Wessberg 1993). Coherence between acceleration and muscle activity and synchronization between motor units within this frequency band are evident during static contraction (Elble and Randall 1976; Farmer et al. 1993; Halliday et al. 1999; Mayston et al. 2001) and movement (Kakuda et al. 1999; Wessberg and Kakuda 1999) of wrist and finger muscles, pointing to a central origin. Importantly, coherence and motor unit synchronization is increased during movement, suggesting that movement-related 6- to 12-Hz oscillations may be “injected” by the central nervous system over the 6- to 12-Hz oscillations present during static muscle contraction. The oscillations have been proposed to reflect an organizational principle of motor control (Vallbo and Wessberg 1993) whereby muscle contractions are driven by a central oscillatory command dependent on oscillations within cortical, spinal, and cerebellar networks (Gross et al. 2002). A number of studies have produced evidence that 6- to 12-Hz oscillations are driven by central nervous system processes supported by peripheral feedback (Conway et al. 2004; Elble and Randall 1976; Erimaki and Christakos 2008; Gross et al. 2002; Halliday et al. 1998; Mayston et al. 2001; Raethjen et al. 2002; Vallbo and Wessberg 1993).

Neuropophysiological changes within the motor system occur through adolescence (Cavallari et al. 2001; Eyre et al. 1991; Gibbs et al. 1997; Issler and Stephens 1983). However, oscillatory contributions to the motor output in children have not been studied extensively. It has been shown that children exhibit similar 6- to 12-Hz but slower ~20-Hz oscillations in the motor output (acceleration) during static limb posture compared with young adults (Deutsch and Newell 2006). However, it is unknown whether the 6- to 12-Hz oscillations in the motor output are coherent with muscle activity and whether there are developmental changes associated with the 6- to 12-Hz oscillations observed during movement. It was recently shown that there is an increase in the amplitude of the ~20-Hz oscillatory drive from the motor cortex to the muscle during isometric muscle contraction, as indicated by an increase in oscillatory synchronization between the electromyographic (EMG) signal from coactive muscles and between the sensorimotor cortex and EMG (Farmer et al. 2007; Graziaio et al. 2010; James et al. 2008).

The present study explores the childhood developmental progression of the 6- to 12-Hz oscillatory drive during static postural and dynamic slow wrist muscle activation, with a particular emphasis on the correlation between muscle activity and the motor output during dynamic conditions. Specifically, we used frequency and time domain techniques to examine age differences in the strength of the relation between EMG and acceleration signals during static postural wrist extensions compared with slow wrist movements in participants ages 4–25 yr; we also examined whether the strength of the EMG-acceleration correlation was related to manual dexterity. In contrast to previous studies of EMG-EMG and EEG-EMG coherence, which have highlighted developmental change in centrally derived beta and gamma rhythms (Farmer et al. 2007; James et al. 2008; Petersen et al. 2010), in the present study we have focused on peripheral oscillations in the frequency range 6–12 Hz.

We hypothesized 1) age-related increases in the 6- to 12-Hz oscillatory drive to motoneurons as detectible by an increase in the strength of the EMG-acceleration correlation (coherence) within the 6- to 12-Hz frequency band during both static and movement conditions, 2) greater age differences in EMG-acceleration coherence under movement than static conditions,
and 3) a positive correlation between EMG-acceleration coherence and manual dexterity. These results have been presented in abstract form (Deutsch et al. 2008; Farmer et al. 2009).

MATERIALS AND METHODS

Motor task and data recording. Experiments were performed in accordance with the Declaration of Helsinki. We obtained data with ethical permission from University College London and consent from adults, parents, and children (68 participants total, ages 4–25 yr). We simultaneously recorded surface EMG from the belly of the extensor carpi radialis (ECR; interelectrode distance 2–2.5 cm) and acceleration from the center of the dorsal surface of the hand (band-pass filter 4–256 Hz; sampling rate 512 Hz; recorded digitally; Oxford Instruments Medical Systems, Old Woking, UK).

Participants were seated upright in a comfortable chair with their forearm supported on the arm of the chair in the pronated position and their wrist and hand free to move vertically. They were asked to perform two tasks with visual feedback of performance available: 1) slow wrist extension and flexion movements (30° extension and flexion, total range 60°) at a rate of 0.5 Hz/cycle (paced with a metronome) and 2) maintain a static postural wrist extension against gravity at a joint angle of 0°. For each condition, two runs, each lasting for 1 min, were obtained. The order of conditions was randomized across participants.

In addition, 63 of the participants (18 subjects ages 4–6 yr, 16 subjects ages 7–9 yr, 11 subjects ages 10–14 yr, and 18 subjects ages 19–25 yr) performed a timed motor task comprising sequential finger-to-thumb oppositions (Denkla et al. 1973) to provide a measure of dexterity and speed of movement. Although the task did not involve the wrist, it was chosen because it is simple enough for younger children to perform and has been previously validated as a measure of age-related changes in dexterity (Denkla 1973) and used in other studies of motor unit synchronization during disease (Farmer et al. 1993) and development (Gibbs et al. 1997). Participants were asked to oppose each finger to the thumb in a sequential order starting with and returning to the index finger (touching the little finger only once) accurately and as fast as possible. The sequence was repeated five times (total 35 individual finger taps per trial), and two trials of the task were performed with each hand (order of hands was randomized across subjects). The run was repeated if the participant made visible errors; therefore, an error score was not part of the data analysis. Before recording began, the experimenter demonstrated the task and a brief practice was allowed.

Data analysis. The EMG and acceleration signals from the two runs of the static wrist extension and slow wrist movement conditions were combined to create a 2-min time series for each condition for each participant. Full wave rectification of surface EMG signals was adopted. This approach has been shown to maximize the information regarding timing of motor unit action potentials while suppressing information regarding waveform shape (Myers et al. 2003). Analysis of individual records between paired EMG and acceleration signals was based on record lengths of 120 s of data. The method of autospectral and cross-spectral estimation was that of averaging over disjoint sections of data using 1-s window lengths and a Hanning window giving a basic frequency resolution of 1 Hz (Halliday et al. 1995). This number of sections was sufficient to provide 95% confidence levels on individual coherence estimates that were <0.05.

For each 2-min time series, estimates of the autospectra of the EMG and acceleration signals, $S_f(\lambda)$ and $S_x(\lambda)$, and of two functions that characterize their correlation structure: coherence, $R_{xy}(\lambda)^2$, and cumulant density, $q_{xy}(\mu)$, were calculated. Coherence analysis provides frequency domain information on the neurogenic contribution to postural tremor and the relationship between EMG and movement pulsatility (Elble and Randall 1976; Halliday et al. 1999; Kakuda et al. 1999; Wessberg and Kakuda 1999). The cumulant density allows examination of the EMG-acceleration correlation in the time domain.

Coherence estimates are bounded measures of association defined over the range [0, 1], and cumulant density estimates are unbounded. For the present data, coherence estimates the fraction of the activity in the acceleration signal that can be predicted by the activity in the EMG signal. The reference signal for cumulant density estimates was EMG from the forearm ECR. For two uncorrelated signals, the coherence and cumulant have an expected value of zero; significant deviations from zero indicate a correlation between the EMG and acceleration signals at a particular phase $\Phi_{xy}(\lambda)$, for coherence, or time (μ), for the cumulant. The analyses were performed on a personal computer within the MATLAB 7.0 (The MathWorks, Natick, MA) environment using NeuroSpec 2.0 (David M. Halliday, University of York, Heslington, UK).

For comparisons of the spectra across age and condition, we normalized each individual spectrum by calculating the proportion of the total power from 1 to 30 Hz that was contained within each 1-Hz frequency bin between 1 and 30 Hz (Deutsch and Newell 2001). We chose this frequency band because it contains most of the frequency content of the power spectral signals of the tasks used in this study and, because it is commonly used in studies comparing various conditions and/or age groups, to allow for comparisons with existing literature. However, because of the possibility that the movement task may introduce low-frequency (<1 Hz) components into the power spectra, we reanalyzed the data using 5- to 30-Hz normalization. Since the results did not differ between the two normalization procedures, we have reported those using the former (1–30 Hz). Subsequently, the peak frequency (frequency with the maximum normalized power) within the frequency band of interest, 6–12 Hz, and the magnitude of the normalized power at the peak frequency were each determined for the EMG and acceleration signals for each condition for each participant. The χ^2 difference of coherence test (see also Farmer et al. 2007) was calculated to evaluate the magnitude of the difference in coherence between the movement and static conditions at each frequency of the spectrum.

For the purpose of statistical analyses, the data were grouped into 4 age ranges: 4–6 yr ($n = 21$), 7–9 yr ($n = 16$), 10–14 yr ($n = 11$), and adults 19–25 yr ($n = 20$). Significant differences as a function of age group and condition for the peak frequency and magnitude of normalized power at the peak frequency for each signal (acceleration, EMG) and coherence between the two signals were determined with a 4 (age group) × 2 (condition) two-way ANOVA. A one-way ANOVA was used to determine significant age group differences for the χ^2 difference of coherence values. The relation between peak coherence within the 6- to 12-Hz range from each condition (static wrist extension and slow wrist movement) and finger dexterity and age, as well as the relation between finger dexterity and age, were determined with Pearson’s product moment correlations. The significance level for all statistical analyses was set at $P < .05$.

RESULTS

Figure 1 shows raw and analyzed data from 2 participants, an adult age 20 yr (A–C) and a child age 4 yr (D–F). The EMG-acceleration coherence is shown in Fig. 1, A and D, for the static wrist extension condition and in Fig. 1, B and E, for the slow wrist movement condition; the raw EMG and acceleration data are shown as insets. Figure 1, C and F, shows the χ^2 difference between the EMG-acceleration coherence of the static and movement conditions for the same two participants. The adult data show higher coherence values in both conditions and, compared with the child, a much greater increase in EMG-acceleration coherence when the static and movement conditions are compared in the frequency range 6–12 Hz (maximal difference at 9 Hz).
Power spectral analysis of EMG and acceleration signals. Figure 2 shows the mean normalized power spectrum (normalized to the total power contained between 1 and 30 Hz) of the acceleration and EMG data for the static wrist extension condition. B and E: coherence between the EMG and acceleration signals for the slow wrist movement condition. Insets in A, B, D, and E are raw acceleration (top) and EMG data (bottom). C and F: χ^2 difference in coherence between the static and movement conditions. Dashed horizontal lines represent the 95% confidence interval.

Fig. 1. Data from 2 participants, an adult age 20 yr (A–C) and a child age 4 yr (D–F). A and D: coherence between the electromyography (EMG) and acceleration signals for the static wrist extension condition. B and E: coherence between the EMG and acceleration signals for the slow wrist movement condition. Insets in A, B, D, and E are raw acceleration (top) and EMG data (bottom). C and F: χ^2 difference in coherence between the static and movement conditions. Dashed horizontal lines represent the 95% confidence interval.
than the 10-year-old and adult groups in the EMG signal and the adult group in the acceleration signal.

The ANOVAs on the magnitude of the normalized power at the peak frequency within the 6- to 12-Hz band for the EMG and acceleration data both revealed significant main effects for age group \(F_{3,64} = 29.65, P < 0.01 \) and \(F_{3,64} = 7.00, P < 0.01 \) for EMG and acceleration, respectively) and condition \(F_{1,128} = 19.01, P < 0.01 \) and \(F_{1,128} = 62.82, P < 0.01 \) for EMG and acceleration, respectively), as well as an age group \(\times \) condition interaction \(F_{3,128} = 6.22, P < 0.01 \), as well as Table 1. Peak EMG and acceleration frequencies within the 6- to 12-Hz frequency band and normalized power at the peak frequency for the static wrist extension and slow wrist movement conditions for each age group.

<table>
<thead>
<tr>
<th>Age Group</th>
<th>EMG Peak Frequency, Hz</th>
<th>EMG Power</th>
<th>Acceleration Peak Frequency, Hz</th>
<th>Acceleration Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-6 yr</td>
<td>7.7 \pm 1.8*</td>
<td>5.52 \pm 1.57‡</td>
<td>6.7 \pm 0.77</td>
<td>4.85 \pm 1.01</td>
</tr>
<tr>
<td>7-9 yr</td>
<td>8.3 \pm 2.2*</td>
<td>4.80 \pm 1.37‡</td>
<td>7.1 \pm 1.1†</td>
<td>4.05 \pm 0.91‡‡</td>
</tr>
<tr>
<td>10-14 yr</td>
<td>9.5 \pm 2.0*</td>
<td>4.69 \pm 0.96‡‡</td>
<td>8.4 \pm 2.1</td>
<td>4.44 \pm 0.76</td>
</tr>
<tr>
<td>Adult</td>
<td>10.0 \pm 1.6*</td>
<td>8.89 \pm 3.39*</td>
<td>8.9 \pm 1.7</td>
<td>5.82 \pm 1.78</td>
</tr>
</tbody>
</table>

Values are means \(\pm SD \). Normalized power represents the proportion of the total power between 1 and 30 Hz. EMG, electromyography. *\(P < 0.01 \), significantly lower during the movement than static condition. †\(P < 0.01 \), significantly lower than adult and 10-yr-old groups. ‡\(P < 0.01 \), significantly lower than adult group.

Fig. 2. Mean normalized power spectra (normalized to the total power between 1 and 30 Hz) of the acceleration signal during static wrist extension (A) and slow wrist movement (C) and the EMG signal during static wrist extension (B) and slow wrist movement (D) for each of the 4 age groups. The normalized power at the peak frequency within the 6- to 12-Hz frequency band of the acceleration data increased with increases in age for the static wrist extension condition but decreased with increases in age for the slow wrist movement condition. The EMG data show a discernible peak in the 6- to 12-Hz frequency band only for the adult group under both static wrist extension and slow wrist movement conditions.
of normalized power at the peak frequency between conditions increased with increases in age for both EMG and acceleration signals.

Correlation between EMG and acceleration signals. Figure 3, A and B, shows the EMG-acceleration coherence for the static wrist extension and slow wrist movement conditions, respectively, as a function of age and frequency. Figure 4, A and B, shows the mean (±SD) coherence magnitude and frequency of maximum coherence, respectively, for the 6- to 12-Hz band for the two conditions for each group. A 4 (age group) × 2 (condition) two-way ANOVA on the peak coherence within the 6- to 12-Hz frequency band revealed main effects for age group \((F_{3,64} = 20.62, P < 0.01) \) and condition \((F_{1,128} = 16.59, P < 0.01) \) and a significant age group × condition interaction \((F_{3,128} = 2.79, P < 0.05) \). Post hoc tests of the main effects revealed significantly greater peak coherence in the 6- to 12-Hz frequency band for the adults than children and under movement than static conditions. Post hoc tests of the interaction indicated that the difference in peak coherence between the static and movement conditions reached significance only for the adult group. In addition, the adult group exhibited a significantly greater coherence than all the children’s groups under movement conditions and the two younger age groups under static conditions.

A 4 (age group) × 2 (condition) ANOVA on the frequency of the peak coherence between the acceleration and EMG signals within the 6- to 12-Hz frequency band revealed a significant age group main effect only \((F_{3,64} = 3.56, P < 0.05) \). Post hoc tests showed a significantly lower frequency for the peak coherence of the 4- to 6-year-old group than the 10-year-old group.

The difference in coherence between static and movement conditions as a function of age is further exemplified in Fig. 3C, which illustrates the mean difference in coherence between the movement and static conditions (movement minus static) for each age group as a function of frequency. The one-way ANOVA on the calculations of the maximum \(\chi^2 \) difference in coherence between conditions within the frequency band of interest, 6–12 Hz, revealed a significantly greater difference for the adult group than the 4- to 6-year-old and 7- to 9-year-old groups \((F_{3,64} = 6.21, P < 0.01) \) but no significant age differences in the frequency of the maximum \(\chi^2 \) difference (see Table 2).

Figure 5, A and B, shows the mean (±SE) cumulant and lag, respectively, of the time domain correlation analyses between the EMG and acceleration signals as a function of age. The 4 (age group) × 2 (condition) ANOVA on the lag of the acceleration signal relative to the EMG signal indicated that the lag between the signals was significantly smaller during the static than movement condition \((F_{1,128} = 7.29, P < 0.01) \) but did not differ significantly as a function of age. The ANOVA on the peak amplitude of the cumulant revealed a significantly larger peak amplitude for the adult group than the 4- to 6-year-old group \((F_{3,128} = 10.67, P < 0.01) \) but no other significant effects.

In summary, the analyses of the correlation between EMG and acceleration signals show that with increases in age, the peak EMG-acceleration coherence within the 6- to 12-Hz frequency band increased, as did the difference in peak coherence between the movement and static conditions (larger under the movement than static condition). However, the degree to which the EMG signal led the acceleration signal did not differ as a function of age under either static or movement conditions, with all groups exhibiting a greater lag under movement than static conditions.

Relations between dexterity, coherence, and age. Finger dexterity (i.e., speed, indicated by taps/s in the finger-to-thumb tapping task) and age were positively correlated \((r = 0.86, P < 0.01) \), and each was also positively correlated with the maximum EMG-acceleration coherence within the 6- to 12-Hz frequency band under both static \((r = 0.30, P < 0.05) \) and \(r = 0.41, P < 0.01 \) for correlations with finger dexterity and age, respectively) and movement \((r = 0.49, P < 0.01 \) and \(r = 0.66, \)
DISCUSSION

Previous studies have shown age-related changes during static muscle contraction in the power spectral profile of acceleration and EMG signals and in EMG-EMG and EEG-EMG coherence with particular focus on centrally derived 16- to 32-Hz beta oscillations (Deutsch and Newell 2006; Farmer et al. 2007; Gibbs et al. 1997; Graziano et al. 2010; James et al. 2008). In the present study, we show age-related differences in the 6- to 12-Hz frequency band in EMG and acceleration and coherence between the two during static muscle contraction and movement. Critically, we show that the difference between static and movement EMG-acceleration coherence increases with increases in age. We suggest that motor development includes changes in the neurogenic contribution to the motor output that may contribute to improvements in motor skills.

Table 2. Maximum χ^2 difference and frequency of maximum χ^2 difference of the peak EMG-acceleration coherence within the 6- to 12-Hz frequency band between static wrist extension and slow wrist movement conditions for each age group

<table>
<thead>
<tr>
<th>Age Group</th>
<th>χ^2 Difference</th>
<th>Frequency, Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-6 yr</td>
<td>7.5 ± 6.3*</td>
<td>8.1 ± 2.0</td>
</tr>
<tr>
<td>7-9 yr</td>
<td>9.0 ± 4.9*</td>
<td>8.1 ± 1.8</td>
</tr>
<tr>
<td>10-14 yr</td>
<td>12.6 ± 7.9</td>
<td>8.6 ± 2.2</td>
</tr>
<tr>
<td>Adult</td>
<td>32.2 ± 36.0</td>
<td>8.8 ± 1.8</td>
</tr>
</tbody>
</table>

Values are means ± SD. *$P < 0.01$, significantly smaller than adult group.

Development of 6- to 12-Hz oscillations. We focused our study on discontinuities in the 6- to 12-Hz frequency band, which in adults have been shown to be due to motor unit synchronization and coherent modulation of motor unit activity, respectively, for static muscle contraction and movement (Elble and Randall 1976; Halliday et al. 1995, 1999; Kakuda et al. 1999; McAuley et al. 1997; Wessberg and Kakuda 1999). These oscillations have been suggested to reflect an organizational principle of motor control (Vallbo and Wessberg 1993) and, therefore, may provide significant information with respect to the typically observed age-related improvements in movement production.

We found coherence between the EMG and acceleration signals within the 6- to 12-Hz frequency band to be greater during movement than static contraction, in accordance with previous studies (Kakuda et al. 1999; Wessberg and Kakuda 1999). Importantly, the difference between conditions increased with increases in age, an effect largely attributable to greater age differences under the movement condition (see Figs. 3 and 4). We also found the normalized power (proportion of power) of the peak frequency of the EMG signal within the 6- to 12-Hz frequency band to increase with age under both movement and static conditions. These findings suggest that the oscillatory drive to the motoneurons within this band increases and becomes more tightly tuned and more strongly synchronized with motor output through childhood development. We speculate that an increase in 6- to 12-Hz oscillatory influences on motor output contributes to movement production and that it may play a role in improvements in movement performance through childhood.

In a previous study, a direct measure of the efficacy of tibialis anterior muscle activation was shown to correlate positively with gamma-band (\sim40 Hz) tibialis anterior EMG coherence during walking at a self-selected pace (Petersen et al. 2010). In our study, we were not able to derive a direct measure of movement efficiency because of the constrained nature of the flexion-extension task used to assess EMG-acceleration coherence and the power spectra of the respective signals; that is, subjects were externally cued to complete each iteration of flexion and extension. However, we were able to detect a positive (although moderate) correlation between a measure of manual dexterity (in terms of speed) and EMG-acceleration coherence within the 6- to 12-Hz frequency band. This supports the idea that oscillations within this band may play a role in the efficiency of movement production.

$P < 0.01$ for correlations with finger dexterity and age, respectively) conditions (see Fig. 6, A–E). Taking age into consideration in the calculations of the correlations between finger dexterity and EMG-acceleration coherence under each condition reduced the correlations to nonsignificant levels, suggesting that other aspects related to developmental age also play a role in the strength of these correlations. However, this does not remove completely the possibility that dexterity and EMG-acceleration coherence are related. Correlations can be highly influenced by between-subject variability, and the correlation between the EMG-acceleration coherence under the movement condition and dexterity came close to reaching significance ($P = 0.06$), suggesting that a larger sample size may have resulted in a significant relation between these two variables. Note that the correlation of finger dexterity with the maximum EMG-acceleration coherence is greater for the movement than the static condition.
However, whether the increase in synchronization between EMG and acceleration within the particular 6- to 12-Hz frequency band with increasing age actually contributes mechanistically to age-related improvements in movement performance (e.g., faster, more accurate, consistent) still remains to be determined. Clearly, a multitude of maturation/practice-related factors are likely to influence movement performance improvements through childhood (Deutsch and Newell 2005). Nonetheless, it should be noted that a motor system network in which timing is constrained by oscillation frequency allows for more robust intermuscle coordination and rapid and accurate limb movement (see also McAuley et al. 1999). Oscillations might convey an advantage by affecting the linearization of muscle properties affecting the execution timing and speed of movement (see Bernstein 1967). A model of fast single-joint human arm movements based on the equilibrium point hypothesis with intermittent control signals (at 10 Hz) resulted in faster limb movements than one with continuous control signals (Kistemaker et al. 2006).

Age-related improvements in motor output quality are reflected in the spectrum of the acceleration signal. A previous study found age-related improvements in the performance of a constant isometric force task, particularly reductions in variability, accompanied by reductions in the normalized power at the peak frequency and a broadening of the spectral profile of the motor output signal (Deutsch and Newell 2001). These

Fig. 5. Mean (± SE) time series correlation between the EMG and acceleration signals for each of the 4 age groups for the static wrist extension and slow wrist movement conditions. A: peak cumulant. B: lag between EMG and acceleration at the peak cumulant. *P < 0.01, significantly smaller than adult group. †P < 0.01, significantly smaller under the static than movement condition for all age groups. Note the absence of age differences in the lag between the EMG and acceleration signals.

Fig. 6. Scatter plots of finger dexterity (finger tap speed in taps/s) vs. age (A) and peak EMG-acceleration coherence within the 6- to 12-Hz frequency band during static wrist extension vs. age (B), slow wrist movement vs. age (C), static wrist extension vs. finger dexterity (D), and slow wrist movement vs. finger dexterity (E). Each data point represents an individual subject. All correlations are significant at \(P < .05 \). Note that the correlations of both age and finger dexterity with EMG-acceleration coherence are greater under the movement than static condition.
authors proposed that increases in the range of frequencies included in the motor output signal play a role in reducing performance variability and increasing the smoothness of movements with increases in age through childhood. In the present study, we also found an albeit nonsignificant reduction with increased age in the normalized power (which provides an index of the relative contribution of individual frequencies to the total power of the spectrum) at the peak frequency of the acceleration signal during movement (see Fig. 2 and Table 1). The acceleration signal showed a similar pattern as a function of age to the EMG signal under the static condition (increasing with increases in age), in agreement with Deusch and Newell (2006). Importantly, the difference in normalized power at the peak acceleration frequency within the 6- to 12-Hz frequency band between the movement and static conditions increased with increases in age (becoming significant for the 2 older groups).

Taken together, the age-related changes in coherence and power spectra suggest that two different types of modifications in the oscillatory contributions to the motor output may play a role in movement production improvements through childhood. One is an increase in the influence of the 6- to 12-Hz oscillatory drive, which may contribute to improvements in movement efficiency, execution timing, and speed. The other is a modification in the relative contributions of oscillations to the motor output, which may contribute to increasing the smoothness of movements.

The cumulant density analysis did not indicate a change in the timing relations between EMG and acceleration with age in either the static or dynamic conditions. This suggests that the motor units exert a consistent effect over the age range examined (4–25 yr) on the timing of limb forcing. However, the magnitude of the EMG-acceleration cumulant increased with age in keeping with increases in EMG-acceleration synchrony/coherence.

Neural contributions to 6- to 12-Hz oscillations. Afferents may play a role in the 6- to 12-Hz oscillations observed during movements. Weissberg and Vallbo (1995, 1996) showed that during slow finger movements, group Ia, Ib, and II reflex afferents are modulated by 6- to 12-Hz discontinuities. However, 6- to 12-Hz movement-induced oscillations appear to primarily involve the central nervous system (Evans and Baker 2003; Kakuda et al. 1999; McAuley et al. 1999; Vallbo and Weissberg 1993; Weissberg and Kakuda 1999; Weissberg and Vallbo 1996). Although central nervous system oscillators are pivotal, peripheral feedback is crucial to the maintenance of 6- to 12-Hz motor unit synchrony (Christakos et al. 2006; Erimaki and Christakos 2008). Welsh et al. (1995) described units in the inferior olive of the rat cerebellum that show 6- to 10-Hz synchronous oscillations with activation patterns that depend on the phase of a repetitive movement. There is evidence of 6- to 9-Hz oscillatory coupling between contralateral primary motor cortex and muscle activity during slow index finger flexion-extension movements (Gross et al. 2002), as well as 6- to 12-Hz oscillatory coupling between sensorimotor cortex and muscle activity during rapid wrist movements (Conway et al. 2004).

Through dynamic imaging of coherent sources, Gross et al. (2002) suggested that the primary motor cortex displays efferent directionality and is the source of 6- to 9-Hz oscillatory drive to motor neurons during movements and that the 6- to 9-Hz oscillations detected by peripheral receptors are fed back as an afferent signal to the sensory cortex. Schnitzler and Gross (2005) suggested that 6- to 12-Hz oscillations either facilitate or result from a pulsatile integration process in which sensory feedback is integrated with an efference copy. It was also recently proposed that out-of-phase spinal cord oscillations can dampen the ~10-Hz oscillations in the central drive to motor neurons and thus enhance movement precision (Williams et al. 2010).

We are unable to identify the individual components underlying 6- to 12-Hz oscillations that undergo age-related changes through childhood in order for oscillations to provide a more prominent driving role in the motor output. On the basis of human and primate studies, it is clear that the sensorimotor cortex forms part of an extensive oscillatory movement network with multiple interactions between contralateral primary motor cortex, premotor cortex, thalamus and ipsilateral cerebellum, spinal cord and periphery, each of which may display intrinsic oscillatory behaviors (Christakos et al. 2006; Erimaki and Christakos 2008; Gross et al. 2002; Williams et al. 2009). Any number of these networks, oscillators, and interaction mechanisms may change with development to produce stronger and more tuned oscillatory drive to motor neurons. It may be speculated that the nervous system becomes capable through maturation and/or learns through experience that particular oscillations are best suited for specific tasks and then internalizes these oscillatory components into neural networks and communicates with the periphery via oscillatory synchronization.

Experimental considerations. Because of the problems of extracting reliable data from young children, the experimental paradigm was necessarily very simple. We chose slow (0.5 Hz) wrist flexion/extension movements with visual feedback because they are easy to perform for all age groups. The experimenters paid careful attention to the performance of the task to ensure that it was similar across subjects.

Movement-related 6- to 12-Hz EMG-acceleration coherence in the current study is unlikely to be influenced by differences in hand mass between adults and children. Previous studies have shown similarly strong coherence between muscle activity and kinematic signals within this frequency band during slow movements of limb segments of greatly differing mass, i.e., finger, wrist, and elbow movements in adults (Conway et al. 1997; Kakuda et al. 1999; Weissberg and Kakuda 1999). In addition, we found the largest age differences in the power spectral profile of the EMG signal and in the EMG-acceleration coherence, measures that reflect the neurogenic contribution to tremor and are not influenced by mechanical factors (Halliday et al. 1999).

In summary, we found with increases in age an increase in the normalized power of the EMG signal within the 6- to 12-Hz frequency band along with increased coherence between muscle activity and acceleration within this frequency band (with the increase being greater during movement) and a significant, although moderate, relation between the strength of the EMG-acceleration coherence during movement and manual dexterity. These results suggest that the 6- to 12-Hz oscillatory drive to the motor output becomes stronger through childhood development and may contribute to motor skill improvements through childhood.
ACKNOWLEDGMENTS

We gratefully thank the children, their parents and care givers, and the adult subjects for their help. We are very grateful to Dr. David Halliday for help and advice on pooled coherence analysis. We thank Ratheesh Vimalendran for help with data collection and Leonardo G. Cohen for helpful comments on the manuscript. K. M. Deutsch is currently affiliated with the National Institute of Neurological Disorders and Stroke National Institutes of Health (Bethesda, MD).

GRANTS

S. F. Farmer was supported by University College London Comprehensive Biomedical Research Center.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

REFERENCES