Corrigendum

Volume 106, December 2011


We now substitute the original incorrect Fig. 1 with the correct figure. The legend remains the same as originally published. The results and conclusions of this study stand.

Fig. 1. Although attenuated, the local field potential (LFP) sampling-related rhythm persists at high sampling frequencies. A: imposed sampling conditions. Plots of the imposed sampling volumes of an inspiration as a function of the imposed frequency and flow rate. Six different nasal airflow frequencies of 1 Hz, basal frequency (which is the respiratory frequency of a urethane-anesthetized rat; mean = 2.3 Hz), 4 Hz, 6 Hz, 8 Hz, and 10 Hz and 2 nasal flow rates of 500 ml/min and 1,000 ml/min were imposed in a randomized procedure. B: plots of the mean amplitude of the LFP sampling-related modulation (±SE) as a function of the imposed frequency and flow rate. Gray, 500 ml/min flow rate; black, 1,000 ml/min flow rate. The number of trials for each flow rate and for each frequency was 19 (total = 228). Statistical analyses were performed using the repeated-measures ANOVA test, which revealed a global effect of the frequency; \( P < 0.0001 \). According to the Newman-Keuls post hoc test: *significant difference between 1 Hz and all other frequencies; †at 1,000 ml/min, there was no difference between basal and 4 Hz, but both were significantly different from 6 Hz, 8 Hz, and 10 Hz; ‡at 500 ml/min, there was no significant difference between basal and 4 Hz, but both were significantly different from 8 Hz and 10 Hz; §§global ANOVA effect of flow rate (\( P < 0.01 \)). A post hoc Newman-Keuls test revealed a significant effect of the flow rate at basal, 4 Hz, 8 Hz, and 10 Hz (§) frequencies. C: mean cross-correlation coefficients (±SE) as a function of the imposed frequency and flow rate. The cross-correlation was assessed between the LFP sampling-related modulation and the imposed nasal airflow. Gray, 500 ml/min flow rate; black, 1,000 ml/min flow rate. The number of trials for each frequency and for each flow rate was 19. Statistical analyses were performed using repeated-measures ANOVA. The ANOVA revealed a global effect of frequency (\( P < 0.001 \)). *significant difference between 1 Hz and all other frequencies when the Newman post hoc test was applied (bottom); § (top) global ANOVA effect of flow rate (\( P < 0.05 \)). A post hoc Newman-Keuls test revealed a significant effect of the flow rate at 8 Hz (§ for both flow rate conditions). D, left: examples of raw data for the LFP recorded from the same channel under 6 different sampling frequencies at a flow rate of 1,000 ml/min. Note the decrease in the slow LFP modulation amplitude and its persistence across the frequencies. Cross-correlograms from the cross-correlation between the imposed sampling signals at 1,000 ml/min are presented on the right, and the corresponding raw data are on the left.

www.jn.org 0022-3077/12 Copyright © 2012 the American Physiological Society 1045