Repeated cocaine exposure increases fast-spiking interneuron excitability in the rat medial prefrontal cortex

Emilie Campanac and Dax A. Hoffman

Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland

Submitted 16 July 2012; accepted in final form 7 March 2013

Campanac E, Hoffman DA. Repeated cocaine exposure increases fast-spiking interneuron excitability in the rat medial prefrontal cortex. J Neurophysiol 109: 2781–2792, 2013. First published March 13, 2013; doi:10.1152/jn.00596.2012.—The medial prefrontal cortex plays a key role in cocaine addiction. However, how chronic cocaine exposure affects cortical networks remains unclear. Most studies have focused on layer 5 pyramidal neurons (the circuit output), while the response of local GABAergic interneurons to cocaine remains poorly understood. Here, we recorded from fast-spiking interneurons (FS-IN) after repeated cocaine exposure and found altered membrane excitability. After cocaine withdrawal, FS-IN showed an increase in the number of spikes evoked by positive current injection, increased input resistance, and decreased hyperpolarization-activated current. We also observed a reduction in miniature excitatory postsynaptic currents, whereas miniature inhibitory postsynaptic current activity was unaffected. We show that, in animals with cocaine history, dopamine receptor D2 activation is less effective in increasing FS-IN intrinsic excitability. Interestingly, these alterations are only observed 1 wk or more after the last cocaine exposure. This suggests that the dampening of D2-receptor-mediated response may be a compensatory mechanism to rein down the excitability of FS-IN.

Relevance: A key to understanding brain circuit plasticity in drug addiction is to establish the relationship between the activity of GABAergic interneurons and their postsynaptic targets. To this end, we focused on the medial prefrontal cortex (PFC), a brain region that plays a key role in social behavior, decision making, and drug addiction (Belin and Cooper 2000; Phillips and Fibiger 1978). The PFC is involved in high cognitive processes, such as attention, working memory, and executive function, and also in several neurological disorders, including drug addiction (Goldstein and Volkow 2011; Tzschentke 2001). The PFC is known to be involved in the induction of the primary behavioral drug effects (e.g., increased locomotion, conditioned place preference, self-administration), as well as in drug-craving and relapse (Tzschentke 2001). For instance, direct electrical stimulation of the PFC in animals implanted with a stimulating electrode lead to rewarding effects (Mora 1978; Mora and Myers 1977; Phillips and Fibiger 1978; Robertson et al. 1982; Rolls and Cooper 1973) and enhanced the reward value induced by cocaine (Corbett 1991; McGregor et al. 1992; Moody and Frank 1990). Some studies also report that lesion of the PFC prevents cocaine-induced behavioral sensitization and associated neuroadaptations (Li et al. 1999; Pierce et al. 1998; Tzschentke and Schmidt 1998a, 1998b). In addition, there is evidence showing that a disruption in medial PFC (mPFC) neurotransmission systems, including dopaminergic, but also glutamatergic, GABAergic, acetylcholinergic, noradrenergic, serotoninergic, and peptidergic systems, may affect the development of psychostimulant-induced behavioral sensitization (Steketee 2003).

More specifically, psychostimulant effects of cocaine are mainly attributed to inhibition of the DA transporter that results in an increase of dopaminergic transmission (Sulzer 2011). Chronic drug exposure to psychostimulants like cocaine leads to adaptations in synaptic transmission and cellular intrinsic excitability within the reward circuit that may underlie compulsive drug consumption and relapse even after long periods of abstinence (Hu 2007; Hyman et al. 2006; Luscher and Malenka 2011). In the PFC, these modifications have been mostly characterized in the pyramidal neurons from the deep layer that constitutes the output of the cortical circuit (Ben-Shahar et al. 2009; Ford et al. 2009; Huang et al. 2007; Lu et al. 2009, 2010; McFarland et al. 2003; Nasif et al. 2005a; Steketee 2003). However, mesocortical dopaminergic fibers innervate both pyramidal neurons (Goldman Rakic et al. 1989; Verney et al. 1990) and GABAergic interneurons (IN) (Benes et al. 1993; Sesack et al. 1995). GABAergic IN are very heterogeneous with highly variable intrinsic firing rates (Markram et al. 2004) and degree of recruitment in cerebral rhythms and synaptic kinetics (Gupta et al. 2000). Different subtypes are defined according to immunohistochemical, morphological, and electrophysiological criteria (Ascoli et al. 2008; Cauli et al. 1997; Kawaguchi and Kondo 2002; Klausberger and Somogyi 2008; Markram et al. 2004). Parvalbumin (PV)-positive fast-spiking INs (FS-IN), which constitute one of the major subtypes of IN in cortical layer 5 (Markram et al. 2004; Rudy et al. 2010), synapse close to the soma of pyramidal neurons and other local IN (Kawaguchi and Kubota 1997, 1998).

In drug-naive animals, DA modulates IN activity (Gorelova et al. 2002; Tseng and O’Donnell 2007) and GABAergic synaptic transmission onto pyramidal neurons in the PFC (Gao et al. 2003; Seamans et al. 2001; Trantham-Davidson et al. 2004). Repeated cocaine exposure alters this DA modulation, probably due to a significant decrease in D2 receptors (D2R) expression and/or less effective receptors (Bowers et al. 2004; Briand et al. 2008; Kroener and Lavin 2010). However, little is known about how psychostimulant withdrawal affects GABAergic IN. We report here that both intrinsic excitability and basal synaptic transmission (spontaneous, action-potential independent transmission) are affected in FS-IN after long-term cocaine withdrawal, whereas no change is observed after withdrawal.
short-term withdrawal. The increase of intrinsic excitability is associated with a decrease in the hyperpolarization-activated current (I_h) and basal excitatory synaptic transmission.

MATERIALS AND METHODS

Animals and Treatment

All animal procedures were conducted in accordance with US National Institutes of Health guidelines, as approved by the National Institute of Child Health and Human Development Animal Care and Use committee. Male Sprague-Dawley rats (3 wk old) received repeated administration of cocaine (15 mg·kg$^{-1}$·day$^{-1}$ ip) or isovolumetric saline (0.9%) for 5 consecutive days, followed by 3–6 days (short-term withdrawal) or 10–13 days (long-term withdrawal) of abstinence prior to the experiment. Before each injection, animals were habituated for 10–15 min and handled approximately daily until the day of experiment.

Slice Preparation and Electrophysiology

Saline- or cocaine-treated rats were decapitated under chloral hydrate anesthesia (400 mg/kg ip), and the brain was immediately excised and immersed in ice-cold solution containing the following (in mM): 125 K-gluconate, 2.5 KCl, 10 HEPES, 10 mM glucose, 3 mM pyruvic acid; pH 7.2–7.3; 310 mOsm/L. Coronal slices (300 μm) containing the mPFC were cut with a vibrotome (Leica VT1200S or DSK Microslicer DTK-1000). After recovery, incubation for ~15 min at 33°C was followed by ~45 min at 22°C in artificial cerebrospinal fluid (in mM: 125 NaCl, 2.5 KCl, 1 NaH$_2$PO$_4$, 25 NaHCO$_3$, 2 CaCl$_2$, 1 MgCl$_2$, 10 mM glucose, 3 pyruvic acid; pH 7.2–7.3; 310 mOsm/L). Slices were then transferred to the recording chamber and superfused (2–3 ml/min) with artificial cerebrospinal fluid at 32–33°C. All solutions were saturated with 95% O$_2$/5% CO$_2$.

Whole-cell patch recordings were obtained from neurons in layer 5 of the mPFC. FS-IN exhibit clustered and fast-spiking patterns associated with a decrease in the hyperpolarization-activated current (I_h) and basal excitatory synaptic transmission. H-currents were isolated by subtracting traces obtained in 1 mM Cs$^+$ from control traces, then fit with a single-exponential function to determine the time constants. K$^+$ inward rectifier (K_{ir})–mediated and leak K (K_{leak}) currents were induced with voltage steps (1 s) from ~60 mV to ~120 mV (V$^{\text{holding}}$ = ~50 mV) ± 20 μM ZD7288 to test the activation and with voltage steps from ~70 mV to ~50 mV (V$^{\text{holding}}$ = ~120 mV) to test the deactivation. H-currents were isolated by subtracting traces obtained in ZD7288 from control traces. For analysis of activation curves, the tail current amplitudes (I$_{tail}$) were normalized to the maximal value (I$_{\text{max}}$) evoked by the command step at ~120 mV and plotted against the corresponding command step. The resulting data points were fit with a Boltzmann equation.

Drugs

All chemicals were purchased from Tocris (Ballwin, MO), Abcam (Cambridge, MA), or Sigma Chemical (St. Louis, MO).

Data Acquisition and Analysis

Electrophysiological recordings were obtained using a multiclamp 700B amplifier and PC11amp 10 (Molecular, Devices, Sunnyvale, CA). Data were analyzed using Microsoft Excel, MIN4analysis (Synaptosoft, Decatur, GA), and/or IGR Pro (WaveMetrics, Lake Oswego, OR).
OR). Pooled data are presented as either mean ± SE or box plots, and statistical analyses were performed using Mann-Whitney U-test or the Wilcoxon test for paired data. P values are reported in the text or Figs. 2–7 with values < 0.05 considered as significant (*P < 0.05, **P < 0.01, ***P < 0.001).

Immunohistochemistry and Confocal Imaging

From acute slices. For morphological identification of FS-IN, neurons were filled with biocytin (0.2–0.4%). Additionally, the expression of the Ca2+-binding protein PV, a molecular marker of FS-IN, was also examined (Fig. 1A). After recording, slices were fixed with 4% paraformaldehyde in phosphate-buffered solution (PBS; 0.1 M, pH 7.3) overnight at 4°C. Following wash with PBS, slices were permeabilized and blocked with 0.3% Triton X-100, 5% goat serum, and 1% bovine serum albumin in PBS (blocking solution) for 1 h at 22°C. The blocking solution was also used to dilute primary and secondary antibodies. After incubation overnight at 4°C with a primary monoclonal antibody against PV (P3088, Sigma, St. Louis, MO, 1:1000) and streptavidin-Alexa 488 (1:1,000; Invitrogen) and streptavidin-Alexa 488 (1:1,000). Slices were covalently linked with Mowiol and imaged. Slices were imaged using a LMS 510 confocal microscope (Carl Zeiss Microimaging, Thornwood, NY) with a 40 oil objective. PV+ FS-IN were selected and manually traced. D2R analysis was based on measuring the fluorescence along the cells’ perimeter. First PV+ FS-IN perimeter was manually traced for maximum accuracy (on the PV immunostaining image), and then intensity of D2R was measured (on the D2R immunostaining image). Intensity was expressed in arbitrary units of fluorescence per micrometer. For the quantification, 8–10 PV+ FS-IN, from 3 different slices, were used (3 saline and 3 cocaine animals).

All image processing was performed using Image-J (National Institutes of Health, Bethesda, MD) and Photoshop 10 (Adobe Systems, Mountain View, CA).

RESULTS

To determine whether chronic exposure to cocaine leads to electrophysiological changes in FS-IN, juvenile male rats were injected during 5 consecutive days with 15 mg/kg of cocaine or saline, and FS-IN were recorded in layer 5 of the prefrontal and infralimbic PFC after short- (3–6 days) or long-term (10–13 days) withdrawal (Fig. 2A).

Repeated Administration of Cocaine Increase FS-IN Excitability

The passive and active membrane properties of mPFC FS-IN were studied after short- (3–6 days) or long-term withdrawal.
(10–13 days) (Fig. 2 and Table 1). A series of depolarizing current steps was injected into the cell to evoke spikes and assess membrane excitability. We found that the number of spikes elicited upon current injection into FS-IN cells is similar between saline- and cocaine-injected animals after short-term withdrawal (Fig. 2, B and C). Neither did we observe a change difference in FS-IN input resistance (Fig. 2D). However, after long-term withdrawal, there was a significant leftward-shift in the input-output curve, indicating an increase in intrinsic excitability (Fig. 2C). Spike firing was increased in cocaine-injected animals, and the rheobase, defined as the minimal current to evoke a single spike, was significantly smaller (saline 258.60 ± 13.41 pA vs. cocaine 169.63 ± 13.46 pA, P < 0.001) (Table 1). First spike parameters such as onset time, threshold, rise time, afterhyperpolarization, and width were measured both at rheobase and 15-Hz firing. No significant changes in any of these parameters were observed after short- (data not shown) or long-term withdrawal (Table 1). Passive membrane properties measured by the input resistance at −100 pA were also affected by cocaine. Input resistance was significantly enhanced in cocaine animals after long-term withdrawal (Fig. 2D, Table 1). Resting membrane potential remained unaffected, although the cells were slightly more depolarized after long-term withdrawal (Table 1).

Cocaine Alters I_h After Long-term Withdrawal

Change in neuronal intrinsic excitability results from modification in properties and/or number of voltage-gated ion channels (Spitzer 1999). Previous studies showed that, in layer 5 pyramidal neurons from cocaine-withdrawn animals, Na^+ and Ca^{2+} spikes are increased (Dong et al. 2005; Ford et al. 2009; Nasif et al. 2005a) due to decreased voltage-gated K^+ and K_r currents (Dong et al. 2005; Nasif et al. 2005b). In addition, it was previously reported that DA increases FS-IN excitability by reducing different K^+ currents, such as K_{ leaks}, K_r, and K_w (Gorelova et al. 2002). We isolated and measured the major ionic currents expressed in FS-IN using voltage-clamp protocols and pharmacological manipulations. We found no difference in K^+ current properties between groups (Fig. 3, A–C). Neither did we find changes in Ca^{2+} currents (Fig. 3D). The maximum current density recorded from all of these currents exhibited no difference between the saline and cocaine groups (K_r: saline 97.09 ± 18.53 pA/pF vs. cocaine 93.02 ± 22.86 pA/pF, P > 0.05; K_{ leaks} + K_r: saline −47.7 ± 3.61 pA/pF vs. cocaine −48.8 ± 2.77 pA/pF, P > 0.05; K_w: saline −21.84 ± 2.34 pA/pF vs. cocaine −23.23 ± 1.79 pA/pF, P > 0.05; Fig. 4A). We did, however, observe a significant decrease in the I_h after cocaine (saline −11.64 ± 0.86 pA/pF vs. cocaine −8.74 ± 1.13 pA/pF, P < 0.05; Fig. 4B). No shift in the activation curve was noted (Fig. 4C and Table 2), and I_h kinetics were not affected in cocaine animals (Fig. 4D). These results suggest that I_h reduction is due to a decrease in the maximal conductance.

To confirm I_h role of I_h on FS-IN intrinsic excitability and 2) its implication in increased excitability after long-term cocaine withdrawal, we measured the effect of I_h blockade, using its specific block ZD7288, on FS-IN membrane properties and input-output function in saline and cocaine animals after long-term withdrawal. We found that current/voltage and input/output curves are significantly affected by I_h blockade in saline animals. Suppression of I_h enhanced the voltage response to a given current step (Fig. 5A) and increased the number of spikes evoked by supralinear depolarizing current step (Fig. 5C). In contrast, there is no significant effect of I_h blockage in cocaine animals (Fig. 5, B and D). Our results

Table 1. Passive and active membrane properties of FS-IN in layer 5 mPFC neurons from saline- and cocaine-treated rats after long-term withdrawal

<table>
<thead>
<tr>
<th>Pretreatment</th>
<th>Saline</th>
<th>Cocaine</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>19</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Passive membrane properties

<table>
<thead>
<tr>
<th></th>
<th>Saline</th>
<th>Cocaine</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMP, mV</td>
<td>−78.03 ± 0.98</td>
<td>−75.76 ± 0.91</td>
<td>ns</td>
</tr>
<tr>
<td>Input resistance, MΩ</td>
<td>103.58 ± 4.65</td>
<td>131.25 ± 8.29</td>
<td><0.05*</td>
</tr>
</tbody>
</table>

Active membrane properties

<table>
<thead>
<tr>
<th></th>
<th>Saline</th>
<th>Cocaine</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheobase, pA</td>
<td>258.60 ± 13.41</td>
<td>169.63 ± 13.46</td>
<td><0.001*</td>
</tr>
<tr>
<td>First spike parameters @ rheobase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onset, ms</td>
<td>206.72 ± 51.79</td>
<td>258.78 ± 49.98</td>
<td>ns</td>
</tr>
<tr>
<td>Threshold, mV</td>
<td>−40.73 ± 1.07</td>
<td>−41.28 ± 3.36</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time 10–90%, ms</td>
<td>0.29 ± 0.04</td>
<td>0.33 ± 0.04</td>
<td>ns</td>
</tr>
<tr>
<td>Maximum, mV</td>
<td>9.86 ± 1.38</td>
<td>13.01 ± 1.56</td>
<td>ns</td>
</tr>
<tr>
<td>AHP amplitude, mV</td>
<td>−21.72 ± 1.03</td>
<td>−19.79 ± 0.88</td>
<td>ns</td>
</tr>
<tr>
<td>Width, ms</td>
<td>0.56 ± 0.02</td>
<td>0.54 ± 0.01</td>
<td>ns</td>
</tr>
<tr>
<td>First spike parameters @ 15-Hz firing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onset, ms</td>
<td>42.19 ± 16.87</td>
<td>70.02 ± 29.59</td>
<td>ns</td>
</tr>
<tr>
<td>Threshold, mV</td>
<td>−44.64 ± 1.35</td>
<td>−46.84 ± 1.44</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time 10–90%, ms</td>
<td>0.34 ± 0.14</td>
<td>0.34 ± 0.03</td>
<td>ns</td>
</tr>
<tr>
<td>Maximum, mV</td>
<td>9.05 ± 1.75</td>
<td>11.16 ± 1.65</td>
<td>ns</td>
</tr>
<tr>
<td>AHP amplitude, mV</td>
<td>−15.78 ± 1.24</td>
<td>−16.32 ± 1.61</td>
<td>ns</td>
</tr>
<tr>
<td>Width, ms</td>
<td>0.57 ± 0.02</td>
<td>0.55 ± 0.00</td>
<td>ns</td>
</tr>
<tr>
<td>Accommodation index</td>
<td>13.08 ± 4.01</td>
<td>5.36 ± 1.34</td>
<td>ns</td>
</tr>
</tbody>
</table>

Values are means ± SE; n, no. of neurons (saline, n = 19, 8 rats; cocaine, n = 18, 7 rats). RMP, resting membrane potential; AHP, afterhyperpolarization. Parameters of the first spike were measured during step current injections corresponding at the rheobase or when neurons fired at approximately 15 Hz (i.e., 12–18 action potentials during the 1-s current step). Accommodation is defined by (t_{spike 2} − t_{spike 1})/(t_{spike n} − t_{spike n−1}), where t is time. *Significant difference. ns, Not significant.
therefore indicate that I_h plays an important role in FS-IN intrinsic excitability and is altered in cocaine animals after long-term withdrawal.

Cocaine Effects on Basal Synaptic Transmission After Long-term Withdrawal

In the mPFC, cocaine is known to induce many changes in neurotransmission (Steketee 2003), and synaptic background activity has been shown to influence the neuronal input/output function (Destexhe and Pare 1999; Wolfart et al. 2005). Therefore, we examined potential effects of cocaine on basal synaptic transmission by recording mEPSCs from FS-IN from saline- and cocaine-injected rats (Fig. 6). The amplitude of mEPSCs was decreased in cocaine animals compared with saline-treated animals, indicating that α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor properties and/or expression were affected by cocaine exposure (saline 16.99 ± 0.92 pA vs. cocaine 14.36 ± 0.70 pA, $P < 0.05$) (Fig. 6, A and B). Interestingly, we found more small mEPSCs (<10 pA, $P < 0.05$) and fewer large mEPSCs (>80 pA, $P < 0.05$) in cocaine-injected animals (Fig. 6B, right). The frequency of mEPSCs observed was also affected by cocaine exposure with the number of events per second being significantly decreased in cocaine animals (saline 8.74 ± 0.85 Hz vs. cocaine 6.81 ± 1.17 Hz, $P < 0.05$) (Fig. 6C).

FS-IN receive also local inhibitory inputs, we also measured inhibitory activity. We found no change in either mIPSC amplitude or frequency (amplitude: saline 13.33 ± 1.16 pA vs. cocaine 13.49 ± 1.57, $P > 0.05$; frequency: saline 3.39 ± 0.35 vs. cocaine 3.39 ± 0.36, $P > 0.05$) (Fig. 6, D and F).

Altered D$_2$R Intrinsic Excitability Modulation After Long-term Cocaine Withdrawal

Consistent with previous studies, bath application of the D$_2$R agonist quinpirole increased spike firing evoked by a positive step of current in FS-IN after long-term withdrawal (Kroener and Lavin 2010; Tseng and O’Donnell 2007). During short-term withdrawal, no difference was observed in the enhancement of spike numbers after 5 min quinpirole between saline and cocaine groups (saline $179 \pm 4\%$ vs. cocaine $184 \pm 4\%$, $P > 0.05$) (Fig. 7, A and B). However, after long-term withdrawal, cocaine-injected animals were found to be less sensitive to quinpirole application (saline $261 \pm 6\%$ vs. cocaine $197 \pm 5\%$, $P < 0.05$) (Fig. 7, C and D). These data suggest that, as for our observed changes in intrinsic excitability (Fig. 2, Table 1), changes in D$_2$R activity occurred only after a long withdrawal period.

It was previously shown that D$_2$R expression and/or activity is decreased in mPFC after cocaine exposure (Briand et al. 2008). However, in this study, mPFC was analyzed in its...
The excitability of FS-IN neurons was assessed after long-term withdrawal using membrane currents and H-current kinetics. In cocaine-treated animals, the H-current density was significantly reduced compared to saline animals (Fig. 7F). This observation is consistent with previous findings showing that D2R expression in FS-IN is crucial for maintaining intrinsic excitability. We measured Ih in control conditions and after quinpirole application, which is a D2R agonist, to evaluate the modulation of Ih by D2R activation. It was found that Ih is significantly larger in saline compared with cocaine animals (Fig. 7G). This reduction in Ih density is accompanied by a decrease in D2R expression, indicating that D2R plays a critical role in controlling FS-IN excitability.

DISCUSSION

In this study, we have examined the excitability of FS-IN in the mPFC after a period of short-term or long-term cocaine withdrawal. We found that modifications in FS-IN occurred only after long-term withdrawal. Indeed, no significant changes are observed during short-term withdrawal. We showed that 5 days of long-term withdrawal alters H-current. A: maximum current density of each studied current. B: representative traces of membrane currents isolated by subtracting traces obtained in 20 μM ZD 7288 from control traces [holding potential (V_{holding}) = −50 mV, step from −60 mV to −120 mV, 10-mV increments] (saline, n = 14, 3 rats; cocaine, n = 17, 4 rats). Current densities, calculated by dividing the amplitude of each steady-state current (dark circle) by membrane capacitance, are plotted against each test potential. Scale bars: 100 ms/200 pA. C: activation curves from repeated saline- (black) or cocaine-treated animals (gray). Ih_{tail} max, maximum tail current. D: H-current kinetics from repeated saline- (black) or cocaine-treated animals (gray). The mean activation (open triangle) and deactivation (filled square) time constants are plotted against the voltage step command. Significant difference: *P < 0.05, **P < 0.01. ns, Not significant.

Table 2. Comparison of Ih properties in FS-IN in saline and cocaine pretreated animals after long-term withdrawal

<table>
<thead>
<tr>
<th>Pretreatment</th>
<th>Saline</th>
<th>Cocaine</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>1/2</sub>, mV</td>
<td>−77.19 ± 1.03</td>
<td>−78.80 ± 1.32</td>
<td>ns</td>
</tr>
<tr>
<td>Slope factor</td>
<td>14.04 ± 1.02</td>
<td>15.26 ± 1.35</td>
<td>ns</td>
</tr>
<tr>
<td>τ Activation @ −120 mV, ms</td>
<td>36.62 ± 6.41</td>
<td>47.23 ± 4.84</td>
<td>ns</td>
</tr>
<tr>
<td>Ih density at −110 mV, pA/pF</td>
<td>−8.35 ± 0.58</td>
<td>−6.08 ± 0.75</td>
<td><0.05*</td>
</tr>
</tbody>
</table>

Values are means ± SE. V_{1/2}, half-activation voltage; τ, time constant; Ih, hyperpolarization-activated current. *Significant difference.

J Neurophysiol • doi:10.1152/jn.00596.2012 • www.jn.org
repeated cocaine exposure followed by 10–13 days of withdrawal facilitated spike firing, reduced \(I_h\) current, decreased mEPSC activity, and reduced \(D_2R\) expression in FS-IN.

FS-IN Intrinsic Plasticity Induced By Cocaine Exposure

Withdrawal from repeated cocaine exposure is associated with altered membrane properties of FS-IN in the mPFC. It has been previously shown that chronic cocaine increased mPFC intrinsic excitability of L5 pyramidal neurons by modulating \(K^+\) and \(Ca^{2+}\) channel properties (Dong et al. 2005; Ford et al. 2009; Nasif et al. 2005a, 2005b). This increased intrinsic excitability has also been attributed to a decrease in GABAergic inhibition by reducing the surface expression of GABA\(_A\) receptors in juvenile cocaine-treated animals or after in utero cocaine injection (Huang et al. 2007; Lu et al. 2009, 2010). Unlike pyramidal neurons that exhibit these cocaine-induced electrophysiological adaptations after only 3 days of withdrawal, we observed changes in FS-IN appeared after several days of cocaine withdrawal (requiring more than 6 days). This increase in FS-IN excitability is consistent with the reported increase in extracellular concentration of GABA and GABAergic transmission in the mPFC during cocaine withdrawal, as previously described (Jayaram and Steketee 2005).

Mechanisms of FS-IN Increased Intrinsic Excitability After Cocaine Exposure

We observed cocaine-induced changes in FS-IN firing, along with a decrease in \(I_h\). Pharmacological \(I_h\) blockade significantly affected current/voltage and input/output curves in saline animals, while there was no significant effect of \(I_h\) blockade in cocaine animals (Fig. 5, B and D). Our results, therefore, indicate that \(I_h\) plays an important role in FS-IN intrinsic excitability and is altered in cocaine animals after long-term withdrawal. Although we did not observe significant changes in any other ionic currents measured (Figs. 3 and 4A), the discrepancy between the magnitude of firing frequency change after long-term cocaine withdrawal (Fig. 2C) and that found after \(I_h\) block (Fig. 3C) may indicate that other unresolved factors are involved.

In FS-IN, \(I_h\) controls the resting membrane potential and the input resistance, and therefore shapes the dendritic integration and the input-output function (Aponte et al. 2006). \(I_h\) also plays...
an important role in rhythmogenesis (Aponte et al. 2006). Recent studies showed that regulation of I_{K} might contribute to drug sensitization neuroadaptations. For instance, an increase in VTA DA neuron excitability is observed in association with a downregulation of I_{K} after withdrawal from repeated ethanol (but see also Bandyopadhyay and Hablitz 2007; Hopf et al. 2007; Okamoto et al. 2006) or cocaine exposure (Arencriab-Albite et al. 2012). Our observed reduction in I_{K} amplitude is caused by a reduced number of H-channels at the cell membrane, as we found no change in its activation curve or kinetic properties.

It has been previously shown that stimulation of D$_2$R in VTA neurons produces a cAMP-independent decrease in the maximal conductance of HCN currents without changing the activation voltage dependence (Jiang et al. 1993). This mechanism is relatively unlikely here, since I_{K} downregulation was associated with decreased D$_2$R expression. One possible explanation of our results would be via the activation of protein kinase C. It has been previously shown that inhibition of I_{K} by neuromodulators involves protein kinase C (Cathala and Paupardin-Tritsch 1997). Regulation by other kinases, like protein kinase A or calcium/calmodulin kinase II is also possible, since H-channels have a putative site for phosphorylation (Santoro et al. 1997; Zong et al. 2005) and D$_1$/D$_2$R pathways involve many different kinases (Beaulieu and Gainetdinov 2011). It has been previously reported that DA through D$_1$R and/or D$_2$R affects K$^+$ currents (Dong et al. 2004, 2005; Gorelova et al. 2002). For instance, activation of D$_2$R suppresses a Cs-sensitive K$_m$ and a resting K$_\text{leak}$ in FS-IN (Gorelova et al. 2002). However, we did not find any change in K$^+$ currents after cocaine exposure in this study.

Chronic cocaine is well known to induce changes in glutamatergic neurotransmission within the mesocorticolimbic system (Bowers et al. 2010). Here, we reported a decrease in mEPSC amplitude in cocaine-treated animals that might be the consequence of a downregulation of AMPA receptors (AMPARs) at the FS-IN cell surface. A decrease in the number of AMPARs is consistent with the increased input resistance that we observed. It has also been shown that DA regulates AMPAR surface and synaptic expression in pyramidal neurons of the PFC (Sun et al. 2005). The reduction in mEPSC frequency could also reflect a presynaptic effect from the L2–3
or L5 pyramidal neurons, the two main glutamatergic input into FS-IN. Bidirectional changes such as increased excitability vs. reduced synaptic input might result from homeostatic compensation mechanisms.

Altered DA Modulation After Cocaine Exposure

DA controls cell excitability and synaptic transmission in the PFC (Seamans and Yang 2004), and, as a result, DA also regulates local network activity (Bandyopadhyay and Hablitz 2007). DA receptors thus represent an important subject of interest in drug addiction research (Di Chiara and Bassareo 2007; Le Foll et al. 2009; Nicola et al. 2000). For instance, D₃R activation plays an important role in cocaine sensitization. Intracortical D₃R agonist injection in the mPFC blocked the initiation and blunted the expression of cocaine-induced behavioral and neurochemical sensitization (Seamans and Yang 2004). As with L5 pyramidal neurons, FS-IN express both D₁ and D₂ classes of DA receptors (Gaspar et al. 1995; Vincent et al. 1995, 1993). D₁-class DA receptors (D₁R and D₅R) activate the G_a_{olf} family of G proteins to stimulate cAMP production by adenylate cyclase, whereas D₂-class DA receptors (D₂R, D₃R, and D₄R) couple to G_{i/o} family of G proteins and thus induce inhibition of adenylate cyclase. In neurons, through its G_{olf} subunits, D₂-class DA receptors are known to directly

Fig. 7. FS-IN spike-firing modulation by D₃ receptors (DR2) after short- and long-term cocaine withdrawal. Representative traces show the effects of quinpirole (10 μM for 5 min) on FS-IN spike-firing in saline- and cocaine-treated animals following short- (A) or long-term withdrawal (C). Time course is shown of normalized spike number during quinpirole bath application after short- (B: saline, n = 13, 7 rats; cocaine, n = 12, 5 rats) or long-term withdrawal (D: saline, n = 9, 5 rats; cocaine, n = 8, 6 rats). Note that quinpirole is less effective in cocaine animals after long-term withdrawal. E: representative images for DR2 and parvalbumin immunostaining for saline- and cocaine-injected animals after long-term withdrawal (green, DR2; red, parvalbumin; yellow, overlapping signals). Insets, higher magnification of soma pointed by arrows. Scale bar: 50 μm, 10 μm inset. F: quantification of DR2 expression in parvalbumin⁺ cells (saline, n = 85, 3 rats; cocaine, n = 84, 3 rats). G: examples of whole-cell traces of I_h and current density graph from saline (black) or cocaine-pretreated (gray) animals after long-term withdrawal in control (filled circle) or after quinpirole (10 μM) application (open circle) (saline, n = 14, 4 rats; cocaine, n = 15, 4 rats). H: quantification of H-current reduction. Significant difference: *P < 0.05, **P < 0.01, ***P < 0.001.
Physiological and Functional Relevance of Altered Inhibition

Drug addiction is defined as a chronic disorder that has been characterized by compulsion to seek and take the drug, loss of control in limiting intake, and emergence of a negative emotional state (e.g., anxiety, irritability, anhedonia), reflecting a withdrawal syndrome (Koob and Volkow 2010). More specifically, in cocaine users, executive cognitive functions like short-term memory, attention, or decision making, known to require the PFC, are impaired (Bolla et al. 2004; Briand et al. 2008; Garavan et al. 2008; Hoff et al. 1996; Jovanovski et al. 2005; Kantak et al. 2005; Miller 1985). Pharmacological studies showed that inactivation of dorsal mPFC blocks cue-induced (McLaughlin and See 2003), cocaine-primed (McFarland and Kalivas 2001), and stress-induced (Capriles et al. 2003) drug reinstatement in animal models of addiction. Structural and functional imaging studies also confirmed that prefrontal function is altered in addicts (Goldstein and Volkow 2011). For instance, during withdrawal, activity in the orbitofrontal cortex (including the mPFC) is remarkably decreased (Volkow 2004; Volkow et al. 2004). The increase in FS-IN excitability that we described may contribute to this prefrontal hypoactivity. Indeed, inhibition plays a key role in the global network activity by controlling the level of excitation (Pouille and Scanziani 2001) and fine-tuning action potential precision in pyramidal neurons (Caillard 2011). Activity levels in orbitofrontal cortex have also been correlated with the availability of D_2R (Volkow et al. 2004). More generally, it has been suggested that PFC activity states depend on the balance between D_1R and D_2R activation (Durstewitz and Seamans 2008). After cocaine, D_1R signaling is enhanced, whereas D_2R is reduced, resulting in attenuated PCF output (Hu 2007). Behaviorally, this D_1/D_2 imbalance in the PFC may affect the motivational process of assignment of salience value to a stimulus as a function of it context and as a result reduced motivation to respond to nondrug-related stimuli (Durstewitz and Seamans 2008). Therefore, change in FS-IN intrinsic excitability and altered DA modulation observed after chronic cocaine exposure may participate in behavioral sensitization and withdrawal effects.

Pierce RC, Reeder DC, Hicks J, Morgan ZR, Kalivas PW. Ibotoic acid lesions of the dorsal prefrontal cortex disrupt the expression of behavioral sensitization to cocaine. *Neuroscience* 82: 1103–1114, 1998.

Rolls ET, Cooper SJ. Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. *Dev Neurobiol* 71: 45–61, 2011.

Tzschentke TM, Schmidt WJ. Discrete quinolinic acid lesions of the rat prelimbic medial prefrontal cortex affect cocaine- and MK-801-, but not morphine- and amphetamine-induced reward and psychomotor activation as measured with the place preference conditioning paradigm. *Behav Brain Res* 97: 115–127, 1998b.

