mannose-3-phosphate receptors; protein kinase A

NOREPINEPHRINE (NE) is released throughout the brain in a diffuse manner and supports arousal and learning in novel and emotionally charged situations (Berman and Dudai 2001; Caflisch and Visscher 2003). NE acts on the \(\beta_1 \) adrenergic receptor (AR) and the \(\beta_2 \)AR to stimulate the trimeric protein Gs, adenylyl cyclase, and, via cAMP, ultimately PKA.

\(\beta_2 \)-Adrenergic receptor supports prolonged theta tetanus-induced LTP

Hai Qian, Lucas Matt, Mingxu Zhang, Minh Nguyen, Tommaso Patriarchi, Olha M. Koval, Mark E. Anderson, Kaiwen He, Hey-Kyoung Lee, and Johannes W. Hell

Departments of 1Pharmacology and 3Internal Medicine, University of Iowa, Iowa City, Iowa; 2Department of Pharmacology, University of California, Davis, California; and 4Department of Biology, University of Maryland, College Park, Maryland

Submitted 25 April 2011; accepted in final form 8 February 2012

\(\beta_2 \)-Adrenergic receptor supports prolonged theta tetanus-induced LTP. J Neurophysiol 107: 2703–2712, 2012. First published February 15, 2012; doi:10.1152/jn.00374.2011.—The widespread noradrenergic innervation in the brain promotes arousal and learning by molecular mechanisms that remain largely undefined. Recent work shows that the \(\beta_2 \)-adrenergic receptor (\(\beta_2 \)AR) is linked to the AMPA-type glutamate receptor subunit GluA1 via stargazin and PSD-95 (Joiner ML, Lise MF, Yuen EY, Kam AM, Zhang M, Hall DD, Malik ZA, Qian H, Chen Y, Ulrich JD, Burette AC, Weinberg RJ, Law PY, El-Husseini A, Yan Z, Hell JW. EMBO J 29: 482–495, 2010). We now demonstrate that the \(\beta_2 \)AR plays a prominent role in long-term potentiation (LTP) induced by a train of 900 stimuli at 5 Hz (prolonged theta-tetanus-LTP, or PTT-LTP) in the hippocampal CA1 region in mice, which requires simultaneous \(\beta_2 \)-adrenergic stimulation. Although PTT-LTP was impaired in hippocampal slices from \(\beta_2 \)ARKO mice, only \(\beta_2 \)-AR-selective stimulation with salbutamol supported this PTT-LTP in wild-type (WT) slices, whereas \(\beta_2 \)-AR-selective stimulation with dobutamine (+ propranolol) did not. Furthermore, only the \(\beta_2 \)-AR-selective antagonist CGP-20712 inhibited PTT-LTP and phosphorylation of GluA1 on its PKA site S845 in WT slices. Our analysis of S845K knockin (KI) mice indicates that this phosphorylation is relevant for PTT-LTP. These results identify the \(\beta_2 \)-AR-S845 signaling pathway as a prominent regulator of synaptic plasticity.

The \(\beta_2 \)AR is enriched in dendritic spines and associated with the AMPA receptor (AMPA) subunit GluA1 and the L-type \(\mathrm{Ca}^{2+} \) channel Ca\(_{1.2}\) (Davare et al. 2001; Joiner et al. 2010; Wang et al. 2010). These signaling complexes also contain Gs, AC, PKA, and the counterbalancing phosphatases PP2A and calcineurin/PP2B (Colledge et al. 2000; Davare et al. 1999, 2000, 2001; Hall et al. 2006, 2007; Joiner et al. 2010; Oliveria et al. 2007; Tavalin et al. 2002; Wang et al. 2010). The \(\beta_2 \)AR is not detectable in the Ca\(_{1.2}\) complexes immunosolubilized from heart and brain (Baltimore et al. 2006) (see Fig. 8K). The \(\beta_2 \)AR could thus be selectively linked to the regulation of GluA1 and Ca\(_{1.2}\) in PTT-LTP.

PKA phosphorylates GluA1 on S845, which is crucial for activity-driven postsynaptic accumulation of GluA1 (Esteban et al. 2003) and increased surface expression of GluA1 (Ehlers et al. 2000; Joiner et al. 2010; Man et al. 2007; Oh et al. 2006; Sun et al. 2005; Swayne et al. 2004). This phosphorylation is also important for various forms of synaptic plasticity (He et al. 2009; Lee et al. 2003, 2010; Seol et al. 2007), including \(\beta_2 \)AR-dependent and spike timing-dependent potentiation in the visual cortex (Seol et al. 2007) and potentially also PTT-LTP in CA1 (Hu et al. 2007a). For these reasons we tested whether the \(\beta_2 \)AR is important for PTT-LTP. We present several lines of evidence that demonstrate that PTT-LTP depends on the \(\beta_2 \)AR and phosphorylation of GluA1 on S845, whereas acute signaling by the \(\beta_1 \)AR is largely dispensable.

MATERIALS AND METHODS

Reagents and antibodies. (–)-Isoproterenol bitartrate salt, ICI-118551, and CGP-20712 were from Sigma. One batch of ICI-118551 was from Tocris. The phospho-specific antibody against S845 was raised in rabbits against the synthetic peptide TLPRN(pS)GAGASK (GluA1 residues 840–850; pS = phosphoserine) (see Lu et al. 2007 and also Mannen et al. 1997) and the anti-GluA1 antibody against the peptide MSHSSGMLGATGL (GluA1 residues 876–889 at the very COOH terminus). The peptides had been attached to bovine serum albumin for immunization, as described earlier (Davare et al. 1999). Horseradish peroxidase (HRP)-coupled protein A was from Bio-Rad. The antibodies against the \(\beta_2 \)AR (H-20, lot J0305; Santa Cruz) and GluA1 COOH terminus are described by Joiner et al. (2010), against the \(\alpha_1 \)-subunit of the L-type \(\mathrm{Ca}^{2+} \) channel Ca\(_{1.2}\) (anti-CNC1) by Davare et al. (1999), and against the NMDA receptor makes it fundamentally different from the more standard LTP induced by tetani of 50–100 Hz or theta-burst stimulations (TBS), which do not strictly require PKA. However, it is unclear whether PTT-LTP is mediated by the \(\beta_2 \)AR, the \(\beta_2 \)AR, or both. This question is important because the \(\beta_2 \)AR and the \(\beta_2 \)AR might participate in different signaling complexes and pathways or regulate common pathways with variant potency or efficacy.

The \(\beta_2 \)AR is enriched in dendritic spines and associated with the AMPA receptor (AMPA) subunit GluA1 and the L-type \(\mathrm{Ca}^{2+} \) channel Ca\(_{1.2}\) (Davare et al. 2001; Joiner et al. 2010; Wang et al. 2010). These signaling complexes also contain Gs, AC, PKA, and the counterbalancing phosphatases PP2A and calcineurin/PP2B (Colledge et al. 2000; Davare et al. 1999, 2000, 2001; Hall et al. 2006, 2007; Joiner et al. 2010; Oliveria et al. 2007; Tavalin et al. 2002; Wang et al. 2010). The \(\beta_2 \)AR is not detectable in the Ca\(_{1.2}\) complexes immunosolubilized from heart and brain (Baltimore et al. 2006) (see Fig. 8K). The \(\beta_2 \)AR could thus be selectively linked to the regulation of GluA1 and Ca\(_{1.2}\) in PTT-LTP.

PKA phosphorylates GluA1 on S845, which is crucial for activity-driven postsynaptic accumulation of GluA1 (Esteban et al. 2003) and increased surface expression of GluA1 (Ehlers et al. 2000; Joiner et al. 2010; Man et al. 2007; Oh et al. 2006; Sun et al. 2005; Swayne et al. 2004). This phosphorylation is also important for various forms of synaptic plasticity (He et al. 2009; Lee et al. 2003, 2010; Seol et al. 2007), including \(\beta_2 \)AR-dependent and spike timing-dependent potentiation in the visual cortex (Seol et al. 2007) and potentially also PTT-LTP in CA1 (Hu et al. 2007a). For these reasons we tested whether the \(\beta_2 \)AR is important for PTT-LTP. We present several lines of evidence that demonstrate that PTT-LTP depends on the \(\beta_2 \)AR and phosphorylation of GluA1 on S845, whereas acute signaling by the \(\beta_1 \)AR is largely dispensable.
et al. 2010; Seol et al. 2007). 3 months of age, and were put into cold-acclimated 15°C. The mice were decapitated, and brains were put into ice-cold artificial cerebrospinal fluid (ACSF). ACSF consisted of (in mM) 127 NaCl, 26 NaHCO₃, 2 KH₂PO₄, 1.9 KCl, 2.2 CaCl₂, 1 MgSO₄, and 10 n-glucose and was oxygenated with 95% O₂-5% CO₂ (final pH 7.3). About one-third of each brain was trimmed off at the rostral and caudal ends before 350-µm-thick slices were cut with a vibrotome (Leica VT 1000A). Slices were maintained in oxygenated ACSF for 1 h at 30°C and then either used for biochemical experiments or kept for 1–5 h at 24°C before being used for electrophysiological analysis.

For biochemical experiments, slices were treated with vehicle, isoproterenol (Iso; 1 µM), ICI-118551 (40–200 nM), and CGP-20712 (500 nM) for 15 min. They were extracted with 1% Triton X-100 in (in mM) 150 NaCl, 10 EDTA, 10 EGTA, 10 Tris·HCl, pH 7.4, containing the protease inhibitors leupeptin (10 µg/ml), aprotinin (10 µg/ml), pepstatin A (1 µM), and phenylmethylsulfonyl fluoride (PMSF, 200 µM) and the phosphatase inhibitor microcystin-LR (2 µM). After ultracentrifugation (30 min, ~250,000 × g) GluA1 was immunoprecipitated, followed by immunoblotting with phospho-specific antibodies against S831 and reprobing with anti-phospho-S845 and ultimately anti-GluA1 for total GluA1 levels (Leonard and Hell 1997; Leonard et al. 1999). To determine levels of various synaptic proteins in β₂AR and β₂AR KO versus wild-type (WT) mice, the brains were directly extracted with SDS sample buffer. Several exposures of increasing length were made to ascertain that signals were in the linear range (Davare and Hell 2003; Hall et al. 2006). Density values of film signals were corrected for any variation loaded and normalized to control treatment.

Field excitatory postsynaptic potential recording. Brain slices were transferred to the recording chamber and perfused (2 ml/min) at 30°C with ACSF saturated with 95% O₂-5% CO₂ (final pH 7.3). Field excitatory postsynaptic potentials (fEPSPs) in the hippocampal CA1 region were evoked every 1 s by stimulating the Schaffer collateral (NMDAR) subunits GluN1, 2A, and 2B by Leonard and Hell (1997). The polyclonal rabbit antibody against β₂AR (V-19, lot K1209) and the monoclonal mouse antibody against tubulin (32293) were from Santa Cruz. The polyclonal rabbit antibody against synapsin was from Synaptic Systems (106002). The monoclonal mouse antibodies against Shank (N23B/49) and PSD-95 (K28/43) were from NeuroMAB. ECL and ECL plus reagents were from Amersham. Other reagents were from common commercial suppliers and of standard quality.

Animals. All animal procedures followed National Institutes of Health guidelines and had been approved by the Institutional Animal Care and Use Committees at the University of Iowa, UC Davis, and University of Maryland. Adult New Zealand White rabbits originated from Harlan and C57BL/6 mice from Taconic Farms. The S845A mutant was prepared by site-directed mutagenesis of the cDNA (NMDAR) subunits GluN1, 2A, and 2B by Leonard and Hell (1997). The polyclonal rabbit antibody against Shank (N23B/49) and PSD-95 (K28/43) were from NeuroMAB. ECL and ECL plus reagents were from Amersham. Other reagents were from common commercial suppliers and of standard quality.

Animals. All animal procedures followed National Institutes of Health guidelines and had been approved by the Institutional Animal Care and Use Committees at the University of Iowa, UC Davis, and University of Maryland. Adult New Zealand White rabbits originated from Harlan and C57BL/6 mice from Taconic Farms. The S845A mutant was prepared by site-directed mutagenesis of the cDNA (NMDAR) subunits GluN1, 2A, and 2B by Leonard and Hell (1997). The polyclonal rabbit antibody against Shank (N23B/49) and PSD-95 (K28/43) were from NeuroMAB. ECL and ECL plus reagents were from Amersham. Other reagents were from common commercial suppliers and of standard quality.

Animals. All animal procedures followed National Institutes of Health guidelines and had been approved by the Institutional Animal Care and Use Committees at the University of Iowa, UC Davis, and University of Maryland. Adult New Zealand White rabbits originated from Harlan and C57BL/6 mice from Taconic Farms. The S845A mutant was prepared by site-directed mutagenesis of the cDNA (NMDAR) subunits GluN1, 2A, and 2B by Leonard and Hell (1997). The polyclonal rabbit antibody against Shank (N23B/49) and PSD-95 (K28/43) were from NeuroMAB. ECL and ECL plus reagents were from Amersham. Other reagents were from common commercial suppliers and of standard quality.

Animals. All animal procedures followed National Institutes of Health guidelines and had been approved by the Institutional Animal Care and Use Committees at the University of Iowa, UC Davis, and University of Maryland. Adult New Zealand White rabbits originated from Harlan and C57BL/6 mice from Taconic Farms. The S845A mutant was prepared by site-directed mutagenesis of the cDNA (NMDAR) subunits GluN1, 2A, and 2B by Leonard and Hell (1997). The polyclonal rabbit antibody against Shank (N23B/49) and PSD-95 (K28/43) were from NeuroMAB. ECL and ECL plus reagents were from Amersham. Other reagents were from common commercial suppliers and of standard quality.

Animals. All animal procedures followed National Institutes of Health guidelines and had been approved by the Institutional Animal Care and Use Committees at the University of Iowa, UC Davis, and University of Maryland. Adult New Zealand White rabbits originated from Harlan and C57BL/6 mice from Taconic Farms. The S845A mutant was prepared by site-directed mutagenesis of the cDNA (NMDAR) subunits GluN1, 2A, and 2B by Leonard and Hell (1997). The polyclonal rabbit antibody against Shank (N23B/49) and PSD-95 (K28/43) were from NeuroMAB. ECL and ECL plus reagents were from Amersham. Other reagents were from common commercial suppliers and of standard quality.

Animals. All animal procedures followed National Institutes of Health guidelines and had been approved by the Institutional Animal Care and Use Committees at the University of Iowa, UC Davis, and University of Maryland. Adult New Zealand White rabbits originated from Harlan and C57BL/6 mice from Taconic Farms. The S845A mutant was prepared by site-directed mutagenesis of the cDNA (NMDAR) subunits GluN1, 2A, and 2B by Leonard and Hell (1997). The polyclonal rabbit antibody against Shank (N23B/49) and PSD-95 (K28/43) were from NeuroMAB. ECL and ECL plus reagents were from Amersham. Other reagents were from common commercial suppliers and of standard quality.

Animals. All animal procedures followed National Institutes of Health guidelines and had been approved by the Institutional Animal Care and Use Committees at the University of Iowa, UC Davis, and University of Maryland. Adult New Zealand White rabbits originated from Harlan and C57BL/6 mice from Taconic Farms. The S845A mutant was prepared by site-directed mutagenesis of the cDNA (NMDAR) subunits GluN1, 2A, and 2B by Leonard and Hell (1997). The polyclonal rabbit antibody against Shank (N23B/49) and PSD-95 (K28/43) were from NeuroMAB. ECL and ECL plus reagents were from Amersham. Other reagents were from common commercial suppliers and of standard quality.
pathway with a bipolar tungsten electrode and recorded with a glass electrode filled with ACSF. Signals were amplified with an Axopatch 2B amplifier, digitized with a Digidata 1320A, and recorded with Clampex 9 (Molecular Devices). The test stimulus strength was set to result in 50% of maximal response. PTT-LTP was induced by a train of pulses of a frequency of 5 Hz lasting 3 min. The baseline was determined by the average of fEPSP initial slopes from the 5-min period immediately before the tetanus. The level of LTP was determined by the average of fEPSP initial slopes from the 5-min period immediately before the tetanus.

For electrophysiological experiments with S845A KI mice and their litter-matched controls, we used dissection buffer (composition in mM: 212.7 sucrose, 2.6 KCl, 1.23 NaHPO₄, 26 NaHCO₃, 10 dextrose, 3 MgCl₂, and 1 CaCl₂, saturated with 5% CO₂-95% O₂) for slicing and ACSF (in mM: 124 NaCl, 5 KCl, 1.25 NaHPO₄, 26 NaHCO₃, 10 dextrose, 1.5 MgCl₂, and 2.5 CaCl₂, saturated with 5% CO₂-95% O₂) for recording of fEPSPs.

Ventricular myocyte isolation. Adult male New Zealand White rabbits (1.5–2 kg) were anesthetized with pentobarbital sodium (50 mg/kg) and enzymatically digested with a mixture of collagenase (type 2, Worthington, 250 U/ml), hyaluronidase (Sigma, 0.01%), and protease type XIV (Sigma, 0.0025%) in a modified Tyrode solution (0.1 mM CaCl₂, 10 mM 2,3-butanedione monoxime). Dissociated cardiomyocytes were washed three times in Joklik MEM (Sigma) with 1% Pen/Strep and 1× insulin-transferrin-selenium (ITS) (Sigma) with increasing Ca²⁺ concentration (0.25 mM, 0.5 mM, 0.75 mM). Ventricular myocytes were plated on glass coverslips (glass no. 1) coated with Geltrex (Invitrogen, thin layer) and allowed to attach for 1 h. Cells were washed with a culture medium consisting of a 50:50 mix of DMEM and F-10 medium with 1% ITS. Attached cardiomyocytes were counted, and the cell density was calculated.

Whole cell patch-clamp recording from ventricular myocytes. Recording electrodes were fabricated from borosilicate glass with tip diameters of 2–3 μm and resistance of 2–4 MΩ. Electrode pipettes were filled with recording solution (in mM: 150 Cs-MeSO₃, 5 CsCl, and 2.5 CaCl₂, 10 MgCl₂, 1 MgATP, pH 7.4 adjusted with CsOH). Heart cells were perfused with normal Tyrode solution (in mM: 138 NaCl, 4 KCl, 2 CaCl₂, 1 MgCl₂, 0.33 NaH₂PO₄, 10 HEPES, 10 glucose, pH 7.4 adjusted with NaOH) at 35°C. After successful break-in, the perfusing medium was switched to an external recording solution (in mM: 137 N-methyl-D-glucamine aspartate, 10 glucose, 10

β₂AR IN PROLONGED THETA-TETANUS-LTP

Fig. 3. β₂-adrenergic receptor (β₂AR)- but not β₁AR-selective stimulation facilitates induction of PTT-LTP. A and B: time courses of fEPSPs before and after the tetanus in the presence of salbutamol (Sal; A) or dobutamine + prazosin (B). Shown are averages of initial slopes of fEPSPs starting after 10 min of onset of perfusion with drugs. Inset: example of fEPSPs before (dashed line) and after (solid line) PTT-LTP induction. Graphed are averages of 10 consecutive fEPSPs recorded at the indicated times. C: summary graphs of PTT-LTP data. The baseline is the average of fEPSP initial slopes from each individual experiment during the 5 min immediately preceding the tetanus and equaled 100%. The potentiation (average of all fEPSP initial slopes between 15 and 45 min after tetanus minus baseline) induced by the tetanus was 24 ± 9% above baseline for Sal. With Sal, the PTT-LTP level was significantly different from baseline (**P < 0.01; 1-way ANOVA, followed by Dunnett’s post hoc test for multiple comparisons) but not from interleaved potentiations with Iso present (32 ± 6% increase; from Fig. 1). No potentiation was detectable after perfusion with 2 μM dobutamine (Dob) and 1 μM prazosin (Praz) (100 ± 3%). Dob: dobutamine effectively activates βAR signaling. L-type Ca²⁺ channel-mediated Ca²⁺ currents (Iᵥ) were recorded from rabbit cardiomyocytes during depolarizing steps from a holding potential of −80 mV to the indicated potentials. Illustrated are current-voltage (I-V) plots (top) and summary data of peak currents as measured upon depolarization to −10 mV (bottom). The average Ca²⁺ current was 4.79 ± 0.61 pA/pF (mean ± SE; n = 4) in the control group, 7.71 ± 0.52 pA/pF (n = 4) with dobutamine (2 μM), 4.31 ± 0.37 pA/pF (n = 4) with prazosin (1 μM), and 6.93 ± 0.42 pA/pF (n = 4) with dobutamine + prazosin. Stimulation with dobutamine was significant with and without prazosin (1-way ANOVA test, Tukey posttest, *P < 0.05, **P < 0.01).

J Neurophysiol • doi:10.1152/jn.00374.2011 • www.jn.org
HEPES, 1.8 CaCl₂, 0.5 MgCl₂, and 25 CsCl, pH 7.4 adjusted with N-methyl-d-glucamine aspartate). Whole cell Ca²⁺ currents were recorded with an Axon 200B patch-clamp amplifier (CV-203BU head stage) and digitized with a Digidata 1320A. Experimental control, data acquisition, and data analysis were accomplished with pCLAMP 8.0 (Axon Instruments). Recordings were only obtained from Ca²⁺-tolerant, rod-shaped ventricular cells. Data traces were acquired at a repetition interval of 2 s from -70 to +60 mV at -80 mV holding potential.

Statistical analysis. Raw data were analyzed with Clampfit 9 software (Molecular Devices). Statistical analysis was performed with Prism 5 (GraphPad software, San Diego, CA). Results are presented as means ± SE. Statistical significance was determined by t-test or one-way ANOVA (P < 0.05).

RESULTS

Postsynaptic expression of PTT-LTP. To induce PTT-LTP, we applied 3-min-long Ơ-rythm stimulations (5 Hz) to the Schaffer collateral pathway and recorded eEPSPs in CA1 stratum radiatum in slices from WT mice in the presence and absence of the β-adrenergic agonist Iso. Summary data show that PTT-LTP was reliably (10 of 10 slices) induced in the presence but not the absence of Iso (Fig. 1). Although this dependence of PTT-LTP on β-adrenergic stimulation is well established (Gelinas and Nguyen 2005; Hu et al. 2007a; Katsumi et al. 1997; Thomas et al. 1996) and postsynaptic complex spike bursting is critical for PTT-LTP (Thomas et al. 1998), whether its expression is actually postsynaptic has not been tested by paired-pulse facilitation (PPF). We analyzed PPF in several slice recordings after the 5-Hz, 180-s tetanus had been administered with and without Iso. There was no significant difference between these two conditions, with interpulse intervals reaching from 10 to 200 ms (Fig. 2). These results indicate that expression of PTT-LTP is likely not due to presynaptic but rather postsynaptic changes.

PTT-LTP is supported by selective β₂AR but not β₁AR stimulation. Salbutamol (Sal; also known as albuterol) is a selective β₂AR agonist (Hoffmann et al. 2004). To test whether activation of the β₂AR is sufficient for PTT-LTP, slices were pretreated with Sal before the induction of PTT-LTP. The

![Fig. 4](image-url)
resulting PTT-LTP was comparable to PTT-LTP induced in the presence of Iso (Fig. 3, A and C). To test whether selective β2AR stimulation would also promote PTT-LTP, slices were pretreated with a combination of dobutamine and prazosin. Dobutamine activates the β1AR and the α1AR but not the β2AR or any dopaminergic receptors. Coapplication of the highly selective α1AR antagonist prazosin allows for selective β1AR stimulation. Perfusion of slices with a combination of these two drugs did not support induction of PTT-LTP (Fig. 3, B and C). To ensure that these drugs worked in our hands, we tested their effects on Iso-induced upregulation of Ca2+ currents through L-type Ca2+ channels in cardiomyocytes, which is mediated by the β1AR and to a lesser degree by the β2AR (see, e.g., Balijepalli et al. 2006). Indeed, the same batch of dobutamine significantly increased Ca2+ currents through L-type Ca2+ channels in rabbit cardiomyocytes (Fig. 3D), thus proving its activity. These results indicate that activation of the β2AR but not the β1AR is sufficient for induction of PTT-LTP.

PTT-LTP is blocked by β2AR antagonist ICI-118551 but not β1AR antagonist CGP-20712. To further test the role of β2AR versus β1AR in PTT-LTP pharmacologically, CGP-20712 or ICI-118551 was coapplied with Iso before the 5-Hz/3-min tetani (Fig. 4). CGP-20712 is a highly selective β2AR antagonist and ICI-118551 a highly selective β1AR antagonist (Hoffmann et al. 2004). We initially used 500 nM CGP-20712 in three slices, without any obvious effect on the magnitude of the PTT-LTP (Fig. 4, A and C). As expected, 500 nM CGP-20712 using the same stock solution reduced the Iso-induced upregulation of L-type currents in cardiomyocytes by ~65%, with the remaining upregulation being due to β2AR signaling (Fig. 4D). To further ascertain the lack of impact of β1AR blockage on PTT-LTP, we increased the CGP-20712 concentration to 1 μM in subsequent experiments, again without observing any significant inhibition (Fig. 4, A and C).

On the other hand, initial experiments with 200 nM ICI-118551 resulted in a complete block of PTT-LTP. To minimize any potential effect on β1AR, we then reduced its concentration to 40 nM in subsequent tests, which also blocked the induction of PTT-LTP (Fig. 4, B and C). These results indicate that signaling by the β2AR but not the β1AR is required for PTT-LTP and support a central role of the β2AR in this form of LTP under our conditions in our C57BL/6 mice.

PTT-LTP is impaired in GluA1 S845A KI mice. PTT-LTP induced by a 90-s/10-Hz train in the presence of NE, which is comparable to our 180-s/5-Hz Iso protocol, was absent in hippocampal slices from KI mice in which S831 and S845 had been replaced by alanine residues (Hu et al. 2007a). However, it is unclear from this study whether S831, S845, or both are required for PTT-LTP, with S831 being a prominent phosphorylation site for CaMKII and PKC (Mammen et al. 1997; Roche et al. 1996; Tavalin 2008). We used single-site S845A KI mice to evaluate whether PTT-LTP depends on S845. PTT-LTP was reduced by >60% in hippocampal slices from homozygous S845A mice compared with PTT-LTP in littermate control slices (Fig. 5, A and C). Although there appeared to be a small potentiation by the 180-s/5-Hz tetanus in the KI mice, the
difference between before versus after the tetanus is statistically not significant. There was no detectable potentiation at all by the tetanus in slices from either WT or S845A KI mice in the absence of Iso (Fig. 5B). However, the modest potentiation observed in the KI mice after the tetanus is statistically not significantly different from the complete lack of potentiation in the KI mice observed upon application of Iso alone, without the tetanus. Thus it appears that S845 phosphorylation is absolutely critical for PTT-LTP. However, a lack of statistical significance in the preceding comparisons does not absolutely exclude that there is no difference and thereby no potentiation in S845A KI mice. Given the tendency to an increase in fEPSP slope after the tetanus with Iso present in S845A mice, even if it does not reach statistical significance, we cannot rule out that a small portion of PTT-LTP is present in S845A KI mice and does not require S845 phosphorylation, with phosphorylation of S831 potentially being able to partially compensate.

Iso-induced S845 phosphorylation mainly depends on β2AR. As S845 phosphorylation is important for a substantial portion of PTT-LTP (Fig. 5), we further scrutinized a potential role of the β2AR and also the β1AR in β-adrenergic regulation of GluA1 in the forebrain and perhaps PTT-LTP by evaluating the sensitivity of Iso-triggered S845 phosphorylation to ICI-118551 and CGP-20712. Acute forebrain slices were treated with and without Iso and ICI-118551. ICI-118551 inhibited Iso-induced phosphorylation of GluA1 on S845 in S845A mice in acute forebrain slices (Fig. 6A). In analogous experiments CGP-20712 showed no effect on Iso-induced phosphorylation of S845 (Fig. 6A). This lack of effect was not due to problems with the potency of CGP-20712 (see Fig. 4D). To test whether unknown side effects of Iso on targets other than βARs could account for a lack of CGP-20712 on S845 phosphorylation, ICI-118551 was coapplied with CGP-20712, which largely blocked Iso-induced phosphorylation (Fig. 6A). The incomplete block of Iso-induced phosphorylation of S845 with ICI-118551 from Sigma in Fig. 6A contrasts the effect of the apparently more effective ICI-118551 from Tocris in Fig. 6B, which not only completely blocked the Iso-induced phosphorylation but also reduced S845 phosphorylation below baseline levels, reflecting that a portion of the basal phosphorylation is due to basal β2AR activity. To test whether selective β2AR stimulation could possibly induce S845 phosphorylation without being really necessary, slices were incubated with dobutamine plus prazosin, which did not augment S845 phosphorylation (Fig. 6C). These results indicate that signaling by the β2AR but not the β1AR effectively enhances S845 phosphorylation under our conditions in our C57BL/6 mice.

PTT-LTP and PPF are impaired in β2AR and β2AR KO mice. Finally, we used β1AR and β2AR KO mice to evaluate the effect of complete elimination of either βAR on PTT-LTP and on the phosphorylation of GluA1 on S845 by PKA. The 3-min/5-Hz tetanus in the presence of Iso did not significantly potentiate fEPSPs in slices from β1AR or β2AR KO mice (Fig. 7, A–C). However, these results do not establish an acute requirement of either AR during the induction of PTT-LTP, as KO of either AR could lead to developmental changes in molecular mechanisms that regulate synaptic functions. In fact, synaptic transmission at Schaffer collateral-CAl synapses showed a reduction in PPFs in both KO mice (Fig. 7D). These results indicate alterations in presynaptic glutamate release or postsynaptic AMPAR properties such as desensitization in both KO mice versus WT mice. Input-output analysis of fEPSPs with increasingly stronger stimulus strengths and thereby presynaptic activation as quantified by the presynaptic fiber volley did not reveal significant differences that would suggest alterations in postsynaptic responses (Fig. 7E). Thus the decrease in PPF in both KO mice indicates alterations in presynaptic functions.

Alterations in synaptic protein content and in Iso-induced phosphorylation of S845 in β2AR and β2AR KO mice. To characterize β1AR and β2AR KO mice on a molecular level, we quantified total protein content for the AMPAR subunit GluA1, the NMDAR subunits GluN1, 2A, and 2B, the structural postsynaptic proteins PSD-95 and Shank, and the presynaptic protein synaptophysin (Fig. 8, A–I). Most of these proteins showed normal amounts in both KO mice. However, total Shank content is increased in β1AR and possibly β2AR KO mice.
mice (Fig. 8D) and total GluN2B content in β2AR KO mice (Fig. 8F). The increase in Shank could affect overall postsynaptic organization, and the increase in GluN2B could affect LTP induction by altering Ca\(^{2+}\) influx. We also find that the level of basal S845 phosphorylation is increased in β2AR KO mice (Fig. 8C), which could alter perisynaptic AMPAR availability during LTP (see DISCUSSION). Accordingly, both KO mice have some basal alterations in synapse function and expression of postsynaptic protein, which can be expected to affect PTT-LTP and regulation of S845 phosphorylation. In fact, treatment of acutely prepared forebrain slices with Iso for 10 min increased S845 phosphorylation much more in WT than β2AR KO slices and not at all in β1AR KO slices (Fig. 8J). Accordingly, the presence of both ARs during development or during the actual β-adrenergic stimulation is critical for effective upregulation of S845 phosphorylation in adult hippocampus.

DISCUSSION

The hippocampus shows among other rhythmic activity patterns the θ-rhythm (Mizuseki et al. 2009), and tetani applied for 90–180 s with θ-rhythm frequencies lead to PTT-LTP that depends on β-adrenergic stimulation (Gelinas and Nguyen 2005; Hu et al. 2007a; Katsuki et al. 1997; Thomas et al. 1996). We now demonstrate with a pharmacological approach that the β2AR is indispensable during the induction phase of PTT-LTP, whereas the β1AR is not required during this phase under our conditions. A lack of effect by the β1AR antagonist CGP-20712 on PTT-LTP cannot be explained by the assumption that the drug might not have been working in our hands because identical batches of stock solutions were successfully tested in parallel experiments on Iso-induced upregulation of L-type channel currents in cardiomyocytes.

At the same time we find that PTT-LTP is strongly impaired in slices from β1AR and β2AR KO mice. The impairment in PTT-LTP in β2AR KO mice is consistent with our pharmacological analysis that indicates that this receptor is required during induction of PTT-LTP. The impairment in PTT-LTP in β1AR KO mice, however, paired with our pharmacological data that show that the β2AR is not required during the acute induction phase of PTT-LTP, indicates that the β2AR is important for the proper development of one or more molecular functions that are required for PTT-LTP but not acutely during PTT-LTP induction. In fact, the decrease in PPF points to alterations in presynaptic functions, and the increase in Shank content could affect postsynaptic organization and signaling in the β1AR KO mice. Other alterations are conceivable if not to be expected. These changes rather than the lack of the β2AR could affect PTT-LTP induction during its acute phase. PPF is also decreased in β2AR KO mice, which show in addition an increase in total GluN2B content. Again these or other, not yet known changes in the β2AR KO mice could indirectly affect
PTT-LTP, but whether or not this is the case our pharmacological analysis shows that the β2AR is required during the induction phase in WT mice.

Previous work on β1AR and β2AR KO mice found that PTT-LTP was absent in the former but normal in the latter (Winder et al. 1999). The differential results in this study versus our study could be due to methodological differences, although most parameters appear to have been comparable. However, our potentiation was 30 – 40% when it reached 50 – 100% in the study of Winder et al. (similar to Thomas et al. 1996, but see Gelinas and Nguyen 2005 and Hu et al. 2007a for a more modest 40 – 50% potentiation; of note, we determined potentiation as the difference between baseline transmission measured after its typically slight but variable 10 – 20% increase by Iso and transmission 45 min after the tetanus, whereas all the other work includes that 10 – 20% Iso effect on baseline). It is possible that the precise electrophysiological setup of Thomas et al. and Winder et al. recruited β1AR during the acute phase of PTT-LTP induction, whereas in our hands we only recruit β2AR, thus opening the possibility that under conditions different from ours the β1AR could mediate a portion of PTT-LTP. In addition, differences in the genetic background could have made the β1AR more important in the study of Winder et al. than in our studies. Although Winder et al. do not specifically state the genetic background of their KO mice, they obviously used earlier generations of the β1AR and β2AR KO mice, which were originally in the FVL background and had not been backcrossed with C57BL/6, whereas we used the same KO mice after their multiple backcrossings with C57BL/6.

Paralleling this difference, an earlier pharmacological study suggests that the β1AR but not the β2AR regulates S845 phosphorylation of GluA1 during PTT-LTP induction.
phosphorylation (Vanhoose and Winder 2003). The differences between this and our study, which indicates that the β2AR rather than the β1AR regulates S845 phosphorylation, could, once more, be related to differences in the exact experimental systems, although quite similar. An alternative explanation is that the other study used the β1-selective blocker betaxolol to test for a role of the β1AR in S845 phosphorylation. The authors used betaxolol at 10 μM, at which concentration its specificity for β1AR versus β2AR is likely lost or at least substantially reduced (see, e.g., Sharif and Xu 2004; Smith and Teitler 1999). Accordingly, its antagonistic effect on Iso-induced S845 phosphorylation could have been due to inhibition of the β1AR rather than the β2AR. Also, no evidence was presented that the ICI-118551 used in this other study to block the β2AR was active. In fact, we observed a lack of effect of one batch of ICI-118551 obtained from Sigma during the course of this work, although several other batches from Sigma worked well (Fig. 6A; see also Joiner et al. 2010), as did a new batch from Tocris (Fig. 6B). A lack of effect of ICI-118551 on Iso-induced S845 phosphorylation in the previous work could thus have been due to loss of its activity. Furthermore, we showed earlier that only those GluA1 subunits in AMPAR complexes that are associated with the β2AR become phosphorylated on S845 upon Iso treatment, further supporting the model that the β2AR is the principal βAR in governing GluA1 phosphorylation upon β-adrenergic stimulation (Joiner et al. 2010). However, we do not want to completely discard the possibility that the β2AR can contribute to S845 phosphorylation under certain conditions that differ from ours.

S845 phosphorylation by PKA fosters GluA1 surface expression due to reduced endocytosis rate and enhanced reinsertion rate (Ehlers 2000; Man et al. 2007). More specifically, S845 phosphorylation augments accumulation of GluA1-containing AMPAR at presynaptic sites (He et al. 2009). These sites serve as reservoir for AMPAR that can be recruited to postsynaptic sites, thereby enhancing LTP induced by TBS (Oh et al. 2006). Signaling by the β2AR might thus be important for PTT-LTP at least in part because it supports S845 phosphorylation accumulation of AMPAR at presynaptic sites, which in turn fosters recruitment of AMPAR to postsynaptic sites upon additional stimulation. However, signaling by the β2AR might also affect PTT-LTP and other forms of LTP by other signaling pathways. For instance, it could stimulate phosphorylation of different NMDAR subunits by PKA (Leonard and Hell 1997), which enhances Ca2+ permeability and thereby postsynaptic Ca2+ influx during LTP induction (Skeberdis et al. 2006). Finally, βARs can also act via ERK/MAPK signaling pathways, which is important for PTT-LTP (Winder et al. 1999) as well as LTP induced by a single 1-s/100-Hz tetanus (Gelin et al. 2007; Gelin and Nguyen 2005).

Induction of fear and injection of NE can stimulate phosphorylation of GluA1 on S845 and, to a much more modest degree, on S831 (Hu et al. 2007a). KI mice in which both sites have been mutated to alanine are defective in PTT-LTP and in fear conditioning by a diminutive conditioning paradigm (Hu et al. 2007a). KI mice in which S845 has individually been mutated to alanine are defective in PTT-LTP as well as LTP induced by a single 1-s/100-Hz tetanus (Gelinas et al. 2007; Gelinas and Nguyen 2005).

Our results identify the β2AR as a critical component in the signaling events that underlie induction of PTT-LTP. This signaling pathway could thus be important for mediating noradrenergic effects in the brain, including augmenting arousal, synaptic plasticity, and learning (Berman and Dudai 2001; Cahill et al. 1994; Hu et al. 2007b; Nielsen and Jensen 1994; Strange and Dolan 2004; Strange et al. 2003). Our findings also highlight the importance of noradrenergic innervation of the hippocampus and other forebrain areas, which is usually eliminated in acute slice experiments but must not be ignored.

REFERENCES

Davare MA, Hell JW. Increased phosphorylation of the neuronal L-type Ca2+ channel Ca1.2 during aging. *Proc Natl Acad Sci USA* 100: 16018–16023, 2003.

Davare MA, Horne MC, Hell JW. Protein phosphatase 2A is associated with class C L-type calcium channels (Ca1.2) and antagonizes channel phos-

