Expression patterns of nicotinic subunits \(\alpha2\), \(\alpha7\), \(\alpha8\), and \(\beta1\) affect the kinetics and pharmacology of ACh-induced currents in adult bee olfactory neuropiles

Julien Pierre Dupuis, Monique Gauthier, and Valérie Raymond-Delpech

Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale (CRCA), CNRS UMR 5169, Toulouse Cedex, France

Submitted 16 February 2011; accepted in final form 5 July 2011

Dupuis JP, Gauthier M, Raymond-Delpech V. Expression patterns of nicotinic subunits \(\alpha2\), \(\alpha7\), \(\alpha8\), and \(\beta1\) affect the kinetics and pharmacology of ACh-induced currents in adult bee olfactory neuropiles. J Neurophysiol 106: 1604–1613, 2011. First published July 6, 2011; doi:10.1152/jn.00126.2011.—Acetylcholine (ACh) is the main excitatory neurotransmitter of the insect brain, where nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission. In the honeybee Apis mellifera, nAChRs are expressed in diverse structures including the primary olfactory centers of the brain, the antennal lobes (ALs) and the mushroom bodies (MBs), where they participate in olfactory information processing. To understand the nature and properties of the nAChRs involved in these processes, we performed a pharmacological and molecular characterization of nAChRs on cultured Kenyon cells of the MBs, using whole cell patch-clamp recordings combined with single-cell RT-PCR. In all applications of ACh as well as nicotinic agonists such as nicotine and imidacloprid induced inward currents with fast desensitization. These currents were fully blocked by saturating doses of the antagonists \(\alpha\)-bungarotoxin (\(\alpha\)-BGT), dihydroxy-\(\beta\)-erythroidine (DHE), and methyllycaconitine (MLA) (MLA \(\geq\) \(\alpha\)-BGT \(\geq\) DHE). Molecular analysis of ACh-responding cells revealed that the 11 nicotinic receptor subunits encoded within the honeybee genome, \(\alpha2\), \(\alpha8\), and \(\beta1\) subunits were expressed in adult Kenyon cells. Comparison with the expression pattern of adult AL cells revealed the supplementary presence of subunit \(\alpha7\), which could be responsible for the kinetic and pharmacological differences observed when comparing ACh-induced currents from AL and Kenyon cells. Together, our data demonstrate the existence of functional nAChRs on adult MB Kenyon cells that differ from nAChRs on AL cells in both their molecular composition and pharmacological properties, suggesting that changing receptor subsets could mediate different processing functions depending on the brain structure within the olfactory pathway.

antennal lobe cells; Kenyon cells; patch clamp; single-cell reverse transcriptase-polymerase chain reaction

NICOTINIC ACETYLCHOLINE RECEPTORS (nAChRs) are abundant within the central nervous system of insects, where they mediate fast excitatory neurotransmission. Native neuronal nAChRs have been described in several insect species such as cockroaches (Salgado and Saar 2004), locusts (Hermens et al. 1998), crickets (Cayre et al. 1999), houseflies (Jepson et al. 2006), moths (Vermeiren and Trimmer 2005), and honeybees (Barbara et al. 2005; Goldberg et al. 1999; Wüstenberg and Grünewald 2004). Despite common properties such as cation selectivity and inward rectification, pharmacological characterization of these receptors has brought to light striking differences from mammalian nAChRs, a crucial point since it confers a remarkable selectivity for neonicotinoids, the major class of synthetic insecticides.

In vertebrates, nAChRs are pentameric membrane proteins belonging to the dicysteine-loop (“cys-loop”) superfamily of ligand-gated ion channels (LGICs) including both cation- and anion-permeable channels (Raymond and Sattelle 2002). Each subunit possesses four transmembrane domains (M1–M4), an extracellular amino-terminal domain involved in agonist binding, and a large phosphorylatable cytoplasmic loop between M3 and M4 involved in receptor assembly and regulation in mammals (for review see Albuquerque et al. 2009; Thany et al. 2007). The ion pore is created by the M2 transmembrane segments and defines channel gating properties, ion selectivity, and conductivity. So far, complete insect cys-loop LGIC superfamilies have been described in Drosophila (Dent 2006), honeybee (Jones and Sattelle 2006), and red flour beetle (Jones and Sattelle 2007), the honeybee genome containing 21 candidate subunits. Among these 21 members, 11 orthologs of known Drosophila nAChR subunits—9 \(\alpha\) and 2 \(\beta\)—have been reported (Jones and Sattelle 2006) that potentially enter into the yet-unknown molecular composition of honeybee nAChRs. If subunits Amel\(\alpha5\), Amel\(\alpha6\), and Amel\(\alpha7\) share 34%, 44%, and 40% identity, respectively, with the vertebrate \(\alpha7\) subunit, several honeybee subunits do not have clear vertebrate homologs and therefore have been named after their Drosophila counterparts (Jones et al. 2006). However, their respective functional roles remain poorly defined.

Immunocytochemical and electrophysiological studies have shown that major networks of the honeybee brain are cholinergic, including structures involved in the processing of olfactory information such as the antennal lobes (ALs), the primary olfactory neuropile of the brain, and the mushroom bodies (MBs) (Barbara et al. 2008; Bicker 1999; Wüstenberg and Grünewald 2004). Olfactory sensory neurons located in the antennae send cholinergic inputs to the AL neurons, namely, local interneurons and projection neurons (PNs), with which they interact within the glomeruli constituting the AL external layout (Kelber et al. 2006; Fig. 1). After a first processing step in the AL, cholinergic PNs send the information to the calyces of the MBs where they synapse onto Kenyon cells (KCs), which perform a final integration of olfactory, visual, and gustatory signals (Brandt et al. 2005). Thus AL cells and KCs
both receive information in the form of cholinergic inputs and perform two successive steps of olfactory information processing. Interestingly, behavioral studies demonstrated that injecting nicotinic antagonists into the honeybee brain impacts on olfactory memory formation in different ways depending on the nature of the antagonist. Injections of mecamylamine (mammalian heteromeric nAChR antagonist) affect the memory retrieval process (Lozano et al. 2001) and injections of the nature of the antagonist. Injections of mecamylamine of olfactory memory formation in different ways depending on perform two successive steps of olfactory information process-

Materials and Methods

Animal handling and cell preparation. Honeybees (Apis mellifera) were housed in a heated hut outside the laboratory. Animal handling and experiments fully conformed to French regulations. Adult honeybees were captured at the top of the hive and anesthetized by cooling at 4°C. MB calyces were dissected and KCs were cultured following a modified version of a protocol originally developed by Kreissl and Bicker (1992). The head capsule was removed in a Leibovitz L15 medium without L-glutamine (Lonzá, Verviers, Belgium) supplemented with (in mM) 125 sucrose, 22.2 glucose, 13.9 fructose, and 28.7 proline, with 0.1 g/l streptomycin and 0.2 U/l penicillin (pH 7.2; all chemicals from Sigma, St. Louis, MO, unless otherwise stated). Head glands were removed, and MB calyces were dissected out of the brains. All preparations were made under semi-sterile conditions, i.e., all preparation equipment was sterilized with 70% ethanol and all solutions were filtered. MB calyces were incubated for 20 min at 30°C in a dissociation saline (Cell dissociation solution nonenzymatic 1×; Sigma) supplemented with protease (type IX from Bacillus polymyxa) and collagenase (type I from Clostridium histolyticum) (1 g/l each). MB calyces were then transferred into supplemented L15 medium and mechanically dissociated by gentle trituration. Aliquots equivalent to two MB calyces were then plated on poly-L-lysine-coated glass coverslips (0.1 g/l poly-L-lysine, mol mass 150–300 kDa, pH 8.5) contained in culture dishes. Cells were allowed to settle and adhere to the substrate for 2 h at 26°C in an incubator at high humidity. The dishes were then filled with 3 ml of culture medium composed of 13% (vol/vol) heat-inactivated fetal calf serum (Lonza, Verviers, Belgium), 1.5% (vol/vol) yeast extract ultrafiltrate (Sigma), 19.1 mM glucose, 11.9 mM fructose, 24.7 mM proline, 125 mM sucrose, 2 mM L-glutamine, and 50 μg/ml gentamicin, completed with L15 medium without L-glutamine (Lonza) adjusted to pH 6.7 with NaOH. Cells were kept at 26°C in an incubator before use for electrophysiological measurements.

AL cells were prepared according to the same protocol except for the enzymatic dissociation step, which was extended to 45 min.

Electrophysiology. Whole cell patch-clamp recordings were performed at room temperature between 24 h and 4 days after cell preparation as previously described (Hamill et al. 1981). Patch pipettes were pulled from borosilicate glass capillaries (1.5 mm OD, 0.86 mm ID; Harvard Apparatus, Les Ulis, France) with a vertical puller (PP-850, Narishige Scientific Instrument Lab, Tokyo, Japan) and had tip resistances between 5 and 10 MΩ. Pipettes contained (in mM) 18.4 KCl, 86.6 K-glucosinate, 40 KF, 3 Na₃ATP, 3 MgCl₂, 10 HEPES, 120 sucrose, 3 glutathione, 0.1 Na₂GTP, 1 CaCl₂, and 10 EGTA (pH 6.7). Glass coverslips containing the attached cells were placed in a RC-25F perfusion chamber (Harvard Apparatus). Cells were bathed in a standard external saline containing (in mM) 130 NaCl, 6 KCl, 4 MgCl₂, 5 CaCl₂, 10 HEPES, 25 glucose, and 185 sucrose (pH 6.7). Drugs were added as specified. Application of various solutions to the cells was performed with a SF-77B perfusion system (Harvard Apparatus), enabling a fast solution exchange (<100 ms). Agonists were applied during 2 s with an interval of 25 s to avoid any cumulative receptor desensitization. Membrane potential was held at −110 mV during all experiments except ion permeability determination. Recordings were performed with an Axopatch 200B amplifier (Axon Instruments, Union City, CA) connected to a Digidata 1440A (Axon Instruments) for data digitization. Data acquisition and analysis were carried out with pClamp10 (Axon Instruments). Currents were sampled at 2 kHz and low-pass filtered at 1 kHz.

Concentration-response curves. Concentration-response curves were determined for both nAChR agonists and antagonists. The agonists applied were ACh, nicotine (NIC), and imidacloprid (IMI). All of these were dissolved in the standard external saline. For concentration-response curve determination, agonists were applied during 2 s at various concentrations alternately with a reference pulse (1 mM ACh), always in an increasing concentration order. To compare amplitudes, currents measured in the presence of agonists (I) were normalized to the currents elicited by the reference ACh concentration (I_max, 1 mM ACh). Because peak amplitude measurements can sometimes be misleading regarding pharmacological characterization because of rapid desensitization of nAChRs (Papke and Porter Papke 2002), net charge analyses (NCA) were also performed (affinity...
values indicated in parentheses). However, since both methods yielded similar results and because most pharmacological studies on insect nAChRs are based on peak amplitude measurements, we chose to refer to peak amplitudes rather than net charge in order to ease comparison with previously described insect nAChRs.

The antagonists applied were MLA, DHE, and α-BGT. All were dissolved in DMSO [final concentration in the standard external saline <0.1% (vol/vol)]. At least two pulses of NIC (1 mM) were performed prior to antagonist application. To obtain inhibition curves, antagonists were applied at various concentrations in an increasing order. Antagonists were applied 30 s (time necessary for maximum inhibition) before reference NIC concentration application (1 mM). Cells were then washed out with standard external saline, and NIC was repeatedly applied until full-amplitude currents were recovered. Subsequently, only if NIC-induced currents fully recovered could further antagonist concentrations be tested. As for agonists, peak amplitudes or net charges were normalized (I_{max}) to the current elicited by 1 mM NIC before antagonist application.

For both agonists and antagonists, nonlinear curve fittings were performed with GraphPad Prism Software (GraphPad Software) and OriginLab 8.1 software using the following Hill equation:

$$
\Psi = I_{\text{max}} + \left(I_{\text{max}} - I_{\text{min}} \right) / \left[1 + 10^{(\log IC_{50} - \text{X})/H} \right]
$$

where X is the logarithm of the compound concentration, Ψ is the normalized response, I_{max} and I_{min} are the maximum and minimum normalized responses, respectively, EC_{50} is the concentration giving half-maximal normalized response, and H is the Hill coefficient.

Graphical representations were performed with OriginLab 8.1 software. Results are displayed as mean ± standard error of the mean (SE). Error bars in figures represent SE and are only shown if greater than symbols.

Reversal potential determination. The reversal potential for NIC-induced currents was determined by measuring the current amplitudes elicited by 1 mM NIC application at various command potential steps between −110 mV and +30 mV (10-mV step increment). For these experiments, both a standard external saline (130 mM Na⁺) and a sodium-depleted external saline (70 mM Na⁺), in which sodium was partially removed by replacing 60 mM NaCl by 60 mM Tris chloride (Tris-Cl), were used to evaluate the contribution of sodium ions to NIC-induced currents. The contribution of calcium ions was assessed with the use of two external salines containing 5 mM and 50 mM calcium (calcium increased by adding 45 mM CaCl₂, chloride concentration adjusted to 244 mM with Tris-Cl in both external salines), respectively. The reversal potentials were estimated by a nonlinear regression method fitting data near the zero crossing. They were calculated for each cell and averaged between cells. Relative ion permeabilities were determined as previously described (Barbara et al. 2008).

Data analysis and statistics. Currents were low-pass filtered at 100 Hz (Gaussian-type filter) after acquisition whenever appropriate. Data analysis was performed with Clampfit 10.1 (pClamp 10, Axon Instruments). The relative mean peak amplitude of each agonist-induced current was calculated by normalization to the current induced by the application of 1 mM NIC. SE is given throughout the text. The time constant of current desensitization was determined with Clampfit 10.1 (pClamp 10, Axon Instruments). Drug affinities and current amplitudes were compared with a t-test, a one-way ANOVA with a Tukey post hoc test, or a Wilcoxon test depending on the number of groups considered. Reversibility of the antagonists was assessed through comparison of the NIC-induced currents before and after the antagonist application by a Wilcoxon test. Statistical analyses were performed with Statistica 5.5 (Statsoft, Tulsa, OK).

Single-cell RT-PCR. Single-cell RT-PCR was performed on AL cells and KCs after electrophysiological recordings 24 h to 4 days after cell preparation, mainly as previously described (Dupuis et al. 2010). Patch pipettes were filled with 8 μl of diethyl pyrocarbonate (DEPC)-treated RT-PCR internal solution (in mM: 140 KCl, 3 MgCl₂, 5 EGTA, 10 HEPES). After whole cell patch-clamp recording, the cell cytoplasm was aspirated into the patch pipette. The pipette was removed from the bath, and the cytoplasm was expelled into a PCR tube kept on ice and immediately frozen at −20°C. Unpached filled pipettes immersed in the cell bath were used as a control. At the end of the patch-clamp experiment RT reactions were performed, following RevertAid First Strand cDNA Synthesis Kit (Fermentas Life Sciences, Burlington, ON, Canada) instructions. After a 5-min step at 25°C allowing random hexamer primers and RNAs to hybridize, the samples were incubated for 1 h at 42°C. A final 5-min step at 70°C was performed to stop the RT reaction.

The RT reaction products (cDNAs) were then used as templates for a first step of PCR amplification. cDNA aliquots (8 μl) were added to a PCR mix to give the following final concentrations: 1× DreamTaq PCR buffer, 50 μM dNTPs, and 5 U/50 μl of DreamTaq Polymerase (Fermentas Life Sciences). This mix was incubated for 1 min at 94°C before addition of each primer at 100 nM to prevent nonspecific reactions. A 10-min step at 94°C allowed the denaturation of newly synthesized RNA/DNA duplex. The samples were then submitted to 35 cycles of amplification (30 s at 94°C, 30 s at 56°C, 1 min 30 s at 72°C), followed by a single extension step of 10 min at 72°C (Flexigene thermal cycler, Techne, Burlington, NJ).

Aliquots (2 μl) of these first-step multiplex PCRs were then used as templates for a second step of nested PCR amplification. For this step, new couples of primers matching inner sequences of the first-step PCR products were designed. This second run was performed essentially as the first, except that only one pair of primers (1 μM each primer) was added per PCR. After this second PCR, 10 μl of each sample was run on a 1% agarose gel, and all RT-PCR products were sequenced to confirm their identity (MilleGen, Labège, France).

Eleven genes in the honeybee genome (Honeybee Genome Sequencing Consortium 2006) are known to code for potential nAChR subunits: α1–α9, β1, and β2 (Jones et al. 2006). Therefore, subunit-specific primers were designed to determine the expression of their corresponding transcripts. Primer sequences were used previously (Jones et al. 2006) and are given in Table 1.

RESULTS

Evidence of nAChRs on adult honeybee mushroom body Kenyon cells. Whole cell patch-clamp experiments were performed on cultured MB KCs from adult honeybee brains. Most of the recorded cells (155 of 178) responded with a fast inward current to the application of 1 mM ACh or 1 mM NIC at a holding potential of −110 mV (Fig. 2B), pointing out the presence of nAChRs in MB KCs and confirming previous reports on pupal honeybees (Dégilse et al. 2002; Goldberg et al. 1999; Wüstenberg and Grünewald 2004). The peak amplitude of the maximum ACh-induced currents ranged between −11.9 pA and −11.7 pA, with a mean peak amplitude of −25.4 ± 2 pA (n = 52). Receptor desensitization was assessed through sustained application of 1 mM ACh (20 s): the decay phases of the ACh currents could be fitted with a single exponential function, yielding a time constant τ of 50.2 ± 4.6 ms (n = 13). Moreover, ACh-induced currents increased in a concentration-dependent manner: the concentration-response curve for ACh yielded an EC_{50} of 35.8 ± 2.7 μM (H_{1} = 0.59, Fig. 2A). Because peak amplitude measurements can sometimes be misleading regarding pharmacological characterization because of rapid desensitization of nAChRs (Papke and Porter Papke 2002), NCAs of ACh-induced currents were also performed, which yielded an EC_{50} of 32.7 ± 5.9 μM (H_{1} = 0.62). NCA-obtained affinity values are further indicated in parentheses.
Pharmacology of Kenyon cell nAChRs. A pharmacological approach was adopted to characterize the properties of KC nAChRs. As for ACh, application of nicotinic receptor agonists NIC and IMI onto KCs also elicited inward currents at a holding potential of −110 mV (Fig. 2). NIC (1 mM) induced small inward currents ranging between −18 pA and −92.3 pA, with a mean peak amplitude of −32.7 ± 1.7 pA (n = 126), whereas IMI (100 μM) induced currents ranging between −11.6 pA and −18.3 pA, with a mean peak amplitude of −15.4 ± 1.1 pA (n = 6). EC50 and nH were estimated from concentration-response curves (Fig. 2A) and gave the following ranking orders: IC50 (211 ± 2.3 nM, nH = 0.56; EC50 = 527 ± 27 nM by NCA) ≥ NIC (3.7 ± 1.1 μM, nH = 0.54; EC50 = 4.18 ± 6.7 μM by NCA) > ACh (35.8 ± 2.7 μM, nH = 0.59; EC50 = 32.7 ± 5.9 μM by NCA) (ACh vs. NIC, P = 0.0020414; ACh vs. IMI, P = 0.001057 vs. NIC vs. IMI, P = 0.8669). IMI is only a partial agonist of nAChRs on KCs since its efficacy in eliciting maximum inward currents was found to be almost half lower than that of ACh (Fig. 2, B and C). At concentrations of 100 μM, for which both ACh and NIC induced maximum currents, NIC induced 107.6 ± 6.3% (n = 7) and IMI 50.5 ± 4.8% (n = 6) of the maximum ACh-induced currents. The mean peak currents of the maximum agonist-induced currents are summarized in Table 2.

Since NIC elicited larger currents than ACh, NIC was further used to evaluate the activity of nAChRs in KCs. The NIC-induced currents (1 mM NIC) were blocked by application of nicotinic antagonists α-BGT, DHE, and MLA (Fig. 3). At the highest concentration tested, all three of these completely blocked NIC-induced currents. At lower concentrations, a concentration-dependent reduction of the NIC-induced currents was observed. IC50 and nH were estimated from inhibition curves (Fig. 3A) and are summarized in Table 2. IC50 comparison gives the following inhibition ranking order: MLA (51.4 ± 5.2 nM, nH = −1.061; IC50 = 54.3 ± 9.5 nM by NCA) ≥ α-BGT (101 ± 2.1 nM, nH = −1.093; IC50 = 148 ± 79 nM by NCA) ≥ DHE (256 ± 1.4 nM, nH = −0.48; IC50 = 147 ± 32 nM by NCA) (α-BGT vs. DHE, P = 0.5461; α-BGT vs. MLA, P = 0.8493; DHE vs. MLA, P = 0.2954). Both DHE and MLA had partially reversible inhibitory actions (for 10 μM DHE: P = 0.0796, Z = 1.753, n = 6; for 10 μM MLA: P = 0.0679, Z = 1.826, n = 4), whereas α-BGT was fully reversible (for 10 μM α-BGT: P = 0.1441, Z = 1.460, n = 4).

Relative ion permeabilities. The recordings obtained at different holding potentials (between −110 and +30 mV, 10-mV step increments) showed that depolarization reduced the maximum peak current amplitude (Fig. 4A). In standard saline (130 mM Na+), NIC-induced currents were inward for holding potentials more negative than +20 mV (Fig. 4, A and B). With a linear regression method, the reversal potential of the NIC-induced currents was estimated at +23.4 ± 1.7 mV (n = 9). Moreover, decreasing the sodium concentration to 70 mM by replacing 60 mM NaCl by 60 mM Tris-Cl shifted the reversal potential to 2.9 ± 0.8 mV (n = 7) and reduced the current amplitude by 42.7 ± 4.9% at a holding potential of −110 mV (n = 7, P = 0.000656, Z = 3.41), indicating that sodium is involved in the NIC-induced currents. An estimate of the sodium-to-potassium permeability ratio (PNa/PK) under these ionic conditions was made by fitting its value in the GHK constant field relation to the observed reversal potentials, yielding a best agreement with the experimental data when PNa/PK = 2.45. Increasing the extracellular calcium concentration from 5 mM to 50 mM by adding 45 mM CaCl2 (chloride concentration adjusted to 244 mM with Tris-Cl in both external salines) induced a nonsignificant shift in the reversal potential from 14.4 ± 1.2 mV (n = 5) to 18.1 ± 0.8 mV (n = 5), indicating that KC nAChRs are weakly permeable to calcium, a potential allosteric modulator of ACh-generated currents, but not a major contributor to the nicotinic currents.
currents as suggested in vertebrates (Fig. 4, C and D). An estimation of the calcium-to-potassium permeability ratio (P_{Ca}/P_K) under these ionic conditions in agreement with experimental data yielded $P_{Ca}/P_K = 0.6$. Ignoring the effects of surface charge, the calcium-to-sodium permeability ratio (P_{Ca}/P_{Na}) was estimated at 0.24.

Molecular composition of AL cell and KC nAChRs. Interestingly, a single type of ACh-induced currents was recorded throughout the patch-clamp experiments performed on KCs, with a desensitization phase that could be fitted with a single exponential function yielding a time constant τ of 50.2 ± 4.6 ms ($n = 13$, Fig. 5A). In contrast, two types of ACh-induced currents coexist in the AL, the primary olfactory neuropile of the honeybee brain, where both majority slow (type I, $\tau = 539 \pm 81$ ms; $n = 152/170$ cells) and minority fast (type II, $\tau = 32 \pm 6$ ms; $n = 18/170$ cells) ACh-elicited conductances were reported (Barbara et al. 2008) as confirmed experimentally (Fig. 5B), suggesting the existence of different subsets of nAChRs within these structures of the olfactory pathway.

To better understand the nature of the ACh-gated receptors observed and in order to point out potential differences between nAChRs from KCs and AL cells at the molecular level, we combined single-cell RT-PCR analysis with patch-clamp experiments on both cell populations, following a procedure that allows the simultaneous characterization of the expression of several markers on a single cell (Dupuis et al. 2010). We were able to record from 18 KCs and 26 type I current-displaying AL cells and then apply RT-PCR, all of which were successful as attested by the amplification of our control marker, actin. Using RT-PCR, we also amplified brain tissue transcripts (2 μg) as well as unpatched filled pipettes immersed in the cell bath as controls.

All of the 11 potential nACHR subunit transcripts encoded in the honeybee genome (α_1–α_9, β_1, and β_2; Jones et al. 2006) were detected in brain tissue, which served as a positive control, confirming that all 11 nicotinic receptor subunits are expressed in the honeybee brain (Fig. 6A). In KCs, however, only α_2, α_8, and β_1 mRNA expression was detected in all cells tested after electrophysiological characterization (Fig. 6B). The supplementary presence of α_7 mRNAs was also detected in 3 of 18 KCs. Interestingly, the same experiment performed on cultured AL cells yielded a similar expression profile except for the supplementary presence of α_7 transcripts in all cells tested ($n = 26$; Fig. 6C). Added to our kinetic and pharmacological observations, these results suggest that both AL cells and KCs potentially express multiple homomorphic and/or heteromeric nACHR subtypes based on the unknown association of the subunits described here.

DISCUSSION

Here we show that adult honeybee KCs express functional ACh-gated cationic channels, supporting immunohistochemical reports (Bicker 1999; Thany et al. 2005) as well as electrophysiological studies on pupal honeybees (Goldberg et al. 1999; Wüstenberg and Grünewald 2004). Most of the recorded KCs responded to ACh and nAChR agonists with a fast inward current. Moreover, single-cell RT-PCR analysis coupled with patch clamp indicated that these fast-desensitizing ACh-induced currents potentially rely on the expression of three nACHR subunits, α_2, α_8, and β_1, which possibly associate to...
form homo- and/or heteromeric receptors. Interestingly, our results also point out that the expression patterns of nicotinic subunits in KCs differ from those of AL cells, where the supplementary expression of α7 takes place, which might explain the kinetic and pharmacological differences between the receptor populations.

Table 2. Summary of pharmacological properties

<table>
<thead>
<tr>
<th></th>
<th>ACh, μM</th>
<th>NIC, μM</th>
<th>IMI, nM</th>
<th>DHE, nM</th>
<th>α-BGT, nM</th>
<th>MLA, nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC50</td>
<td>35.8 ± 2.7</td>
<td>3.7 ± 1.1</td>
<td>211 ± 2.3</td>
<td>256 ± 1.4</td>
<td>101 ± 2.1</td>
<td>51.4 ± 5.2</td>
</tr>
<tr>
<td>IC50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak current, pA</td>
<td>-25.4 ± 2 (n = 52)</td>
<td>-32.7 ± 1.7 (n = 126)</td>
<td>15.4 ± 1.1 (n = 6)</td>
<td>-0.48</td>
<td>-1.093</td>
<td>-1.061</td>
</tr>
</tbody>
</table>

Values (means ± SE) are the result of a fit of the data illustrated in Figs. 2, 3, and 4 to the Hill function. Mean ± SE peak currents are given for the agonists acetylcholine (ACh, 1 mM), nicotine (NIC, 1 mM), and imidacloprid (IMI, 1 mM) at the concentration inducing the maximum current. EC50, concentration giving half the maximum normalized activation; IC50, concentration giving half the maximum normalized inhibition; nH, estimated Hill coefficient; DHE, dihydroxy-β-erythroidine; α-BGT, α-bungarotoxin; MLA, methyllycaconitine.

Comparison between nAChRs from AL cells and KCs: molecular implications. The pharmacology of the KC nAChRs is similar to those previously described in other insects (Thany et al. 2007). NIC was found to be a full agonist of KC nAChRs as in cockroach DUM neurons (Lapied et al. 1990) and unlike in honeybee AL cells (Barbara et al. 2008) and other insect preparations, where it acts as a partial agonist (Brown et al. 2006). In contrast, IMI only partially activated KC nAChRs, which is in good accordance with previous reports regarding insect nAChRs (Jepson et al. 2006). Both IMI and NIC displayed comparable EC50 values and were more potent than ACh, fitting the previously described properties of adult honeybee AL nAChRs (Barbara et al. 2008), even though IMI and ACh are 10 times more and 2 times less potent in KCs, respectively. ACh and NIC showed very similar nH values (nH_ACh = 0.59, nH_NIC = 0.54) and comparable efficacies, suggesting a similar mechanism of action for both agonists. These low nH values contrast with those of vertebrate nAChRs, which are usually between 1 and 2 (Papke and Porter Papke 2002). However, they are consistent with previously reported nH values of nAChRs in honeybee or other insect neuronal preparations, which range from 0.56 to 1.7 (Albert and Lingle 1993; Barbara et al. 2005, 2008; Déglise et al. 2002; Ihara et al. 2003; Schulz et al. 2000; Shimomura et al. 2005; Wüstenberg and Grünewald 2004), illustrating the diversity of insect nAChRs and the pharmacological distinction from their vertebrate counterparts. All nicotinic antagonists tested on KC nAChRs were effective as in other insect preparations (Cayre et al. 1999; Jepson et al. 2006; Lapied et al. 1990; Salgado and Saar 2004), and all of them shared similar inhibition efficiencies with IC50 values ranging within the 100 nM range (MLA, IC50 = 51.4 nM; α-BGT, IC50 = 101 nM; DHE, IC50 = 256 nM). Comparison of nH values revealed similarities between α-BGT and MLA (nH_α-BGT = -1.09, nH_MLA = -1.10) but also a clear dissimilarity with DHE (nH_DHE = -0.48), indicating that two different receptor subtypes might be involved in the currents recorded. Interestingly, although nAChRs from adult AL cells share sensitivity to similar antagonists (Barbara et al. 2008), MLA and DHE are 34-fold and 71-fold more potent on AL nAChRs than on KC nAChRs (α-BGT 3-fold less potent on AL nAChRs). Taken together, these results raise the hypothesis that adult AL cells and KCs might contain receptor subtypes displaying different subunit compositions. A similar hypothesis emerges from behavioral studies showing that diverse nAChRs are involved in olfactory learning and memory processes in the honeybee: injecting nicotinic antagonists into the brain impacts olfactory memory formation in different ways depending on the nature of the antagonist, disrupting either memory retrieval (heteromeric-selective antagonist

Fig. 3. Concentration-response curves of nAChR antagonists dihydroxy-β-erythroidine (DHE, ●), α-bungarotoxin (α-BGT, ●), and methyllycaconitine (MLA, ○). A: peak current amplitude induced by 1 mM NIC in the presence of each antagonist was normalized to the maximum elicited current [I_{max} (NIC 1 mM)]. Mean ± SE values are plotted (n = 4–8 per point). Smooth lines represent the best fit to the data. IC50 and Hill coefficient values were estimated according to the Hill equation. B: examples of the antagonist-induced inhibition at the respective concentrations (pulse duration 2 s, holding potential −110 mV).
mecamylamine, α4β2-selective antagonist DHE) or long-term memory formation (α7-selective antagonists α-BGT and MLA) (Gauthier et al. 2006; Lozano et al. 2001). Therefore, different nAChR subsets involved in memory processes appear to be expressed within the olfactory pathway of the honeybee, mimicking mammals, in which both homomeric α-BGT-sensitive α7 and heteromeric α-BGT-insensitive α4β2 receptors play a role in memory (Hogg et al. 2003).

When this question was tackled through the combined use of patch-clamp and single-cell RT-PCR, α2, α8, and β1 mRNA coexpression was detected in KCs (Fig. 6B). A similar pattern was found in AL cells except for the supplementary presence of α7 transcripts (Fig. 6C), potentially explaining the pharmacological differences between AL and KC nAChRs, although this might also rely on varying expression levels or alternative splicing of the same set of nicotinic subunits (Jones et al. 2006). Since a residual α7 expression was observed in 3 of 18 KCs, we cannot exclude that it might also enter the composition of nicotinic complexes in KCs. Considering that three main cell types are colocalized in the calyces of the MBs—outer compact, inner compact, and noncompact KCs, respectively (for review see Farris and Sinakevitch 2003)—we believe that this occasional α7 detection results from KC subtype-specific expression patterns of nicotinic subunits, as previously reported by Thany and collaborators (Thany et al. 2005). On the basis of in situ hybridization experiments, these authors reported that nicotinic subunits α2, α5, and α7 are differentially expressed depending the KC subtypes: α2 and α7 are both expressed in outer compact and inner noncompact KCs, whereas α5 is expressed in outer compact KCs only. Therefore, and since our cell culture protocol does not segregate inner compact KCs from noncompact KCs, we believe that the presence of α7 in 3 of 18 KCs mirrors the expression patterns of two different cell types. One can note that Thany and collaborators reported the supplementary expression of nicotinic subunit α5 in outer compact KCs, which we did not find through single-cell RT-PCR amplification. However, this is not surprising when considering that the KC culture protocol performed here consisted of collecting only the MB calyces, which do not contain the somas of outer compact KCs (Farris and Sinakevitch 2003; Strausfeld 2002). Thus our results unravel the nicotinic subunit expression patterns of either inner compact and/or noncompact KCs of the MB calyces.

Yet the precise stoichiometry of honeybee nAChRs cannot be defined and will require further investigations, although we may hypothesize the presence of α7 homomeric complexes according to pharmacological and molecular homology with vertebrates. However, the molecular composition of honeybee nAChRs might be considerably different from their vertebrate counterparts. Indeed, if Amelα7 shares 40% identity with the vertebrate α7 subunit, Amelα2, Amelα8, and Amelβ1 lack clear vertebrate homologs (Jones et al. 2006). Nevertheless, their Drosophila counterparts Doα2 and Dβ1 were described as potentially α-BGT interacting by affinity chromatography (Chamaon et al. 2002), indicating that insect α-BGT-sensitive receptors might be either homomeric and/or heteromeric depending whether they rely on α7 alone or in combination with additional α or β subunits (Thany et al. 2007), here α2 and/or β1. Both KC and AL cells might therefore express homo- and heteromeric nAChRs, supporting the hypothesis that different nAChR subsets can coexist within a same cell type as suggested in AL cells (Barbara et al. 2008; Nauen et al. 2001).

Comparison with pupal AL cell and KC nAChRs: developmental implications. The pharmacological profile of adult KC nAChRs is also similar to those of pupal AL cell and KC nAChRs previously described, which share sensitivities to the agonists α-BGT and MLA (Gauthier et al. 2006; Lozano et al. 2001). Therefore, different nAChR subsets involved in memory processes appear to be expressed within the olfactory pathway of the honeybee, mimicking mammals, in which both homomeric α-BGT-sensitive α7 and heteromeric α-BGT-insensitive α4β2 receptors play a role in memory (Hogg et al. 2003).
ACh, NIC, and IMI and to the antagonists DHE, MLA, and α-BGT (Barbara et al. 2005; Goldberg et al. 1999; Wüstenberg and Grünewald 2004). However, several differences between pupal and adult nAChRs can be pointed out, particularly when considering KCs. Adult KC ACh-elicited current mean peak amplitudes are much smaller than those previously recorded in pupal KCs (25.4 pA compared with 188 pA, respectively) and show a fivefold weaker affinity for ACh, as well as a fourfold weaker affinity for NIC, which is a full agonist in adult KCs but a partial agonist in pupal KCs (Wüstenberg and Grünewald 2004). Moreover, the antagonists DHE and MLA are strikingly more effective on pupal KC nAChRs than on their adult counterparts (10^6-fold and 10^3-fold, respectively). The pupal and adult KC nAChRs differ also in their permeability to calcium (Goldberg et al. 1999). Together, these results raise the question of whether some changes in subunit expression occur during development that explain the differences observed between receptors of the same cell type at distinct time points. Preliminary single-cell RT-PCR experiments performed on pupal KCs show varying expression profiles of nicotinic subunits comprising α2 alone or, less frequently, combined with α8 and/or β1 (J. P. Dupuis, unpublished observation), which is in good accordance with previous reports indicating that pupal KCs and AL cells show versatile expression patterns (Thany et al. 2005). Similar versatile expression patterns are observed in single-cell RT-PCR experiments performed on pupal AL cells, with the occasional supplementary expression of nicotinic subunits α7 and/or α3 (J. P. Dupuis, unpublished observation). Compared with the stable expression patterns observed in adult AL cells and KCs, these preliminary observations suggest that the expression profiles of nicotinic subunits might change considerably during development before reaching a stable state in adults.

Kinetic properties of nAChRs from adult honeybee AL cells and KCs: functional implications. Surprisingly, the ACh-induced currents recorded in KCs and AL cells appear to be strikingly different from a kinetic point of view. Whereas the majority type I AL nAChRs—which represent 90% of AL ACh-induced currents—are slow desensitizing (τ = 539 ms), KC nAChRs are fast desensitizing (τ = 50 ms) and resemble the minority type II ACh-induced currents observed in AL cells (τ = 32 ms) (Barbara et al. 2008). This result once again suggests structural and functional differences between nAChRs from KCs and AL cells, although changing regulatory mechanisms could also be involved. This hypothesis is reinforced by the observation that AL cells and KCs share similar subunit expression patterns except for the supplementary presence of α7 in AL cells, which could be responsible for these contrasted kinetic properties. Moreover, this dissimilarity between AL cell and KC nAChRs might also underlie functional implications and mirror successive levels of olfactory information processing. As in vertebrates, the olfac-

Fig. 5. Desensitization kinetics of AL cell and KC nAChRs. KC (A) and AL cell type I and type II (B) ACh-induced current desensitization was assessed through sustained application of 1 mM ACh (pulse duration 20 s, holding potential −110 mV), yielding time constant (τ = 50.2 ± 4.6 ms (n = 13), τ = 539 ± 81 ms (n = 45), and τ = 32 ± 6 ms (n = 16), respectively (Barbara et al. 2008).

Fig. 6. Single-cell RT-PCR evidence for the expression of multiple nicotinic subunit mRNAs in mushroom bodies KCs and AL cells. Agarose gel analyses of representative entire honeybee brain (A), KC (B), and AL cell (C) are shown. KCs prove to be positive only for α2, α8, and β1 (n = 18), while AL cells are positive for α2, α7, α8, and β1 (n = 26) and the entire brain expresses all nicotinic subunit mRNAs present in the honeybee genome (α1–α9, β1, and β2). Actin (Act) was used as a positive control.
tory pathway of insects involves two main synapses separating the sensory periphery area and the higher-order brain centers, respectively located in the AL and the MBs or the lateral horn (Masse et al. 2009). Once spatiotemporally processed and synchronized in the AL, the odor-evoked stimulus is sent through PNs to the lateral horn and ultimately the KCs (Laurent et al. 1996; Müller et al. 2002). Interestingly, even though an important amount of olfactory information is sent through PNs, KCs remain weakly active, suggesting the existence of an important filter at the MB level requiring both proper signal timing between oscillatory activating inputs from PNs and inhibitory inputs from the lateral horn combined with specific intrinsic membrane properties of KCs (Grünewald 1999; Liu et al. 2007; Liu and Davis 2009; Perez-Orive et al. 2002). Our findings suggest that the fast-desensitizing properties of KC nAChRs could constitute one of the components of this complex synaptic integration at the KC level.

Further experiments using RNA silencing strategies will be required to unravel the precise contributions of each nicotinic subunit to AL and KC nAChRs and define the respective roles of each receptor subtype in olfactory processing. Together, our data provide the first picture of the molecular properties of nicotinic receptors in the honeybee olfactory neuropiles. They demonstrate that both molecular and electrophysiological features of nicotinic receptors differ in the AL and the MBs, where they could play successive roles in olfactory coding.

ACKNOWLEDGMENTS

We thank Dr. Marc Moreau and Dr. Catherine Leclerc for technical support. Present address of J. P. Dupuis: CNRS UMR 5293, Institut des Maladies Neurodégénératives, Université Victor Segalen Bordeaux 2, Bât. 2A, 2ème étage, Case 22, 146 rue Léo Saignat, 33076 Bordeaux, France.

GRANTS

This work is part of the Apigene project supported by The University Paul Sabatier (Toulouse, France). J. P. Dupuis is the recipient of a postdoctoral grant from the Centre National de la Recherche Scientifique (CNRS).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

REFERENCES

