Role of local field potentials in encoding hand movement kinematics

Matthias Witte
MEG Center, Institute of Medical Psychology and Behavioral Biology and Graduate School of Neural and Behavioral Sciences, International Max Planck Research School, University of Tübingen, Tübingen, Germany

Submitted 25 March 2011; accepted in final form 23 May 2011

Witte M. Role of local field potentials in encoding hand movement kinematics. J Neurophysiol 106: 1601–1603, 2011. First published May 25, 2011; doi:10.1152/jn.00269.2011.—How the brain orchestrates the musculoskeletal system to produce complex three-dimensional movements is still poorly understood. Despite first promising results in brain-machine interfaces that translate cortical activity to control output, there is an ongoing debate about which brain signals provide richest information related to movement planning and execution. Novel results by Bansal and colleagues (2011) now suggest that neuronal spiking and local field potentials jointly encode kinematics during skilled reach and grasp movements.

...
Fig. 1. Decoding movement kinematics from brain activity. Monkeys continuously grasped objects swinging towards them on a string. An infrared camera (IR) captured kinematics while neuronal signals were simultaneously recorded from 96-site microelectrode arrays in motor and premotor cortices. Bansal et al. (2011) used linear Kalman filtering to infer movement kinematics from brain signals (lf-LFPs, low-frequency local field potentials). This recursive method consisted of two steps: first, predicting forthcoming kinematics using knowledge of the previous estimate, and second, updating the prediction with a data-based residual. Overall, the authors successfully reconstructed position, speed, and aperture of hand movements from lf-LFPs and spiking units.

Because nonlinear transformation of multiple synaptic inputs to outgoing action potentials takes place. As a consequence, we cannot expect a fixed relation between LFp and spiking for different tasks and brain areas. One remarkable outcome of the present study was that individual LF-LFP channels on average revealed higher decoding across the neuron population in motor cortex than single spiking units. This may seem surprising at first glance as the output of cells in motor areas should provide the most accurate estimation of movement. When considering the overall best unit or channel, however, the reverse was true: the “optimal” single spiking cell mostly provided higher fidelity. These findings confirm that spiking activity of single neurons reflects more specific local activity, whereas field potentials are broadly tuned to movement-related processing over neuronal populations.

Yet, a standard procedure is to combine information of several sites within an electrode grid so that the question arises how well such pooled neural activity can be decoded. Here, Bansal et al. (2011) used two approaches: 1) the “best case” procedure repeatedly added a single LFP channel or unit that provided the highest independent information gain while 2) in the “average case” procedure, a certain number of channels/units was randomly picked for 100 iterations. As a first result, pooled units outperformed lf-LFPs in the best case analysis. Interestingly, the average case revealed ambiguous trends for the two monkeys but decoding performance was generally lower compared with best case. The authors concluded that the pooled population of spiking units would give richer kinematic information. Moreover, they speculated that differences to previous findings that showed equal or higher decoding from LFPs (Mehring et al. 2003) were mainly due to increased number of electrodes in their current study. The crux of this interpretation, in my view, is the method they used to pool units. First, consider that the nature of LFPs is that of a coarser signal, implying a lesser degree of independence between single recording sites. In fact, the authors themselves presented increased pair-wise correlation for LFP channels compared with units’ correlation. This is well in line with another study that stable neuroprosthetic control is, in principle, possible (Ganguly and Carmena 2009).

The aforementioned decoding from brain activity also raises a more fundamental issue, that is, whether the underlying neurophysiological signals are reflecting sensory or motor processing. This is extremely relevant to BMI research, as most studies have sought for a predictive neuronal signal that could be used as a driver to control external devices. While this approach seems logical per se, it neglects the fact that movements always produce interaction with our environment and thus result in rich sensory information closely associated with motor output. Bansal et al. (2011) contributed to this open question in two ways. First, LFPs could not only predict spiking output in the future but were even more useful in reconstructing past spike events. This likely indicates that besides dendritic input, local output processing also contributes to generation of LFPs. Second, and somewhat conflicting, decoding of movements was always more efficient when kinematics preceded neuronal signals around 150 ms. In other words, both LFPs and single unit spiking were dominated by sensory feedback from the moving limb. In conclusion, a strict dissociation between sensory input and motor output seems, therefore, not reasonable.

One appealing solution to the issue of sensory vs. motor processing, in my view, is a model of dynamic sensorimotor interaction. The main idea is that a descending motor signal might concurrently act as a periodic “test pulse” that produces a sensory volley (McKay 1997). During movement preparation without overt movements, such self-induced afferent feedback would inform sensorimotor brain areas about the current musculoskeletal state, a necessary step for preparing accurate movements. Support for this notion comes from a human study where increased premovement activity in somatosensory and motor cortices was accompanied by slightly higher muscle tone (Favorov et al. 1988). Beyond this early function, the same mechanism could also account for ongoing sensorimotor ad-
justments during movement execution. An example for this mode was observed in thalamo-cortical oscillations that temporarily aligned to exploratory whisker movements in rats (Nicolelis et al. 1995). The report at hand (Bansal et al. 2011) showed a similar phenomenon as LFP, summed spiking and kinematics revealed tight rhythmic coupling in the low-frequency range (see their Fig. 1). Despite preliminary evidence for significant phase-locking between single units and LFPs, the authors did not test whether this coupling is crucial for decoding of motor behavior. Therefore, instead of using spikes binned in fixed intervals with respect to movement onset, a valuable procedure would have been to align to the peak of lf-LFP oscillations (for details, see Reimer and Hatsopoulos 2010). In this way, slow oscillations set the framework and precise phase-locking of single unit spiking to this rhythm would ensure that sensory information from the limb arrives in a common state of depolarized cortical neurons. This in turn would promote efficient sensorimotor processing and integration over distributed motor areas.

In summary, Bansal et al. demonstrated highly efficient decoding of reach and grasp kinematics in 3-D space from local field potentials. Their results suggest that lf-LFPs mainly reflect sensory information from the moving limb but also can be used to predict kinematics. This finding potentially could soften the boundaries that commonly exist between sensory and motor research lines. Future decoding approaches may thus benefit from recording lf-LFPs along with local spiking activity. Given that the precise temporal relation between both signals can be further clarified, such combined signal analysis may ultimately lead to improved applications in BMI research.

REFERENCES