TRPV4 channels mediate the infrared laser-evoked response in sensory neurons

E. S. Albert,1 J. M. Bec,2 G. Desmadryl,1 K. Chekroud,1 C. Travo,1 S. Gaboyard,1 F. Bardin,2,3 I. Marc,2,4 M. Dumas,2 G. Lenaers,1 C. Hame1, A. Muller,1 and C. Chabbert1
1U-1051, INSERM Institut des Neurosciences de Montpellier, Montpellier, France; 2Université Montpellier 1 et 2, Montpellier, France; 3Université de Nîmes, Nîmes, France; and 4Ecole des Mines d’Alès, Alès, France

Submitted 9 May 2011; accepted in final form 6 March 2012

SENSORY PERCEPTION RELIES on the function of highly specialized receptors, which detect a wide range of stimuli arising from our environment and convert them into bioelectrical signals eventually conveyed to the brain. Although highly specialized, the sensory receptors remain fragile, and the loss of these cells through progressive degeneration (Saithan et al. 2009), sudden cell damage, or age-related processes (Chen et al. 2010) cannot be compensated. This has been overcome by the development of sensory prostheses aiming to substitute lacking sensory receptors. Such an approach is only possible if the central sensory neuronal pathway is preserved. In past decades, direct electrical stimulation of the sensory neuronal pathways proved that central sensory input could be generated without stimulation of the sensory receptors. Cochlear implants, for example, were developed as treatment of sensorineural hearing loss (Haynes et al. 2006, 2008), through IR laser stimulations on nonphotosensitive neurons such as those of the auditory nerves (Izzo et al. 2006, 2008), cavernous nerve of the prostate (Fried et al. 2008), and facial nerve (Teudt et al. 2007) without tissue damage. High spatial resolution of the stimulus is a further advantage of optical radiation over electrical stimulation.

Although promising, clinical developments of such approaches have been impeded by the lack of information on the molecular mechanisms supporting the laser-evoked neural response. According to Wells et al. (2005), photochemical effects are not involved in mid-IR optical stimulation, whereas photomechanical effects like pressure and stretching cannot occur when operating with short laser pulses at high energies. More likely, transient thermal variations at the cell membrane would be sufficient to trigger laser-induced biological responses. To address this question directly, we undertook a pharmacological characterization of the neural response evoked by mid-IR (1,875 nm) irradiation in retinal and vestibular ganglion cells (VGCs) isolated from rodents using whole cell patch-clamp recording. Here, we show that both types of neurons can be stimulated reproducibly and that neuronal responses are driven through transient receptor potential vanilloid 4 (TRPV4) channels.

MATERIALS AND METHODS

Animals. Mice of the C57BL/6 strain and Wistar rats (Centre d’Elevage Janvier, Le Genest-Saint-Ise, France) were used in the study. All procedures were carried out in accordance with the French/European Communities Council Directive 86/609/EEC.

Cell preparation. Retinal ganglion cells (RGCs) were isolated from postnatal days 2-4 (P2–P4) mice using the Thy-1 antibody-mediated plate adhesion immunopanning technique, and their specificity was confirmed using RGC Brn3a immunoassay according to previously described procedures (Kamei et al. 2005). VGCs were explanted from P5–P9 rats and dissociated according to previously described procedures (Dayanithi et al. 2007).
Electrophysiological recordings. Whole cell patch-clamp recordings (current-clamp configuration) were performed at room temperature (22–24°C) using a computer-controlled Axopatch 200B amplifier (Axon Instruments, Molecular Devices, Sunnyvale, CA) and digitized using a Digidata 1322A as previously described (Chabbert et al. 2001). Patch electrodes (5–6 MΩ; microhematocrit tubes; Iris Vitrex Medical) were filled with an intracellular solution (140 mM KC1, 15 mM NaC1, 10 mM glucose, 10 mM HEPES, 5 mM EGTA, 3 mM ATP, 1 mM GTP; pH 7.4, 300 mosM). For whole cell recordings, neurons were bathed in extracellular solution: 135 mM NaC1, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 10 mM glucose, 10 mM HEPES, and 15 mM Na2HCO3, pH 7.4, 300 mosM. Removal of calcium from the bath was performed through local and transient exchange of the bathing solution by calcium-free external solution (0 Ca2+ and 2 mM EGTA) through a homemade gravity perfusion system. Studied neurons were first selected on morphological criteria (refrhirgence), resting membrane potential (Vh), and excitability (ability to fire action potentials (APs) in response to depolarizing current injections of 200 pA for 1 s). The lack of cell damage following the IR laser irradiation was determined by the lack of sustained variations of the resting membrane potential, the ability of the cell to exhibit repetitive laser-evoked neuronal voltage variations (LEVV) over minutes, and the ability of the recorded cells to fire APs on injection of depolarizing currents following the pharmacological assessments. For evaluation of each LEVV component, amplitude of the spike-like component was determined as the difference between resting membrane potential (mean of 5 ms before irradiation) and amplitude of the voltage 5 ms after the onset of the response. Mean peak amplitude of the spike-like component was determined relative to resting membrane potential. In the figures, each trace represents individual record rather than averaged traces.

IR laser stimulation. Sensory neurons were stimulated with a diode laser (Sheaumann Laser, Marlborough, MA) emitting at a wavelength of 875 nm. The stimulation system was mounted on an air-cooling block and operated at room temperature. The laser beam was guided through a multimode fiber of 105-μm diameter and mounted on a micromanipulator to control fine positioning during the experiments. For better precision and alignment (165 ± 10 μm) to the target cells, visible light was coupled before laser stimulation. A control board (DAQ; PCI-6221; National Instruments) was used to tune all laser-stimulation parameters (radiant exposure range). Studies were performed using LightCycler FastStart DNA MasterPLUS SYBR Green I Kit (Roche Diagnostics, Meylan, France). Amplifications from RGCs (mouse Trpv1, 5′-CTATCGTG- GACTGTTCAAGTTC-3′ and 5′-GGTGGTGTTCCAGGTAGTCC-3′; rat Trpv3, 5′-TAGGCTCCAG- CAATGATGCCC-3′ and 5′-ACACACGGCAAGATGCTCGT-3′; Trpv4, 5′-CTATCGTGTTCCAGATGTCATC-3′ and 5′-AGAGACAAACACAGCAACAG-3′; Actin, 5′-CTGGGCCTTGTCAC- CCCACATA-3′ and 5′-GACCCAGATCATGTTGAGAGCT-3′) and VGCs (rat Trpv1, 5′-GATGTGCTGATCTGACATGTC-3′ and 5′-CATTGGTGTTCCAGGTAGTCC-3′; Trpv2, 5′-AATGTGCAGT- GACTCGTAGAAATC-3′ and 5′-GCTCCTCTTCTCTAGTGC- GATGT-3′; Trpv3, 5′-GCTCCAGCAATGAAAGCCCAC-3′ and 5′-ATACAGCCGCGAAGATGCACT-3′; Trpv4, 5′-CTATCGTGTTCCAGATGTCATC-3′ and 5′-AGACACACGGCAACAGCATGGA-3′; Actin, 5′-CTGTGAGCCCTAAGGCAACCACC-3′ and 5′-GAGTCATCATCACAATGCGATG-3′) were normalized to 18S ribosomal RNA levels. For each experiment, samples was investigated in triplicate. The primers have been tested on control tissues (Kunert-Keil et al. 2006) before experiments.

Immunohistochemistry. For in situ experiments, eyes and vestibular ganglia were explanted from adult mice and rats, respectively, and then fixed. For both in situ and in vitro immunostaining, tissues were fixed by immersion for 1 h in 4% paraformaldehyde in PBS (0.1 mM, pH 7.4). Then, in situ samples were embedded in 4% agarose, and 40-μm thick sections were cut using a vibrating blade microtome (Vibratome Series 1000; Technical Products International, St. Louis, MO). Free-floating sections and cultures were then permeabilized in Triton X-100 for 1 h, 4% in PBS for adult tissue, and 1% in PBS for in vitro samples. A following preincubation in blocking solution (0.5% fish gelatin, 0.5 and 0.1% Triton X-100 for adult and culture, respectively, in PBS) prevented nonspecific binding. Samples were incubated with the following primary antibodies: anti-Brn3a (goat polyclonal; dilution 1:200; Sigma-Aldrich), anti-TRPV1 (rabbit polyclonal IgG, 2233; dilution 1:100; Tocris Bioscience), anti-TRPV2 (rabbit anti-vanilloid receptor-like protein 1; dilution 1:200; AB5398P; Chemicon International, Millipore, Molsheim, France), anti-TRPV3 (mouse monoclonal; ab85022; dilution 1:100; Abcam), and anti-TRPV4 (rabbit polyclonal; ab39260; dilution 1:200; Abcam). Mouse monoclonal anti-neurofilament (200 kDa, dilution 1:350; clone N52; Sigma-Aldrich, St. Louis, MO), rabbit polyclonal serum anti-TRPV4, and goat polyclonal serum anti-Brn3a were applied for 48 h rotating at 4°C in the corresponding blocking solution. For control, investigated primary antibody was omitted. Secondary antibodies revealed specific labeling with Alexa-conjugated donkey anti-mouse, -rabbit, or -goat sera (1:200; Molecular Probes, Eugene, OR). Samples mounted on slides were observed with a Zeiss 5 LIVE DUO laser-scanning confocal microscope (Zeiss, Le Pecq, France). Human eye-cups obtained from Laboratoire Biologie Ingénierie et Imagerie de la Greffe de Corne (Saint-Etienne, France) were embedded in paraffin and cut into 5-μm sagittal sections. Sections were deparaffinized, hydrated, and incubated for 20 min in a saturation buffer (PBS, 0.3% Triton X-100, 30% Semliki Forest virus) and overnight with the primary antibody, anti-TRPV4 (rabbit polyclonal, ab39260, 1:200; Abcam). The secondary antibody, Alexa-conjugated donkey anti-rabbit (1:1,000; Molecular Probes), was diluted in PBS and Hoechst and incubated 1 h at room temperature. Sections were then mounted on slides and observed with a Zeiss ApoTome.

Journal of Neurophysiology doi:10.1152/jn.00424.2011 www.jn.org

3228 TRPV4 CHANNELS AND IR LASER STIMULATION

By downloading this PDF from the JNP website, you agree to the terms of use specified at http://jn.physiology.org/content/terms.

Copyright © 2017 the American Physiological Society. All rights reserved.
RESULTS

Mid-IR laser stimulations trigger transient membrane potential variations in sensory neurons. Isolated RGCs and vestibular primary neurons (VGCs) were irradiated using an 1,875-nm IR laser. LEVVs were obtained in RGCs and VGCs for pulse durations from 7 to 10 ms at laser power of 230 mW. As illustrated in Fig. 1, either single (phasic) or repetitive (tonic) spike responses could be evoked in RGCs (Fig. 1A) and VGCs (Fig. 1B) depending on the duration of the irradiation. LEVVs usually displayed an initial humplike depolarization (mean maximum amplitude: 10 ± 4 mV, n = 12 RGCs and 10 ± 5 mV, n = 25 VGCs), on top of which a spikelike component (mean peak amplitude: 30 ± 5 mV, n = 12 RGCs and 35 mV ± 5 mV, n = 25 VGCs) occurred (Fig. 1C). The humplike depolarization phase always started within the 1st ms after the onset of the irradiation. Conversely, occurrence of the spike component could be delayed up to 10 ms under our irradiation conditions. LEVVs could be evoked repetitively for several minutes in the two cell types without cell damage. Visual control of the preparation did not reveal any movement of recorded cells nor of the external solution during the irradiation pulses. In a fraction of recorded VGCs (16%, n = 4) a small hyperpolarization of 3 ms preceded the spike component of the LEVV (Fig. 5A). Such hyperpolarization response was never observed in the RGCs.

Transient membrane potential variations rely on voltage-gated sodium and calcium channels. To determine the type of ionic channels involved in the generation of RGC and VGC responses, we used several pharmacological reagents. Bath application of TTX (10 μM), a specific blocker of the voltage-gated sodium channels (Bruggeaud et al. 2007), reversibly abolished the spikelike component of the LEVV in the two cell types (n = 4 RGCs and n = 7 VGCs; Fig. 2A). This effect identified the spikelike component of the LEVV as a sodium-based AP. Subsequent application of Ni/Cd solution (500 μM), a widely used blocker of the low-threshold voltage-gated calcium channels (Chambard et al. 1999), slightly affected (14 ± 6%; n = 3 RGCs and n = 7 VGCs) the remaining humplike component of the LEVV (Fig. 2B). Direct application of Ni/Cd on the LEVV prevented the generation of the sodium-based AP (Fig. 2C), suggesting that it mostly relied on a calcium influx in the cells through voltage-gated calcium channels. This was confirmed by complete block of the LEVV when calcium was removed from the bathing solution (n = 6 VGCs; Fig. 2D). Note that residual depolarizing component remained despite removal of external calcium.
TRPC channels are not involved in the IR laser-evoked response in sensory neurons. Transient receptor potential canonical (TRPC) channels were previously reported to mediate light-evoked calcium responses in intrinsically photosensitive RGCs (ipRGCs; Hartwick et al. 2007). Bath applications of either 2-APB (100 μM; n = 2 RGCs and n = 2 VGCs) or Gd³⁺ (10–100 μM; n = 3 RGCs and n = 2 VGCs), two widely used blockers of the TRPC channels, did not affect the LEVV evoked in both cell types (Fig. 3, A and B). This observation indicated that the TRPC channels were not required for the generation of the LEVV in these sensory neurons.

TRPV4 channels mediate the IR laser-evoked response in sensory neurons. It has been recently proposed that AP generation by pulsed laser stimulation of nerve tissue or neurons is thermally mediated either through thermoradiating or thermomechanical processes (Wells et al. 2007a,b). To test this hypothesis, we investigated whether thermosensitive TRPV channels were involved in the LEVVs evoked in sensory neurons. We first searched for the presence of TRPV1–4 channels mRNA in our preparations of RGC and VGC neurons (Fig. 4). RT-PCR investigations using specific primers (see materials and methods) revealed that TRPV channel mRNAs were differentially expressed with similar patterns in the two types of sensory neurons. In the RGCs, TRPV2 and TRPV4 mRNAs displayed the major expression, whereas neither the expression of TRPV1 nor TRPV3 was significant (Fig. 4A and B). Similarly, in VGCs, both TRPV4 and TRPV2 mRNAs displayed high levels of expression, whereas the expression of neither TRPV1 nor TRPV3 mRNAs was significant (Fig. 4, C and D).

Pharmacological investigations were subsequently conducted to test for the direct involvement in the LEVV of the TRPV channel subtypes expressed in the RGCs and VGCs. Bath applications of ruthenium red (10 μM), a general TRPV channel blocker, completely abolished the LEVV evoked in both the RGCs (n = 3) and VGCs (n = 5; Fig. 5A). This indicated that TRPV channels mediated the LEVV in sensory neurons. Capsazepine (10 μM), a specific TRPV1 channel blocker, did not affect the LEVV evoked in the RGCs (n = 2) and in the VGCs (n = 4; Fig. 5B), consistent with the nonsignificant expression levels of TRPV1 in both neuron types (Fig. 4). Conversely, RN 1734 (3.2 μM in VGC and 5.2 μM in RGCs), a specific TRPV4 channel blocker (Angelico and Testa 2010; Vincent et al. 2009), prevented the induction of LEVV in both RGCs (n = 4; Fig. 5C) and VGCs (n = 7; Fig. 5D). Altogether, these results indicated that the TRPV4 channels mediate the LEVV in the two types of sensory neurons. The electrically evoked neural responses were not affected on application of ruthenium red or RN 1734 (data not shown). In our hands, SKF-96365 given as a potent TRPV2 blocker (Vriens et al. 2009) significantly altered the voltage-induced excitability of the VGCs, preventing any investigation of the involvement of TRPV2 into the LEVV in this neuronal type.

Tissue and cell expression of TRPV4. Tissue and cell expressions of the TRPV4 protein were studied using specific antibodies in transverse sections of adult mouse retinas and rat vestibular ganglions in RGCs and VGCs isolated from neonate rodent tissues as well as in adult human retina (Fig. 6). In the adult mouse retina, TRPV4 immunostaining was found in the RGCs and the inner plexiform layers (Fig. 6A). RGCs displayed similar TRPV4 protein expression at membrane level in the cell cytosol and neurites in isolated neonate RGCs (Fig. 6B). In adult human retina (Fig. 6C), RGCs also exhibited TRPV4 immunostaining, suggesting a conserved expression of TRPV4 in RGCs across species. In the vestibular ganglion, TRPV4 immunostaining was observed in the cytosol and in the periphery of the soma, suggesting membrane expression of the TRPV4 channels (Fig. 6D). On isolated neonate VGCs, TRPV4 expression seems to be restricted to the cell bodies, as neuritis were not immunolabeled (Fig. 6E).

Local temperature changes evoked by the laser irradiation. To assess the ability of the laser irradiations to alter significantly the temperature of the bath we measured, in a bath without neurons, the fluorescence variations of LDS 698, a temperature-sensitive dye, on laser irradiations in the range of those that triggered LEVV in sensory neurons. Laser irradiations of 20 J/cm² (i.e., 7-ms pulse duration) evoked mean temperature variations of 10 ± 2°C (n = 10). This confirmed that the local temperature jumps evoked by the IR laser irradiation were within the activation range of the TRPV4 channels (Güler et al. 2002; Watanabe et al. 2002).

DISCUSSION

Present data directly demonstrate that the neuronal responses observed in the RGCs and VGCs on IR laser irradiation originates from TRPV4 channel activation. In addition, we show that TRPV4 channels are expressed in the two types of sensory neurons in our culture preparation as well as in adult tissues. Finally, we confirm that the local temperature jumps evoked by the IR laser irradiation are suitable for the activation of the TRPV4 channels.
TRPV channels, besides their sensitivity to vanilloids, also display temperature sensitivity. The sequence of activation of the TRPV channels according to their heat threshold reported in expression systems such as HEK 293 cells (Watanabe et al. 2002) and *Xenopus* oocytes (Güler et al. 2002) is as follows: TRPV4 >27°C, TRPV3 >32°C, TRPV1 >43°C, and TRPV2 >53°C (Caterina 2007; Noël et al. 2009). In our preparation, the mean temperature reached during the laser irradiation (37 ± 2°C; n = 10) was above the TRPV4 activation threshold, therefore supporting a thermal activation of the TRPV4 channels. Complete demonstration will, however, require measuring the effective temperature change at the cell membrane level during the laser exposure. Other means of cell activation such as mechanical stimulation or photoactivation are unlikely to take place. Under the present paradigm, no movement of the recorded cells or of the surrounding bathing medium could be seen under visual control. Photoactivation would require the expression of photosensitive pigments. ipRGCs containing melanopsin have been shown to represent 1–2% of the mammal RGCs in rodents and 0.2% in humans (Dacey et al. 2005; Leonelli et al. 2009). Although scarcely present in neonate RGCs, they are both strongly expressed in the later phase of retinal development in the RGC layer. Therefore, it cannot be excluded that some TRPV channels may have been included in the recorded cells, the action spectrum of melanopsin (λmax ~ 480 nm; Qiu et al. 2005) prevents any photoactivation by the IR laser wavelength used in our study. Moreover, as shown by the lack of effect of 2-APB and Gd⁴⁺, the TRPC pathway reported to mediate cell excitations in the ipRGCs (Hartwick et al. 2007) does not contribute to the LEVV. Conversely, TRPV2 and TRPV4 are both strongly expressed in this cell type. Although the TRPV4 channels have been clearly shown to control the LEVV in VGCs and RGCs, we were unable to assess pharmacologically the involvement of TRPV2 in this process because of the lack of specificity of the available TRPV2 blockers. Even though the temperature changes (10 ± 2°C) evoked under the present paradigm do not reach the activation threshold >53°C for TRPV2 (Caterina 2007; Noël et al. 2009), it cannot be ruled out that higher temperature elevations would activate this channel subtype. Generally, it can be assumed that any TRPV channels would contribute to the IR laser-evoked responses as long as the temperature changes at the cell membrane reach their respective activation threshold and that they are sufficiently expressed at the cell membrane to alter efficiently the membrane voltage on activation. Although we verified that TRPV4 channels are expressed both by neonate and adult RGCs and VGCs, expression of TRPV1–2 in RGCs varies during development (Leonelli et al. 2009). Although scarcely present in neonate RGCs, they are both strongly expressed in the later phase of retinal development in the RGC layer. Therefore, it cannot be excluded that the expression of these additional TRPV channel types may enhance the excitation range of the RGCs to local temperature changes. However, presently, no evidence suggesting involvement of TRPV channels other than TRPV4 in laser-induced biological responses of sensory neurons has been reported.

Our findings that TRPV4 channels are essential to the induction of LEVVs and that specific voltage-gated calcium and sodium channel blockers abolish the spikelike component of the response allow us to propose a cellular cascade for the LEVV (Fig. 7): on activation, TRPV4 channels allow calcium influx to the cell cytosol. This cation entry drives a membrane depolarization suitable to activate low-threshold voltage-gated calcium channels, leading to further depolarization and subsequent activation of voltage-gated sodium channels. Altogether,
sensory neurons can be repetitively irradiated without alteration of their passive membrane properties, the long-lasting consequences of repetitive high-rate stimulations will need to be explored further. Demonstration that excitable cells expressing TRPV channels may be targeted by local and controlled temperature changes also opens novel technical possibilities, specifically regarding the development of nanotechnology. Recent elegant experiments have indeed demonstrated that changes in the membrane potential of hippocampal neurons that express TRPV1 could be achieved through magnetic-field heating of nanoparticles (Huang et al. 2010). Bringing the in vivo proof of concept of the feasibility to excite neurons using IR laser excitation will require solving some important questions such as how to define the optimal location for irradiation of target cells. The irregular expression of TRPV channels along the neuron soma (illustrated by the selective expression of TRPV4 at the soma of adult rat VGCs) as well as the fact that some sensory neurons (vestibular and auditory ganglion cells) are myelinated can also influence the sensitivity of the sensory neurons to IR laser stimulation. In any case, the present demonstration should open novel therapeutic opportunities, particularly in the field of the sensory neuroscience, as TRPV4 channels have now been demonstrated in retinal, vestibular, and auditory ganglion cells (Shen et al. 2006).

In previous experiments on cardiomyocytes, Dittami and colleagues (2011) brought evidence that IR irradiation (in the same energy range of that used in present study) may also modulate the calcium mitochondrial uniporter (mCU). Brief and repetitive IR irradiations significantly increased cytosolic calcium in these cells. Subsequently, the same research group proposed that a similar mechanism may support the IR stimulation of vestibular hair cells that led to excitation of the vestibular afferents in the Toadfish crista ampullaris (Rajguru et al. 2011). Following this interesting observation, it cannot be discarded that the mitochondrial pathway may also be activated in the sensory neurons on IR irradiation. However, it has to be noticed that under present experimental conditions, the removal of the external calcium was sufficient to abolish the LEVV, although a residual depolarizing component remained. This suggests that any IR activation of the mCU may modulate but not be sufficient to drive the LEVV of sensory neurons. Moreover, IR irradiations that activated the hair cells in the experiments of Rajguru et al. (2011) were inefficient on the vestibular afferents. This also suggests that the mechanisms supporting the biological responses to the IR irradiation may differ depending on the cell type. Additional investigations using calcium microfluorimetry technique should allow assessment of the respective weight of these two cellular pathways in the induction of the LEVV. In the same way, investigations using the voltage-clamp configuration of the patch-clamp technique should allow further investigation of the ionic nature of the current that flows through the TRPV4 channel during the laser irradiation. This will help to test whether different channel types participate to the neuron response or to gather indications on the voltage sensitivity of the TRPV4 channel in sensory neurons.

ACKNOWLEDGMENTS

We thank Dr. M. Pequignot for supplying human retinas (obtained from Dr. Gilles Thuret, Laboratoire Biologie Ingénierie et Imagerie de la Greffe de Cornée). We also thank Drs. C. Delettre, O. Payet, and H. Boukhaddaoui for their support.
expert technical assistance and Dr. J. Dyhrfjeld-Johnsen for helpful comments on the paper.

GRANTS
This work was supported by grants from European Aeronautic Defence and Space (EADS), Fédération des Aveugles et Handicapés Visuels de France (FAF), and Union Nationale des Aveugles et Déficients Visuels (UNADEV).

DISCLOSURES
No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

Fig. 6. Immunolocalization of TRPV4 using specific antibodies in slices of 2-mo mouse retina (A), RGCs (postnatal days 2-4 (P2–P4) animals, 5 div, 3 experiments; B), and human RGC (C; 2 experiments). Presence of TRPV4 was also demonstrated in 2-mo Wistar rat vestibular ganglion (D; 2 experiments) and isolated VGC P5 animals (E; 3 experiments) without and with N52 staining. TRPV4 (red), N52 (green), Brn3a, a specific RGC transcriptional factor, and Hoechst (blue) are shown. Scale bar of 10 μm applies to all. OPL, outer plexiform layer; IPL, inner plexiform layer; GCL, ganglion cell layer; INL, inner nuclear layer.

Fig. 7. Proposed sequence of events in the induction of the neuronal response to the IR laser irradiation into sensory neurons. Supraliminal thermal stimulation opens the TRPV4 channels allowing a calcium influx into the cell cytosol (1) that in turn will lead to a membrane depolarization resulting in an activation of the voltage-gated Ni/Cd-sensitive calcium channels (2). Additional calcium influx in the cell will increase the membrane depolarization that will lead to the generation of sodium-based action potentials in the sensory neurons through activation of voltage-gated (TTX-sensitive) sodium channels (3).
REFERENCES

Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, Angelico P, Testa R, C.C. edited and revised manuscript; E.S.A. and C.C. approved final version of manuscript; C.C. conceived and design of research; C.C. edited and revised manuscript.