Measurement of the extraocular spike potential during saccade countermanding

David C. Godlove, Anna K. Garr, Geoffrey F. Woodman, and Jeffrey D. Schall
Department of Psychology, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee

Submitted 18 October 2010; accepted in final form 11 April 2011

RAPID INHIBITION of prepared motor responses has been studied extensively with the stop signal, or countermanding, task (for review, see Verbruggen and Logan 2008). In this task, subjects make quick responses to target stimuli. On a subset of trials, a second stimulus follows the target, instructing subjects to withhold their responses. When subjects are successful in canceling their responses, behavioral measures cannot be recorded because no overt behavior occurs. However, using a modeling approach, the timing of the covert inhibitory process can be estimated (Logan and Cowan 1984; Colonius 1990; Logan 1994). A saccadic response version of the stop signal task has been used to characterize properties of the ocular motor system (Hanes and Schall 1996; Hanes et al. 1998; Hanes and Carpenter 1999; Logan and Irwin 2000; Pare’ and Hanes 2003; Corneil and Elsley 2005; Walton and Gandhi 2006; Boucher et al. 2007; Emeric et al. 2007).

Several groups have reported subthreshold electromyogram (EMG) activation on canceled trials in the manual response version of the countermanding task (De Jong et al. 1990; McGarry and Franks 1997; McGarry et al. 2000; van Boxtel et al. 2001; Scangos and Stuphorn 2010). However, it is unknown if partial extraocular EMG activation is present when eye movements are deemed canceled. The possibility that extraocular muscles may contract without producing detectable eye movement seems unlikely. However, the literature is inconclusive on this point. While it is true that the inertia of the eye within the orbit is negligible, the surrounding tissue of the oculomotor plant exerts viscous and elastic forces on the eye that are significant (Porter et al. 2003). It is difficult to estimate the extent to which these forces counteract eye movement production, because research has resulted in contradictory evidence (Robinson 1964; Sklavos et al. 2005; Anderson et al. 2009; Quaia et al. 2009). In fact, very few experiments have been reported on this matter. Furthermore, most of these studies have been conducted using anesthetized animals, but larger time constants for viscoelastic relaxation of orbital tissues have been noted in alert animals (Anderson et al. 2009). When considering whether or not extraocular muscles are able to generate contractions that do not result in eye movements, it is also important to consider the muscles themselves. The extraocular muscles are relatively poor actuators. During periods of fixation, only 23% of muscle innervation is required to overcome static viscous drag exerted by the passive orbital tissue (Sparks 2002). These considerations leave open the possibility that small extraocular muscle contractions may occur in the absence of detectable eye movements.

If partial EMG activation was observed in the primate ocular motor system when trials were deemed canceled, it would provide a powerful and versatile tool for examining motor control in saccadic tasks. This development would be particularly useful for neurophysiological research, since most of the work using the stop signal paradigm with monkeys has been carried out in the ocular motor domain. On the other hand, there is reason to believe that partial muscle activation should not be readily produced by the primate ocular motor system. First, saccades are thought to be initiated in an all-or-none manner. Second, although manual responses can be canceled by coactivating agonist and antagonist muscles, it should be nearly impossible to perform this type of cancelation in the ocular motor domain. The contralateral inhibitory circuitry of the brain stem saccade generator precludes this type of muscle coactivation (Hikosaka et al. 1978; Sparks 2002; for review, see Scudder et al. 2002).

Because of their positions in the orbit, it is difficult to record EMGs directly from the extraocular muscles. However, an
electroencephalographic (EEG) effect associated with eye movements, the saccadic spike potential (SP), has been consistently noted in humans and monkeys (Blinn 1955; Keren et al. 2010; Sander et al. 2010). Several studies have provided strong evidence that the SP does not originate in cortical activity or from the corneoretinal potential (Thickbroom and Mastaglia 1985; Moster and Goldberg 1990; Picton et al. 2000). Instead, this component is myogenic, derived from contraction of the lateral and medial recti (Blinn 1955; Thickbroom and Mastaglia 1985). The SP appears as a prominent, high-frequency component occurring just before or concomitant with saccade onset. It takes the form of a frontal negativity with scalp distribution ipsilateral to the direction of eye movements (Thickbroom and Mastaglia 1985; Moster and Goldberg 1990; Keren et al. 2010). With appropriate filtering techniques, SPs have been shown to reliably precede saccades as small as 0.2° in amplitude and to predict saccades with amplitudes of <0.2° above chance level (Keren et al. 2010). 1 Research on the SP has lapsed over the last few decades, but interest was recently renewed with the observation that many findings of γ-band activity in scalp EEG recordings that were attributed to cognitive processes may actually have been artifacts from the SP associated with microsaccades (Yuval-Greenberg et al. 2008). Consequently, methods for isolating and removing SP activation from EEG recordings have been described (Keren et al. 2010).

In the present study, we tested the hypothesis that partial activation of eye movement responses are made in the stop signal task, similar to findings from manual stop signal studies. This hypothesis predicts that partial muscle activation can occur on canceled trials. We tested this prediction by recording EEG and isolating SPs during periods when eye movements were prepared but not detected. We found strong SPs when saccades were made but found no evidence of SP activation when movements were deemed canceled.

METHODS

Animal care. Data were collected from one male bonnet macaque monkey (Macaca radiata; ~8.5 kg) and one female rhesus macaque monkey (Macaca mulatta; ~7 kg). Both animals were cared for in accordance with policies set forth by the United States Department of Agriculture and Public Health Service Policies on the Humane Care and Use of Laboratory Animals. Animal care, procedures, and experiments were also carried out with supervision and approval from the Vanderbilt Institutional Animal Use and Care Committee. Fruit juice was given as positive reinforcement for correctly completed trials. During periods of testing, ad libitum access to liquids was withdrawn. In consultation with attending veterinarians, each animal’s weight and rate of body temperature, and delivery of liquid reinforcement were all under computer control in hard real time (TEMPO, Reflective Computing, Olympia, WA). Stimuli were presented using computer-controlled raster graphics (TEMPO Videosync 1,280 × 1,040-pixel resolution, Reflective Computing). Stimuli had a luminance of 30 cd/m² (fixation point) or 10 cd/m² (targets) on a 1-cd/m² background.

Behavior and electrophysiological signals were recorded during the countermanding (i.e., stop signal) task (Fig. 1). Additional details about the behavioral training regime and task have been previously described (Hanes and Schall 1995; Hanes et al. 1998). Trials were initiated when monkeys fixated a centrally presented square, which subtended 0.34° of the visual angle. After a foreperiod ranging from 200 to 1,100 ms, the central fixation point was extinguished, and a target subtending 3° of the visual angle simultaneously appeared at 10° to the left or right of fixation. The foreperiod was randomly sampled from a distribution described by the following function:

\[
p(t) = \left[ 1 - \exp(-t/\tau_g) \right] \times \left[ \exp(-t/\tau_d) \right]
\]

where \( p(t) \) is the probability of selecting a specific foreperiod, \( t \) is time, \( \tau_g \) is the growth rate, and \( \tau_d \) is the decay rate. We chose a growth rate of 1,000 ms and a decay rate of 200 ms to approximate a nonaging foreperiod. We added 200 ms to this distribution and truncated it at 1,100 ms to achieve the desired range. On no-stop trials (Fig. 1, top), no further visual stimuli were presented. Monkeys were required to make a saccade to the target within 600 ms to obtain a reward. Correct trials were rewarded with several drops of juice and an audible tone. On stop trials (Fig. 1, bottom), the fixation point was reilluminated after a variable delay, providing a “stop signal” that instructed the monkeys to cancel their impending eye movements and maintain central fixation. In practice, two trial outcomes were then possible. If monkeys successfully withheld the eye movement and maintained fixation for a minimum of 600 ms, they obtained a juice reward and a tone. These trials were designated as “canceled.” If monkeys were unable to inhibit the movement, a 1,500-ms timeout was added to the normal intertrial interval of 200 ms, no rewards were given, and the trial was termed “noncanceled.” The stop signal delay (SSD), or time between the target and stop signal presentation, determines the probability with which movements can be successfully countermanded (Logan and Cowan 1984). An initial set of SSDs from 0 to 420 ms and separated by either 40 or 60 ms was selected for each recording.
No-stop trial

RT

F
T

Canceled

SSD

Stop trial

Noncanceled

F
T

Fig. 1. The stop signal (or countermanding) task in a schematic representation. No-stop trials (top) were initiated when monkeys fixated a centrally presented fixation point. After a variable time, the fixation point was extinguished and simultaneously a peripheral target was presented at one of two possible locations. Monkeys were required to fixate targets with quick saccades for juice rewards. Stop trials (bottom) were initiated in the same way. After a variable time, termed the stop signal delay (SSD), the fixation point was reilluminated, instructing the monkeys to withhold movement. Successful inhibition of saccades resulted in a reward (canceled trials), but errant saccades resulted in no reward (noncanceled trials). The solid squares indicate stimulus locations. Dotted circles represent the area of fixation. F, fixation point; T, target; RT, reaction time.

We then manipulated the SSD using an adaptive staircasing algorithm, which adjusted the stopping difficulty based on performance. When subjects failed to inhibit responses, the SSD was decreased by a random step of 1, 2, or 3, increasing the likelihood of success on the next stop trial. Similarly, when subjects were successful in inhibiting the eye movement, the next SSD was increased by a random step of 1, 2, or 3, decreasing the future probability of success. This procedure was used to ensure that subjects failed to inhibit action on ~50% of stop trials overall. Stop trials were 30–70% of all trials in a given session, with a typical session consisting of several thousand trials. Reaction time (RT) data did not show any evidence that subjects slowed responses to “wait for” the stop signal (see RESULTS). Saccade initiation and termination were detected offline using a custom algorithm implemented in the MATLAB programming environment (MathWorks, Natick, MA), which first detected instantaneous velocity elevated above 30°/s and then calculated the beginning and ending of the monotonic change in eye position.

Data acquisition. Time stamps of relevant trial events were recorded at 1 kHz with analog data using a Plexon Multichannel Acquisition Processor (MAP) box (Plexon, Dallas, TX). Eye position was monitored using a video-based infrared eye tracking system (ASL, Bedford, MA) and was streamed to the Plexon MAP box parallel with trial events and EEG data using a 64-channel Plexon Breakout Board. We estimated the spatial resolution of our eye tracking setup by recording SDs while monkeys were actively fixating the central fixation point. Across all sessions, the mean SDs were ±0.54° and ±0.51° for monkeys F and Y, respectively. The maximum SDs while fixating for a session were ±0.74° and ±0.67° for monkeys F and Y, respectively. Unfortunately, this spatial resolution was not high enough to detect microsaccades, although it was more than sufficient to detect the onsets of large task-related responses. Implanted EEG surface electrodes were referenced to clip-style Ag/AgCl cup electrodes (Electro-Cap, Eaton, OH), which were filled with conductive paste and clipped to either the left ear (monkey F) or linked to both ears (monkey Y). All data were recorded from a single midline electrode in both subjects, the asymmetric referencing used for monkey F did not result in any significant differences. The EEG from each electrode was amplified with a high-input impedance head stage (>1 GΩ, ~2 pF of parallel input capacitance, HST/S850-G1-GR, Plexon) and filtered between 0.7 and 170 Hz with two cascaded, one-pole, low-cut, Butterworth filters and a four-pole, high-cut, Butterworth filter.

Race model behavioral analysis. The race model has been used with great success to account for both behavioral performance and neural activity in the countermanding paradigm (Logan and Cowan 1984; Boucher et al. 2007; Lo et al. 2009; for a review, see Verbruggen and Logan 2008). On no-stop trials, RTs can be observed directly. On stop signal trials, noncanceled RTs can be recorded along with the probability of committing an errant noncanceled saccade. The latter measure tends to assume the form of an increasing sigmoid curve and has traditionally been referred to as an inhibition function. By treating the inhibition function as a cumulative probability distribution and comparing it with the distribution of RTs on no-stop trials, one is able to use the logical aspect of the race model to estimate the median time required to cancel the execution of a motor response (Logan 1994; Band et al. 2003; see also Colonius 1990). This stop signal RT (SSRT) provides a measure of the otherwise covert stop process.

Following the methods of Hanes et al. (1998), we first fitted a Weibull function \[ W(t) = \gamma - (\gamma - \delta) \times \exp\left(-t/\alpha^\beta\right) \]

where \( \gamma \) is the maximum probability value, \( \delta \) is the minimum probability value, \( t \) is the time after target onset, \( \alpha \) is 64% of the maximum probability value, and \( \beta \) is the slope. Next, we used the fitted inhibition functions and the combined no-stop RT data to estimate SSRTs for each monkey using two different methods. The first of these methods assumed that SSRT was a random variable, whereas the second method assumed that SSRT was constant across SSSD (Hanes et al. 1998; Band et al. 2003). Since there was no reason to suppose an advantage of either of these SSRT estimation methods, we averaged the two estimates together to obtain a final SSRT estimate separately for each monkey (Hanes et al. 1998; Pare’ and Hanes 2003).

A robust finding in the stop signal literature is that noncanceled RTs are significantly lower than no-stop RTs. This is a straightforward prediction of Logan and Cowan’s (1984) horse race model, since trials with faster “go” processes will tend to finish before the “stop” process, thus escaping behavioral inhibition. It also suggests that noncanceled trials cannot be accurately compared with the entire distribution of no-stop trials when RT is a potential confounding variable. An accurate comparison can only be made between noncanceled trials and no-stop trials with relatively faster RTs. Specifically, noncanceled trials should only be compared with no-stop trials with RTs < SSRT + SSD. These are the trials that would have escaped behavioral inhibition and resulted in errant saccades had a stop signal been presented. Similarly, for accurate comparisons, canceled trials must be matched to slower no-stop trials with RTs > SSRT + SSD. Thus, even though
no response is generated on successfully canceled trials, RT ranges can be estimated for this trial type. The technique of matching noncanceled and canceled trials to no-stop trials with RTs from the appropriate portion of the RT distribution has been termed "latency matching" (Hanes et al. 1998). In the present study, it was especially important that we compared canceled trials with their latency-matched no-stop counterparts. This allowed us to estimate times when eye movements were likely even though they were not detected. Where appropriate, we used our derived SSRT estimates to latency match at each SSD.

Event-related potential and event-related velocity analyses. Event-related potentials (ERPs) were time locked to saccade initiation or target onset and baseline corrected to the interval from 150 to 50 ms before these events. Canceled trials did not contain saccade events. Instead, a virtual saccade event was created for trials in this condition by randomly sampling from the distribution of latency matched no-stop RTs with replacement. Canceled trials were then aligned to this virtual saccade event and baseline corrected. Trials with voltage deflections greater than $\pm 300 \mu$V due to artifacts were excluded from further analysis. This threshold for rejection was an order of magnitude greater than the variability in the ERPs observed across monkeys (i.e., maximum root mean square for monkey F target-aligned no-stop trials: 42.2 $\mu$V, canceled trials: 39.8 $\mu$V, noncanceled trials: 41.4 $\mu$V; and maximum root mean square for monkey Y target-aligned no-stop trials: 42.7 $\mu$V, canceled trials: 45.2 $\mu$V, and noncanceled trials: 40.7). Single trial EEG signals were truncated 50 ms before the onset of the second, nontask-related saccade to eliminate "smeared" saccade-related artifacts. It was important to estimate the relative timing of saccades and to display this estimate graphically. Instead of using a traditional method such as displaying a histogram of saccade latencies, we collapsed across saccade velocity profiles. This method is essentially the same as creating an ERP from EEG data except that the data were radial eye velocity traces (Fig. 2). The resulting average did not only contain information about saccade latency but also took into consideration saccade amplitude and duration, making it a more complete descriptor of average saccade dynamics. Since these velocity profiles were aligned to particular events and collapsed across trials in the same way as ERPs, we will refer to them as "event-related velocities" (ERVs). ERVs were not baselined since an ERV value of zero is not arbitrary as it is in an ERP. As a rule, the single trial velocity profiles that made up the ERVs were truncated at the onset of the second, nontask-related saccade to avoid contamination of the task-related saccade velocity trace.

Narrow digital bandpass filters (frequency: $\pm 1$ Hz) were used to discriminate the SP from other saccade-related components (see RESULTS). Each filter was created using a Hamming window of length $(2 \times T + 0.001)$ s, where $T = 1/T$. A zero phase-shift digital filter was applied to the data using the specified Hamming window. The analytic power of the filtered data at each time interval ($t_i$) was approximated using a sliding window function of the following form:

$$P(t_i) = \frac{\max(A) - \min(A)}{2}$$

where $A$ is the time interval $[t_i - (T/2) \times t_i + (T/2)]$. These methods ensured a high level of filter specificity while minimizing sacrifices in timing estimation accuracy at each bandpass frequency.

A signal-to-noise ratio was estimated for each applied filter to assess how well it isolated the SP from the surrounding EEG. After each filter was applied to a single session of data and analytic power was estimated, the mean value in a 41-ms time window centered on the peak of the SP was recorded. This value was termed the "signal." The mean value in a 1-s time window centered on the saccade onset and excluding the signal time window was also recorded. This value was termed "noise." (Note that in this context, noise does not just refer to variability, measurement error, or unwanted line voltage fluctuations; noise also refers to EEG fluctuations and includes those fluctuations that are task related. Task-related EEG fluctuations do not average out in ERPs, and they can obscure the SP, which is our component of interest.) The filter yielding the highest signal-to-noise ratio was then used to isolate single trial SPs in subsequent analysis.

RESULTS

Behavior. RTs, average probabilities of committing errors, and SSRT estimates collapsed across sessions are shown in Table 1. Both animals exhibited noncanceled trials with probability $> 50\%$. Since we used a staircasing algorithm to adjust SSD, this departure suggests that both animals tended to speed up, causing a reduction in SSD. This pattern of behavior has been described before in animals performing the saccade stop signal task, and it appears to be an effective strategy for speeding up trial presentation and maximizing the rate of reward delivery (Godlove et al. 2009). In any case, our estimates of SSRT were lower than the more typical estimates of...
80–100 ms recorded in the literature. If our estimates were artificially low due to violations of the race model, it presents a problem for latency matching, since we may have erroneously underestimated the time of probable SP activation on canceled trials. Accordingly, when the results depended on latency matching, large RT windows were displayed and analyzed to ensure that late SP activation was not missed in canceled trials.

Saccade dynamics. Figure 3 shows main sequences of no-stop (blue) and noncanceled (red) saccades separately for each subject and each target. These data are shown numerically in Table 2. We carried out three-way ANOVAs to test the hypotheses that saccade amplitude and/or velocity differed between subjects, targets, or trial types. Both amplitude \( P < 0.001 \) and velocity \( P < 0.001 \) were found to differ between targets. Monkeys tended to make slightly larger amplitude and higher velocity saccades toward the right target. This may be an artifact induced by the monocular eye tracking procedures we used. Since we only tracked the right eye of each subject, saccade traces to the right target reflected abduction of the tracked eye, whereas saccade traces to the left target reflected adduction of the tracked eye. On the other hand, the difference may reflect a real bias that both monkeys developed toward the right target. Peak saccade velocity was also found to differ between subjects \( P < 0.001 \) and monkey \( F \) made saccades with higher peak velocities than monkey \( Y \). However, neither amplitude \( P = 0.701 \) nor peak velocity \( P = 0.380 \) differed significantly between trial types. Since main effects of \( 1° \) proved highly significant in the target contrast, the failures to reject null hypotheses in the trial type contrasts cannot be attributed to a deficiency of statistical power. These results replicate previous findings by Hanes and Schall (1995).

Saccade-aligned ERPs. Figure 4 shows saccade-aligned ERPs and ERVs from both subjects. On trials in which saccades were detected, we observed a high-amplitude, high-frequency negativity occurring concomitant with or slightly before saccade initiation. This saccade-related component has been described many times in human subjects (Evdokimidis et al. 1991; Everling et al. 1997) and at least once in nonhuman primates (Sander et al. 2010).

For our purposes, the most important finding was the absence of the SP on canceled trials. At least two alternatives exist to explain this finding. First, we may conclude that partial muscle activation does not occur on canceled saccade trials, so no saccadic SP is evident. Second, we may conclude that aligning EEG to a virtual saccade event obtained by random sampling from existing RT distributions is too coarse a method to detect the saccadic SP on canceled trials. If partial motor activation did occur on these trials, we do not know when. Therefore, aligning on virtual randomly sampled RT events and collapsing across the data may have smeared any partial SPs and rendered them difficult to detect. We note that even if small-amplitude SPs had been generated on the canceled trials but were temporally smeared by averaging, they should be revealed by a low-amplitude, broad negativity during the measurement epoch. As is evident in Fig. 4, we did not observe a waveform on canceled trials, consistent with this pattern. However, we carried out an additional time-frequency analysis:

![Fig. 3. Saccade dynamics do not differ between no-stop and noncanceled trials. The scatterplots show saccade amplitude versus peak saccade velocity (main sequences) across all sessions. The histograms display associated probability densities for each measurement. Bin widths are 10°/s for velocity distributions and 0.25° for amplitude distributions. Blue dots and dashed lines represent saccades on no-stop trials. Red dots and solid lines represent saccades on non-canceled trials. Rows separate data by target; columns separate data by subject.](image-url)
to isolate SP activity from the surrounding EEG and test for the presence of extraocular EMG activation during canceled stop trials.

**Isolated SP activation.** In our data, the SP is readily visible as a stereotyped high-frequency negativity (Fig. 4). Because of its unusually high frequency and its invariance across sessions, we hypothesized that SP activation could be discriminated from the surrounding EEG on a trial-by-trial basis after the application of an appropriate filter (see also Keren et al. 2010). We applied narrow digital bandpass filters in steps of 10 Hz to search for a frequency that optimally discriminated SP activation from the surrounding EEG. After filtering the data and calculating power as a function of time, we constructed response-aligned ERPs for no-stop trials at each bandpass frequency for each recording session. We then calculated signal-to-noise ratios for each filtered ERP. The result of this analysis is shown in Fig. 5F. A bandpass filter centered on 95 Hz was found to provide the greatest discrimination between the SP and the surrounding EEG for monkey F, whereas a bandpass filter centered on 35 Hz was found to be optimal for monkey Y. At first glance, this difference may seem surprising. However, our technique does not simply measure the frequencies contributing power to the SP. Instead, it isolates the frequency that our technique does not simply measure the frequencies contributing power to the SP. Instead, it isolates the frequency that optimally discriminates the SP from the surrounding EEG. Therefore, this difference reflects variations in overall EEG frequency spectra between the two monkeys. Differences in EEG frequency spectra are to be expected due to several factors. For example, the skulls of monkeys F and Y were observed to be of different thicknesses during surgery (Nunez and Srinivasan 2006).

The application of optimal discrimination bandpass filters allowed us to observe the SP separate from the surrounding EEG. Using this technique, we were able to search for SP activation in target-aligned ERPs made up either of no-stop or canceled trials. This comparison is shown for a sample session from monkey F in Fig. 6. The SP was visible in the unfiltered data when aligned on the response onset but was impossible to resolve, even on no-stop trials, when aligned on the target onset (left column). After filtering, the SP was readily apparent in the response-aligned, single trial data as a vertical band of elevated power (Fig. 6, top right). A diffuse band of power can also be observed in the target-aligned no-stop trials during the period of time when saccades were initiated (Fig. 6, middle right). However, no coherent band of elevated power could be discriminated on successfully canceled trials (Fig. 6, bottom right).

Our bandpass filtering technique also provided us with power measurements that were amenable to statistical testing. After filtering the data and performing latency matching to compare canceled trials with the appropriate no-stop trials, we measured average normalized power during a discrete window around mean RTs. For our window, we chose the period from the 25th percentile RT to the 75th percentile RT. Following this method ensured that we sampled power on canceled trials during the period of time when SPs were most likely to occur.
Since power was baseline corrected to the interval 150–50 ms before target onset, power measurements collected at each SSD could be subjected to *t*-tests, allowing us to test the null hypothesis that canceled trials do not show SP activation in the absence of overt eye movements. The results of this analysis are shown in Fig. 7. Each observation represents the average power for one SSD measured during the period of time when saccades were likely. No-stop trials (Fig. 7, left) showed an increase in power above baseline when saccades were produced (mean = 0.26 μV). This increase was statistically significant (\(P < 0.001, \text{df} = 167\)) and demonstrates that there was a reliable increase in SP activation associated with saccades. In contrast, canceled trials (Fig. 7, right) showed slightly decreased power during the period of time when saccades were likely to occur (mean = −0.11 μV). Although this effect was small, it was statistically significant (\(P < 0.001, \text{df} = 167\)), suggesting a small but reliable decrease in SP activation during periods when saccades were canceled. Thus, no partial EMG activation was present when monkeys canceled eye movements in the saccade countermanding task.

DISCUSSION

We have provided evidence indicating that partial muscle activation does not occur in the primate ocular motor system when monkeys inhibit saccades in a countermanding task. Our conclusion is supported by the following observations. First, when canceled ERPs are aligned on a virtual saccade event to create saccade-aligned ERPs, no evidence of EMG activation in the form of a SP can be observed around the time of saccade initiation. Second, when the SP activation is isolated from the surrounding EEG using bandpass filters, no-stop trials show EMG power that is significantly elevated above baseline while saccades are being made. Canceled trials, on the other hand, do not show EMG power that is elevated above baseline. Instead, trials in which saccades were deemed canceled display slightly reduced EMG activation as measured by the SP. This is strong evidence against partial motor activation in the ocular motor system on canceled saccade trials.

The saccadic countermanding paradigm is a versatile tool that has led to many key findings over the last two decades. Human psychophysical experiments using the saccadic stop signal task have helped elucidate the nature of conjugate gaze shifts (Corneil and Elsley 2005), differences between predictive and reactive stimulus tracking (Joiner et al. 2007), the relative contributions of reflexive foveal stimulation to stopping (Cabel et al. 2000), and the influence of stimuli timing and salience on saccade inhibition (Morein-Zamir and Kingstone 2006; Stevenson et al. 2009). Physiological recordings from monkeys carrying out the stop signal task have helped uncover cortical (Hanes et al. 1998; Brown et al. 2008; Ray et al. 2009; Stuphorn et al. 2009; Scangos and Stuphorn 2010) and subcortical (Pare’ and Hanes 2003) mechanisms of saccade generation. The task is useful for investigating performance monitoring in both human (Curtis et al. 2005; Endrass et al. 2005)
and animal (Stuphorn et al. 2000; Ito et al. 2003; Stuphorn and Schall 2006; Emeric et al. 2008, 2010) subjects. In addition, the saccadic countermanding task has given rise to a strong computational modeling literature leading to breakthroughs in understanding neural saccade production and regulation (Hanes and Schall 1996; Asrress and Carpenter 2001; Boucher et al. 2007; Lo et al. 2009; Wong-Lin et al. 2010). Finally, the saccadic stop signal task has had broad clinical significance, providing insights on the action of several popular anesthetic agents (Khan et al. 1999; Nouraei et al. 2003), as well as the core dysfunctions underlying disorders such as mild traumatic brain injury (DeHaan et al. 2007), Parkinson’s disease (Joti et al. 2007), and attention-deficit hyperactivity disorder (Armstrong and Munoz 2003; Hanisch et al. 2006). Given the wide experimental significance of the saccadic stop signal paradigm, the observation of partial muscle activation on canceled saccade trials would have provided important theoretical leverage to the study of behavioral inhibition.

Several groups have found partial motor activation on canceled trials during the manual response version of the countermanding task. Partial motor activation on canceled trials has been taken as evidence against a ballistic phase of motor execution (De Jong et al. 1990; McGarry and Franks 1997; McGarry et al. 2000). Partial motor activation has also been used to study the unity or diversity of stopping under different circumstances (De Jong et al. 1990; van Boxtel et al. 2001). In addition, partial motor activation on canceled trials has been compared with full motor activation on no-stop trials, used as a proxy measure for SSRT, and compared with neural data to assess the relative contribution of supplementary motor neurons to movement initiation (Scangos and Stuphorn 2010). Clearly, partial motor activation on canceled trials is a useful measurement for characterizing countermanding behavior. In contrast to manual response countermanding, partial extraocular muscle activation appears to be absent on canceled trials in the saccade countermanding task.

Lack of partial extraocular muscle activation on canceled trials is not surprising given our current understanding of the saccadic system. The saccadic system and spinal motor system differ in several important ways. Unlike manual responses and
The sign of these averages is negative for canceled trials. Both distributions deviated significantly from zero (Students t-test, *P* < 0.001, degrees of freedom = 167).

Demonstrated that the SP should be viewed as an extraocular potential by Platt (1964). An extensive body of evidence has suggested that the SP is maximal around the peak of the SP and saccade onset (Thickbroom and Mastaglia 1985; Keren et al. 2010). Thus, using the strong inference method we refined the technique presented by Keren et al. (2010) by adopting a frequency optimization procedure that ensured small SPs would be highly detectable. The average power traces that we were able to construct for no-stop trials containing 10° saccades suggest that we would have been able to detect SPs associated with very small amplitude movements (see Figs. 5 and 6). Still, the fact remains that canceled trials can still be recorded in total darkness (Riggs et al. 1974; Balaban and Weinstein 1985; Riemslag et al. 1988). This conclusion is supported by the following seven observations. First, the corneoretinal potential cannot contribute to the SP since the SP remains constant, but its scalp distribution changes predictably with saccades made in different directions (Thickbroom and Mastaglia 1985; Keren et al. 2010). Fifth, both its scalp distribution (Moster and Goldberg 1990; Lins et al. 1993a; Keren et al. 2010; Sander et al. 2010) and dipole source modeling (Thickbroom and Mastaglia 1985; Lins et al. 1993b) suggest that the SP is maximal around the eye. Sixth, there is a close and consistent timing correlation between the peak of the SP and saccade onset (Thickbroom and Mastaglia 1985; Keren et al. 2010). Finally, the amplitude of the SP shows a positive correlation with saccade amplitude (Keren et al. 2010). Thus, using the strong inference method advocated by Platt (1964), an extensive body of evidence has demonstrated that the SP should be viewed as an extraocular EMG. It is a natural step, then, to search for the presence of extraocular EMG activation using SPs recorded in the stop signal task.

Another possible criticism concerns the resolution of our EMG measurement. One may argue that our proxy measure of extraocular EMG activation using SPs recorded in the stop signal task may be associated with subthreshold EMG activation that is too small to detect with surface electrodes. To test this hypothesis further, recordings would be needed from microelectrodes inserted into the motor nuclei themselves.

It is noteworthy that we did not simply observe a lack of extraocular EMG on canceled saccade trials. Instead, we report a small but significant decrease in EMG activity when eye movements were withheld. Before baselining, a tonic increase in EMG activity was observed in the period of time around task-related saccades. (Fig. 5, *F* and *G*) We speculate that this tonic resting EMG activity was produced by microsaccades that occurred throughout our recordings (Yuval-Greenberg et al. 2008). On canceled trials, we observed a significant decrease in tonic EMG activity. 

**Fig. 7.** No-stop trial EEGs display significantly increased SP activation during periods when saccades are produced, but canceled trial EEGs show no increase in SP activation. After trials had been latency matched and EEG data filtered (see Fig. 6), the average power during a discrete time window was measured on a trial-by-trial basis. For the time window, we chose the period between the 25th and 75th RT percentiles. Since no-stop trials were latency matched to canceled trials, this is the period of time during which SP activation was most likely to occur in both trial types. Power averages were collected from this time window at each SSD. Each SSD from each recorded session yielded a single observation for each trial type. The histograms show the results of this analysis. The observations are gathered in 0.1-μV bins for display purposes. Grand average power is reported for each trial type above the appropriate histogram. Note that the sign of these averages is negative for canceled trials. Both distributions deviated significantly from zero (Students *t*-test, *P* < 0.001, degrees of freedom = 167).


REFERENCES


