Transient reversal of the sodium/calcium exchanger boosts presynaptic calcium and synaptic transmission at a cerebellar synapse

Chris J. Roome, Emmet M. Power, and Ruth M. Empson

Department of Physiology, Brain Health Research Centre, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand

Submitted 25 September 2012; accepted in final form 12 December 2012

Roome CJ, Power EM, Empson RM. Transient reversal of the sodium/calcium exchanger boosts presynaptic calcium and synaptic transmission at a cerebellar synapse. J Neurophysiol 109: 1669–1680, 2013. First published December 19, 2012; doi:10.1152/jn.00854.2012.—The sodium/calcium exchanger (NCX) is a widespread transporter that exchanges sodium and calcium ions across excitable membranes. Normally, NCX mainly operates in its “forward” mode, harnessing the electrochemical gradient of sodium ions to expel calcium. During membrane depolarization or elevated internal sodium levels, NCX can instead switch the direction of net flux to expel sodium and allow calcium entry. Such “reverse”-mode NCX operation is frequently implicated during pathological or artificially extended periods of depolarization, not during normal activity. We have used fast calcium imaging, mathematical simulation, and whole cell electrophysiology to study the role of NCX at the parallel fiber-to-Purkinje neuron synapse in the mouse cerebellum. We show that nontraditional, reverse-mode NCX activity boosts the amplitude and duration of parallel fiber calcium transients during short bursts of high-frequency action potentials typical of their behavior in vivo. Simulations, supported by experimental manipulations, showed that accumulation of intracellular sodium drove NCX into reverse mode. This mechanism fueled additional calcium influx into the parallel fibers that promoted synaptic transmission to Purkinje neurons for up to 400 ms after the burst. Thus we provide the first functional demonstration of transient and fast NCX-mediated calcium entry at a major central synapse. This unexpected contribution from reverse-mode NCX appears critical for shaping presynaptic calcium dynamics and transiently boosting synaptic transmission, and is likely to optimize the accuracy of cerebellar information transfer.

DURING SYNAPTIC TRANSMISSION: the timing of the rise and fall of presynaptic Ca\(^{2+}\) is critical for neurotransmitter release and various forms of synaptic plasticity. Homeostatic mechanisms that actively control presynaptic internal Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]) dynamics are therefore fundamental for the fidelity and timing of synaptic transmission (Augustine 2001; Zucker and Regehr 2002). To this end, a variety of mechanisms at presynaptic terminals are known to influence both residual [Ca\(^{2+}\)] and short-term plasticity (Blaustein 1988; Empson and Knöpfel 2010). Of these, the Na\(^{+}\)/Ca\(^{2+}\) exchanger (NCX) stands out as a mechanism that exchanges two Ca\(^{2+}\) ions for three Na\(^{+}\) ions. In contrast to other dedicated Ca\(^{2+}\) transporters, such as the plasma membrane Ca\(^{2+}\)-ATPase (PMCA), NCX uniquely facilitates both net Ca\(^{2+}\) exit (NCX forward mode) and Ca\(^{2+}\) entry (NCX reverse mode), where the direction of transport is determined by Na\(^{+}\) and Ca\(^{2+}\) gradients and the membrane potential (Blaustein and Lederer 1999). Pioneering early work revealed that the NCX couples Ca\(^{2+}\) and Na\(^{+}\) movements in axons (Baker et al. 1969), and more recent studies have shown NCX expression and activity within presynaptic terminals (Blaustein et al. 1996; Blaustein and Oborn 1975; Juhaszova et al. 2000; Regehr 1997). Previous work has suggested distinct roles for NCX at synaptic terminals. Physiological Ca\(^{2+}\) measurements show that NCX operates in its forward (Ca\(^{2+}\) exit) mode to recover residual Ca\(^{2+}\) levels and influence short-term synaptic plasticity (Jeon et al. 2003; Kim et al. 2005). In contrast, chemical depolarization of synaptic terminals (Blaustein and Oborn 1975; Taglialetela et al. 1990) or prolonged tetanic stimulation at crayfish neuromuscular junctions (Zhong et al. 2001) revealed reverse-mode NCX-mediated Ca\(^{2+}\) entry, but the physiological relevance of the extra Ca\(^{2+}\) is unclear (Minami et al. 2007). To address these apparent inconsistencies and to further elucidate the physiological role for NCX during presynaptic Ca\(^{2+}\) dynamics, we have taken advantage of the well-characterized parallel fiber-to-Purkinje neuron (PF-PN) synapse, where the dynamics of presynaptic residual Ca\(^{2+}\) underlies its facilitatory behavior (Atluri and Regehr 1996). NCX is expressed at this synapse (Li et al. 2000), and a previous study reported NCX activity during PF activation (Regehr 1997). From a wider perspective, the modulation of short-term facilitation at the PF-PN synapse by NCX may be critical for reliable information transfer (Rotman et al. 2011) in the cerebellum.

To address the role of NCX at this important synapse, we combined fast presynaptic Ca\(^{2+}\) imaging during physiologically relevant stimulation patterns with pharmacology and whole cell electrophysiology. At the same time we informed our experimental interpretations with mathematical simulations of Na\(^{+}\) and Ca\(^{2+}\) fluxes within PFs. Uniquely, reverse-mode NCX drove Ca\(^{2+}\) entry into PFs during short bursts of high-frequency activity typical of their behavior in vivo (Chaderton et al. 2004). Mechanistically, the switch to reverse-mode NCX relied on the accumulation of [Na\(^{+}\)], during multiple presynaptic action potentials. Physiologically, reverse-mode NCX transiently boosted Ca\(^{2+}\) entry into the PF terminals and promoted PF-PN synaptic transmission. Together, these findings define NCX as an important, new, and fast presynaptic Ca\(^{2+}\) entry route.

METHODS

Ethical approval. All animal husbandry and procedures minimized animal suffering and were carried out using internationally recognized protocols approved by the University of Otago Animal Ethics Committee working to the New Zealand Animal Welfare Act (1999).

Slice preparation. Longitudinal cerebellar slices 300 μm thick were prepared from 3- to 4-wk-old C57 B6 male mice for imaging PFs and as sagittal slices for electrophysiology (Empson et al. 2007). Slices were maintained at 24°C (model TC324B; Harvard Apparatus) in a flow (3 ml/min) of artificial cerebrospinal fluid (aCSF), equilibrated with 95% O\(_2\) and 5% CO\(_2\), containing (in mM) 126 NaCl, 2.5...
transients in response to interleaved single (1×) and repetitive burst stimulation of PFs (a burst consisted of 5 stimuli delivered at 200 Hz, also called 5×) were recorded before application of pharmacological tools to manipulate NCX. In most (but not all) experiments, single 1× and burst 5×-evoked Ca²⁺ transients were obtained from the same slice. Application of pharmacological agents took place over a period of 5–10 min, after which the Ca²⁺ transients were again recorded in the continued presence of the pharmacological agent.

Electrophysiology. Whole cell recordings from Purkinje neuron (PN) soma under visual control were performed using glass electrodes (5–7 MΩ) containing (in mM) 5 KCl, 20 KOH, 3.5 MgCl₂, 4 NaCl, 120 K-gluconate, 10 HEPEs, 18 sucrose, 4 Na·ATP, 0.4 Na·GTP, and 10 EGTA, pH 7.3 and osmolality 305 mosM. Voltage clamp (Axopatch 200B; Molecular Devices) maintained cells at −65 mV with holding current less than −0.3 nA during electrophysiological protocols (pCLAMP; Molecular Devices). Series resistances were monitored throughout the experiment with the use of a short 5-mV test pulse and were typically <20 MΩ but no greater than 30 MΩ and varied by less than 15% during experiments. PF stimulation (10 μs, 2–15 μA) was delivered as a pair of stimuli (separation 50 ms) every 45 s through a glass electrode filled with aCSF (200–600 kΩ) placed in the outer two-thirds of the molecular layer; peak excitatory post-synaptic current (EPSC) amplitude was measured from baseline just before the stimulus artifact to peak. Burst stimulation, as in the imaging experiments, consisted of 5 stimuli at 200 Hz.

Whole cell voltage-dependent Ca²⁺ currents from undifferentiated PC12 cells (kindly provided by Drs. Stephen Bunn and Istvan Abraham, University of Otago) 1–2 days after they were plated onto poly-l-lysine coverslips were obtained using the same recording amplifier and set up as described above. The extracellular solution contained (in mM) 140 NaCl, 10 TEACl, 10 CaCl₂, 2 MgCl₂, 10 HEPEs, 10 glucose, and 26 sucrose, pH 7.3; the intracellular solution contained (in mM) 100 Cs-methanesulfonate, 10 TEACl, 10 EGTA, 7.5 NaCl, 3.5 MgCl₂, 10 lidocaine, 20 CsOH, 8 sucrose, 10 HEPEs, 4 Mg·ATP, and 0.4 Na·GTP, pH 7.2. Series resistance, cell leak, and capacitance were fully compensated. Inward currents were evoked by a 400-ms depolarization from −80 to +10 mV, and the steady-state current was expressed as a current density (pA/pF) using the capacitance measurement recorded from directly from the Axopatch amplifier. Inward currents were similar to those previously reported (Garber et al. 1989); they were also voltage dependent and reversibly abolished by zero extracellular Ca²⁺ (n = 3) and 100 μM CdCl₂ (n = 3). Under these conditions the mean steady-state current changed from 3.4 ± 0.7 to 0.08 ± 0.3 pA/pF (P < 0.01, n = 6, paired t-test).

Solutions and pharmacological treatments. EPSCs were evoked in the presence of 50 μM picrotoxin (Sigma-Aldrich) and prevented by 20 μM 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX; Tocris Cookson). We conducted imaging and electrophysiology protocols in the presence of KB-R7943 (10–20 μM), SN-6 (10 μM), ω-agatoxin IVA (0.5 μM), cyclopiazonic acid (CPA; 10 μM), ouabain (80 mM), 20 μM NBQX, 10 μM felodipine (all from Tocris Cookson), or low extracellular Na⁺ (63 mM NaCl, 63 mM choline chloride; Sigma-Aldrich). In some experiments we applied serial applications of two of the above treatments, e.g., ω-agatoxin IVA followed by KB-R7943. All pharmacological tools (less choline chloride and NBQX, both dissolved in water) were stored as 1,000× stock solutions in DMSO solvent. DMSO controls for both imaging and electrophysiology were negative.

Theoretical simulations. We generated a single-compartment model to simulate Ca²⁺ and Na⁺ fluxes across the PF presynaptic terminal membrane. The model incorporated a previous model of NCX flux from Weber et al. (2001) that used some parameters from PFs developed by Regehr (1997) together with a model for PF presynaptic Ca²⁺ dynamics modified from Erler et al. (2004) that included voltage-dependant Ca²⁺ entry, PMCA-mediated Ca²⁺ removal, and endogenous and exogenous Ca²⁺ buffers.

Fig. 1. Presynaptic parallel fiber (PF) Ca²⁺ transients during 1× and 5× burst stimulation protocols. A: a brightfield image (left) of the longitudinal cerebellar slice showing the position of the stimulating electrode (Stim) and the direction of PF stimulation (arrows) in the outer two-thirds of the molecular layer (ML), and the corresponding fluorescence (right) from Ca²⁺ dye that has been actively transported from the loading site along a beam of PFs. The red rectangle shows the region of interest quantified in B. Scale bar, 0.5 mm. B: examples of normalized fluorescence intensity changes (ΔF/F) in the region of interest in response to a single (1×) stimulation (lower trace) and to a short burst of 5 stimulations (5×) at 200 Hz (5-ms separation). The bar graph (insert) shows the average amplitude of the peak normalized percent fluorescence for 1× and 5× stimulation, showing that the response to burst stimulation (5×) was approximately 5 times larger than the response to a single stimulus (1×). These fluorescence-based Ca²⁺ signals were therefore within the linear range and allowed accurate interpretation of changes in the amplitude of the fluorescence response. C: group mean recovery dynamics of the Ca²⁺ transients, determined from two-phase exponential decay function fits following the peak. t1 and t2 represent the first and second phases of recovery, respectively, for transients evoked by 1× or 5× stimulation. Values are means ± SE. *P < 0.05; **P < 0.01; ***P < 0.001, paired t-tests; all comparisons are between 1× and 5× values.
calcium influx through VDCCs. Calcium influx (JCa_in) through VDCCs is characterized by an ohmic voltage-current relation through an open channel of conductance (gCa) and density (ρ_{Ca}), $\rho_{Ca}[V(c) - V(t)]$, and a voltage-dependent opening probability, $g_{Ca}[V(t)]$ (Tsien 1983), shown below:

$$ J_{Ca} = \rho_{Ca}[V(t)][g_{Ca}(c) - V(t)] $$

where V is the membrane potential and g_{Ca} is the reversal potential as described by the Nernst equation:

$$ g_{Ca}(c) = \frac{RT}{g_{Ca} / F} \ln \left(\frac{[Ca^{2+}]_{o}}{[Ca^{2+}]_{i}} \right) $$

where R, T, z, and F are universal constants (8.315 J·K⁻¹·mol⁻¹, 300 K, 2, and 96.485 C/mol, respectively), and ΔV_{eff} corrects the exact reversal potential for the linear approximation (Erler et al. 2004).

The time dependence of the single-channel open probability is modeled by a single exponential approximation:

$$ g_{Ca}(c, t) = \left(g_{Ca}(c) - g_{Ca}(0) \right) \exp \left(-\frac{t}{\tau} \right) $$

where $g_{Ca}(c)$ is the half-activation voltage and τ describes the steepness of the asymptotic opening probability.

PMCA Ca²⁺ removal. Ca²⁺ efflux via PMCA was described by a simple Hill equation (Elwess et al. 1997; Erler et al. 2004):

$$ J_{pmca} = \frac{1}{\Delta V_{eff}} \left(\frac{[Ca^{2+}]_{o}}{[Ca^{2+}]_{i}} \right)^{n} + \left(\frac{[Na^{+}]_{o}}{[Na^{+}]_{i}} \right)^{n} \cdot \rho_{pmca} $$

where ΔV_{eff} is the maximal Ca²⁺ current via PMCA, ρ_{pmca} is the half-activation ion concentration, n is the Hill coefficient, and ρ_{pmca} is the PMCA protein density.

NCX Ca²⁺ and Na⁺ exchange. The NCX current (J_{NCX}) is described as the product of an electrochemical factor (ΔE, Eq. 12) and an allosteric factor (Allo, Eq. 11) (Allo et al. 11) (Weber et al. 2001) and was used to describe NCX-mediated Ca²⁺ and Na⁺ influx/efflux (Eqs. 9 and 10, respectively):

$$ \Delta E = \left\{ \begin{array}{ll}
K_{mCa} \left[Na^{+} \right] + K_{mNa} \left[Ca^{2+} \right] + K_{mCa} \left[Ca^{2+} \right] \left(1 + \frac{Na^{+}}{K_{mNa}} \right) + K_{mCa} \left[Na^{+} \right] \left(1 + \frac{Na^{+}}{K_{mNa}} \right) & \\
1 + K_{msi} \left[Na^{+} \right] \end{array} \right\} $$

where K_{mCa} and K_{mNa} are the Ca²⁺ and Na⁺ binding and unbinding rate constants, respectively.

$$ Allo = \left(\frac{\left[Ca^{2+} \right]_{o}^{n}}{\left[Na^{+} \right]_{o}^{n} + \left(K_{mNa} \right)^{n}} \right) $$

Calcium efflux = −$J_{NCX} = −\Delta E \cdot (Allo) \cdot \rho_{NCX}$

Sodium influx = +$3\left(J_{NCX} = + \Delta E \cdot (Allo) \cdot \rho_{NCX} $
where \bar{I}_{ncx} is the maximal Ca$^{2+}$ current via NCX, K_{ncx} is the activation Ca$^{2+}$ concentration, and p_{ncx} is the NCX protein density. $K_{\text{dissociation}}$ values are dissociation constants for internal (i) and external (e) Na$^+$ and Ca$^{2+}$, T is the position of the energy barrier of NCX in the membrane electric field, and K_{nat} is a factor controlling saturation of I_{ncx} at negative potentials. See Weber et al. (2001) for a complete description of the NCX model.

A complete list of universal constants and parameters used in the simulations is given in Table 1. We implemented all simulations using MATLAB (code available on request).

Statistics. For analysis we used pCLAMP 10 (Molecular Devices), Prism (GraphPad Software), and TableCurve2D (Jandel Scientific Software) all off-line. Akaike’s information criteria (AIC) in Prism confirmed that all Ca$^{2+}$ transient recoveries (in response to both 1× and 5 × stimulation) recovered with a two-phase exponential function, returning a probability of >99.99% that a two-phase fit (compared with a one-phase fit) provided the best fit to the data. We used these fits to record half-lives of fast (t_1) and slow (t_2) phases of Ca$^{2+}$ recovery. In all cases, the amplitude components of the double-exponential fits (A1 and A2) were ~0.7 and 0.3, where A1 + A2 = 1. A1 and A2 were also not significantly altered by KB-R7934, SN-6, and Ca$^{2+}$-sensitive dye fluo-4 dextran (Fig. 1A). We chose the latter to simulate afferent activity typically encountered in PFs during sensory stimulation (Chadderton et al. 2004) and also to sufficiently elevate PF presynaptic residual Ca$^{2+}$ to activate the low-affinity internal Ca$^{2+}$-sensitive Ca$^{2+}$ channel of NCX (Blaut and Lederer 1999). The mean amplitude of Ca$^{2+}$ transients in response to high-frequency stimulation was about five times greater than after a single stimulation (Fig. 1B, 1×; $P < 0.001, t$-test, $n = 7$). The Ca$^{2+}$ transient evoked by 5× stimulation also recovered more slowly, as indicated by the longer fast (t_1, slow (t_2) phases of Ca$^{2+}$ recovery.

RESULTS

Beams of parallel fibers (PFs) previously loaded with the Ca$^{2+}$-sensitive dye fluo-4 dextran (Fig. 1A) responded to electrical stimulation with a transient rise and fall in cytosolic Ca$^{2+}$. We used two stimulation protocols: a single stimulus (1×) and a repetitive high-frequency (200 Hz) stimulus burst (5 stimuli at 200 Hz, 5×; Fig. 1B). We chose the latter to simulate afferent activity typically encountered in PFs during sensory stimulation (Chadderton et al. 2004) and also to sufficiently elevate PF presynaptic residual Ca$^{2+}$ to activate the low-affinity internal Ca$^{2+}$-sensitive Ca$^{2+}$ channel of NCX (Blaut and Lederer 1999). The mean amplitude of Ca$^{2+}$ transients in response to high-frequency stimulation was about five times greater than after a single stimulation (Fig. 1B, 1×; $P < 0.001, t$-test, $n = 7$). The Ca$^{2+}$ transient evoked by 5× stimulation also recovered more slowly, as indicated by the longer fast (t_1, slow (t_2) phases of Ca$^{2+}$ recovery.

Table 1. Parameters used in the simulations of PF Na$^+$ and Ca$^{2+}$ movements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Abbreviation</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faraday constant</td>
<td>F</td>
<td>96.485 C/mol</td>
<td></td>
</tr>
<tr>
<td>Gas constant</td>
<td>R</td>
<td>8.315 J·K$^{-1}$·mol$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>T</td>
<td>300 K</td>
<td></td>
</tr>
<tr>
<td>Geometry factor</td>
<td>G</td>
<td>$(3.0/0.5) \times 10^{-6}$ m</td>
<td></td>
</tr>
<tr>
<td>Resting membrane potential</td>
<td>V_m</td>
<td>-70×10^{-3} V</td>
<td></td>
</tr>
<tr>
<td>Resting Ca$^{2+}$ concentration</td>
<td>[Ca$^{2+}$]$_i$</td>
<td>0.05×10^{-6} M</td>
<td>Regehr 1997</td>
</tr>
<tr>
<td>Extracellular Ca$^{2+}$ concentration</td>
<td>[Ca$^{2+}$]$_e$</td>
<td>2.4×10^{-3} M</td>
<td>Regehr 1997</td>
</tr>
<tr>
<td>Resting Na$^+$ concentration</td>
<td>[Na$^+$]$_i$</td>
<td>10×10^{-3} M</td>
<td>Regehr 1997</td>
</tr>
<tr>
<td>Extracellular Na$^+$ concentration</td>
<td>[Na$^+$]$_e$</td>
<td>150×10^{-3} M</td>
<td>Regehr 1997</td>
</tr>
<tr>
<td>Change in [Ca$^{2+}$], per action potential</td>
<td>Δ[Ca$^{2+}$]</td>
<td>500×10^{-6} M</td>
<td>Brenowitz and Regehr 2007</td>
</tr>
<tr>
<td>Change in [Na$^+$], per action potential</td>
<td>Δ[Na$^+$]</td>
<td>80×10^{-6} M</td>
<td>Brenowitz and Regehr 2007</td>
</tr>
</tbody>
</table>

Endogenous/exogenous buffers (based on calcein and fluo-4 dextran)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissociation constant</td>
<td>K_{ncx}</td>
<td>1.5×10^{-6} M</td>
</tr>
<tr>
<td>Buffer concentration</td>
<td>B_{ncx}</td>
<td>2.000×10^{-6} M</td>
</tr>
<tr>
<td>Voltage-dependent Ca$^{2+}$ channels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open pore conductivity</td>
<td>\bar{V}_{C}</td>
<td>14×10^{-12} S</td>
</tr>
<tr>
<td>Half-activation voltage</td>
<td>V_{A}</td>
<td>-4×10^{-3} V</td>
</tr>
<tr>
<td>Steepness of opening probability</td>
<td>K</td>
<td>6.3×10^{-3} V</td>
</tr>
<tr>
<td>Channel time constant</td>
<td>τ</td>
<td>1×10^{-3} s</td>
</tr>
<tr>
<td>Ca$^{2+}$ reversal potential</td>
<td>V_{eq}</td>
<td>47×10^{-3} V</td>
</tr>
<tr>
<td>VDCC density</td>
<td>ρ_e</td>
<td>7×10^9 m$^{-2}$</td>
</tr>
</tbody>
</table>

Plasma membrane Ca$^{2+}$-ATPase

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum activity rate</td>
<td>I_{pmca}</td>
<td>2.7×10^{-13} [Ca$^{2+}$]</td>
</tr>
<tr>
<td>PMCA density</td>
<td>p_{pmca}</td>
<td>3×10^{-14} m$^{-2}$</td>
</tr>
<tr>
<td>Half-activation concentration</td>
<td>H_{pmca}</td>
<td>0.1×10^{-6} M</td>
</tr>
</tbody>
</table>

Na$^+$/Ca$^{2+}$ exchanger

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum activity rate</td>
<td>\bar{I}_{ncx}</td>
<td>$100I_{\text{pmca}}$</td>
</tr>
<tr>
<td>Hill coefficient</td>
<td>N_{ncx}</td>
<td>2</td>
</tr>
<tr>
<td>Activation Ca$^{2+}$ concentration</td>
<td>I_{ncx}</td>
<td>125×10^{-3} M</td>
</tr>
<tr>
<td>NCX density</td>
<td>p_{ncx}</td>
<td>$0.03p_{\text{pmca}}$</td>
</tr>
<tr>
<td>External Ca$^{2+}$ dissociation constant</td>
<td>$K_{\text{dissociation}}$</td>
<td>1.3×10^{-3} M</td>
</tr>
<tr>
<td>External Na$^+$ dissociation constant</td>
<td>$K_{\text{dissociation}}$</td>
<td>87.5×10^{-3} M</td>
</tr>
<tr>
<td>Internal Ca$^{2+}$ dissociation constant</td>
<td>$K_{\text{dissociation}}$</td>
<td>3.6×10^{-6} M</td>
</tr>
<tr>
<td>Internal Na$^+$ dissociation constant</td>
<td>$K_{\text{dissociation}}$</td>
<td>12.3×10^{-3} M</td>
</tr>
<tr>
<td>Reverse-mode saturation factor</td>
<td>K_{sat}</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Parameters used in the simulations of parallel fiber (PF) Na$^+$ and Ca$^{2+}$ ion movements are listed with their abbreviations, values, and references providing their source. NCX, Na$^+$/Ca$^{2+}$ exchanger; PMCA, plasma membrane Ca$^{2+}$-ATPase; VDCC, voltage-dependent Ca$^{2+}$ channel.

J Neurophysiol • doi:10.1152/jn.00854.2012 • www.jn.org
half-life recovery) and slow (t2, half-life recovery) components of two-phase exponential fits (Fig. 1C; P = 0.01 and P = 0.03, respectively, t-tests, n = 7).

We confirmed the presynaptic origin of the 1× and 5× PF transients, since they were abolished by zero extracellular [Ca²⁺]₀ (n = 4) and unaffected by the postsynaptic glutamate receptor antagonist 20 μM NBQX (n = 3). CPA (10 μM; n = 4) did not influence 1× and 5× Ca²⁺ transients, suggesting little contribution from intracellular Ca²⁺ stores.

Inhibition of reverse-mode NCX reduced the amplitude and accelerated the recovery of 5× PF Ca²⁺ transients. To test the contribution of the NCX to PF Ca²⁺ dynamics, we recorded Ca²⁺ transients evoked by both 1× and 5× stimulation protocols in the presence of two selective pharmacological inhibitors of NCX. We used KB-R7943 (Iwamoto et al. 1996) and SN-6 (Niu et al. 2007), which both exhibit a preference to inhibit the NCX reverse (Ca²⁺ entry) mode (Iwamoto et al. 2007).

Application of 20 μM KB-R7943 reduced the amplitude of the 5× Ca²⁺ transient by around 40% (Fig. 2, A and B; P = 0.0009, paired t-test, n = 9) and also accelerated the early phase (t1) of its recovery (Fig. 2C; P < 0.0015, paired t-test, n = 9). The slower recovery phase (t2) was not affected (Fig. 2D; P = 0.8, paired t-test, n = 9). In six of these experiments we tested KB-R7943 action on 1× stimulation Ca²⁺ transients, but they remained unaffected (see Fig. 2). (Neither their amplitude, %ΔF/F, nor recovery rates, t1 and t2, were altered: P = 0.91, P = 0.95, and P = 0.13, respectively, paired t-tests, n = 6). KB-R7943 did not influence basal fluorescence (4,370 ± 696 vs. 4,033 ± 521; P = 0.26, paired t-test, n = 9).

A lower concentration of KB-R7943 (10 μM) also reduced the amplitude of the 5× Ca²⁺ transient, from 5.00 ± 0.2 to 3.5 ± 0.3%ΔF/F, and t1 changed from 121.3 ± 6.3 to 111 ± 3.8 ms (both P < 0.05, paired t-test, n = 3). The second reverse-mode inhibitor, 10 μM SN-6, also reduced the peak amplitude of the 5× Ca²⁺ transient (4.5 ± 0.4 to 3.5 ± 0.3%ΔF/F; P = 0.03, paired t-test, n = 5) and also reduced t1 (144.5 ± 25 to 129.4 ± 22.9 ms; P = 0.03, paired t-test, n = 5) with no effect on t2 (715.4 ± 174 to 589 ± 133 ms; P = 0.34, paired t-test, n = 5). The amplitude and recovery dynamics of 1× stimulation-evoked Ca²⁺ transients were not influenced by SN-6 (1.4 ± 0.2 vs. 1.1 ± 0.16%ΔF/F; P = 0.21, paired t-test, n = 3); t1 unchanged from 74 ± 19 to 67 ± 20.1 ms, P = 0.62, paired t-test, n = 3; t2 unchanged from 236.3 ± 62.4 to 227.7 ± 54.1 ms, P = 0.57, paired t-test, n = 3).

These results indicate that reverse-mode NCX contributes to early Ca²⁺ influx into PFs only following a high-frequency presynaptic burst and not after a single action potential or under basal conditions. However, thus far our interpretation

Fig. 2. KB-R7943, an inhibitor of the Na⁺/Ca²⁺ exchanger (NCX), reversibly reduced the peak and accelerated the recovery of the PF 5× presynaptic Ca²⁺ transient. A: a representative fluorescence-based Ca²⁺ transient from a beam of PFs before (control), during (KB-R7943), and after (recovery) treatment with 20 μM KB-R7943. Note the reduction in the amplitude of the peak of the transient by KB-R7943. The inset fluorescence transient shows the response to a single stimulation, 1×, from the same beam of PFs; note that there was no matching decrease in the amplitude of this smaller fluorescence-based Ca²⁺ signal by KB-R7943. Data in B show the significant reduction in the mean amplitude of the Ca²⁺ transients evoked by the 5× burst stimulation protocol by KB-R7943 without any significant effect on the smaller 1× Ca²⁺ transient. Data in C show that the reduced amplitude of the 5× Ca²⁺ transient by KB-R7943 was accompanied by an acceleration of the initial phase (t1) of its recovery but without influence upon the slower phase of recovery (t2), shown in D (1× Ca²⁺ transient t1 and t2 values were unaffected). KB-R7943 effects were partially reversible, as shown in A. The mean amplitude of the Ca²⁺ transient recovered from 2.7 ± 0.3%ΔF/F in KB-R7943 to 3.4 ± 0.4%ΔF/F after washout (P < 0.05, paired t-test, n = 4). We observed a trend toward recovery of t1, but this was not statistically significant (79.3 ± 6 vs. 82.0 ± 4.8 ms; P > 0.05, n = 4). Values are means ± SE. **P < 0.01; *P < 0.001, paired t-tests. ns, Not statistically significant.**
relies on the specificity of the inhibitors. SN-6 has few off-target ion channel actions (Niu et al. 2007), but KB-R7943 influences other targets, including L-type voltage-gated Ca2+ channels (Birinyi et al. 2005). Although L-type Ca2+ channels are not present in PF terminals, other voltage-gated Ca2+ channels are, so the potential remained for our observed actions of KB-R7943 to arise simply by inhibition of Ca2+ channels. First, in the presence of 0.5 µM KB-R, we therefore conducted additional experiments to rule out any direct influence of KB-R7943 on Ca2+ entry into PFs during depolarization (Mintz et al. 1995). 20 µM KB-R7943 continued to reduce the peak of the 5× stimulation-induced Ca2+ transient (2.9 ± 0.2 to 1.7 ± 0.15% ΔF/P; P < 0.001, paired t-test, n = 7), consistent with an action independent of ω-agatoxin-sensitive Ca2+ channels.

We also wanted to exclude any direct influence of KB-R7943 on the other N, P/Q, and R types of voltage-gated Ca2+ channels that are expressed in cerebellar granule cells (and therefore in PFs). Given the difficulty of isolating these currents from adult cerebellar granule cells, we turned to an alternative approach. We chose PC12 cells since these exhibit high-voltage-activated (HVA) voltage-gated currents that are mediated by L-, P/Q-, and R-, and N-type channels (Neal et al. 2010; Zhang et al. 2007) and their kinetics bear strong resemblance to HVA currents in cerebellar granule cells (Pearson et al. 1995). Importantly, 20 µM KB-R7943 did not significantly influence the amplitude of HVA Ca2+ currents in PC12 cells. Felodipine (10 µM), an L-type Ca2+ channel blocker, reduced the HVA current in these cells from 6.4 ± 1.4 to 5.1 ± 1.2 pA/pF (similar to Garber et al. 1989), but in the same cells KB-R7943 did not alter the inward current further: it remained at 5.0 ± 1.3 pA/pF (n = 6, P > 0.05, repeated-measures 1-way ANOVA, Bonferroni multiple comparison). It is therefore unlikely that KB-R7943 blocked P/Q-, R-, and N-type channel-mediated Ca2+ entry into the PF terminals in response to stimulation (Mintz et al. 1995; Myoga and Regher 2011). Together, these controls and the similarity of action of KB-R7943 and SN-6 all strongly support reverse-mode NCX-mediated Ca2+ entry into PFs during short bursts of high-frequency stimulation.

\[\text{Na}^+ \text{ accumulation in PFs provided the necessary conditions for NCX reversal and Ca}^{2+} \text{ entry.} \]

We therefore sought to identify the basis for the reverse-mode NCX activity. Since we cannot directly measure NCX flux from the tiny presynaptic PF terminals, we instead modeled its activity. Using known parameters for PFs, we estimated presynaptic Ca2+ dynamics using a model adapted from Erler and applied this together with a model previously used to simulate NCX flux in the heart (Weber et al. 2001). The model allowed us to identify and modify factors that influence NCX flux directionality (Fig. 3).

The simulations show that the NCX flux directionality is determined by the synaptic action potential waveform and the time course of NCX reversal. These factors are not directly measurable, but can be inferred from the observed NCX flux directionality.

Fig. 3. Simulations of NCX flux direction in response to 5× PF presynaptic action potentials. A: simulation of the direction and magnitude of the NCX flux using the parameters in Table 1: forward, forward-mode flux (above zero); reverse, reverse-mode flux (below zero; shaded). During the burst of presynaptic action potentials, note the very fast transient reversal of the flux during each presynaptic action potential, marked with an arrow, consistent with a negative reversal potential for the electrogenic NCX exchanger (Blaustein 1988). After the burst, NCX remained in its reverse mode (flux is less than zero) for up to 400 ms after the burst. Removal of intracellular Na+ ion ([Nai]) accumulation changed the flux considerably, as shown in B, so that forward mode was more dominant both during and after the burst, although transient reversal of NCX during each action potential remained (see asterisks). Lowering external Na+ concentration ([Nae]) in the presence of [Nai] accumulation, as shown in C, enhanced the amplitude and duration of the reverse-mode NCX flux both during the burst and also for more than 500 ms after the burst. Traces in D show the impact of the altered NCX flux for Ca2+ dynamics in the PFs. The parameters used to generate the Ca2+ transients are shown in detail in Table 1. The 5× stimulation protocol generated a Ca2+ transient with a peak and recovery (black trace). Removal of NCX from the model reduced the peak of the Ca2+ transient while accelerating the recovery from peak Ca2+, just as we had seen experimentally (gray trace). Furthermore, removal of NCX did not greatly influence single, 1× Ca2+ transients (dashed traces).
The model incorporated an allosteric factor (Ca\(^{2+}\)- and Na\(^{+}\)-binding sites) and also an electrochemical factor based on changes in Na\(^{+}\) and Ca\(^{2+}\) concentrations across the terminal membrane during presynaptic action potentials (see Eqs. 9–12 in METHODS). Since [Na\(^{+}\)]\(_i\) accumulates in real PFs during high-frequency stimulation (Regenr 1997), we continuously incremented presynaptic \(\Delta[Na^{+}]_i\), (and \(\Delta[Ca^{2+}]_i\)) with each action potential during the \(5\times\) train to more accurately simulate buildup of ions in the PF. The simulation reported a sustained reversal of NCX flux (line below zero in Fig. 3A) that lasted \(\sim 400\) ms after the burst and so closely approximated our experimental findings. When we neglected to accumulate [Na\(^{+}\)]\(_i\), in the model, NCX failed to switch into reverse mode but instead sustained forward-mode activity both during and after the burst (see Fig. 3B). These results supported the idea that activation of reverse-mode NCX in PFs required accumulated elevation of [Na\(^{+}\)]\(_i\), in a manner similar to a mechanism thought to operate in cardiac muscle (Leblanc and Hume 1990). To further test our model, we predicted that lowered [Na\(^{+}\)]\(_i\), and accumulated [Na\(^{+}\)]\(_e\), would favor reverse-mode NCX, and, as shown in Fig. 3C, these conditions further increased both the amplitude and duration of the after-burst reverse-mode NCX flux (below zero).

These NCX flux simulations indicated that bursts of high-frequency action potentials in real PFs allowed [Na\(^{+}\)]\(_i\), to accumulate to a level sufficient to activate reverse-mode NCX, as also indicated by our pharmacological experiments. However, since our experimental evidence relied on interpretation of fast Ca\(^{2+}\) signals, we incorporated the same NCX simulation parameters into a model of presynaptic Ca\(^{2+}\) (Fig. 3D). High-frequency bursts of presynaptic action potentials in the model evoked a large rise in Ca\(^{2+}\) with a fast recovery (Fig. 3D, black line). When NCX was removed, the model reported a reduction in the amplitude of peak Ca\(^{2+}\) and an accelerated Ca\(^{2+}\) recovery, consistent with our experimental observations with NCX inhibitors shown in Fig. 2.

Manipulation of Na\(^{+}\) gradients to favor reverse-mode NCX also boosted 5\(\times\) PF Ca\(^{2+}\) transients. If, as the simulations suggested, internal Na\(^{+}\) accumulation is critical for NCX reversal, experimental manipulation of Na\(^{+}\) gradients should also modify PF Ca\(^{2+}\) transients. First, we lowered [Na\(^{+}\)]\(_i\), to favor NCX reverse mode (Fig. 3A, lower trace). When NCX is in reverse mode, lowering [Na\(^{+}\)]\(_i\), will favor NCX-mediated transport of Na\(^{+}\) out of the terminal, resulting in increased Ca\(^{2+}\) influx and a slowing of the early phase of recovery of the Ca\(^{2+}\) transient. As shown in Fig. 4, A and B, low external [Na\(^{+}\)]\(_e\), increased the peak of the 5\(\times\) Ca\(^{2+}\) transient (\(P < 0.05\), 1-way ANOVA, \(n = 6\)), an effect reversed by KB-R7943 (\(P < 0.001\), 1-way ANOVA, \(n = 6\)). \(t_1\) was also significantly slowed by low [Na\(^{+}\)]\(_i\), (Fig. 4C; \(P < 0.05\), 1-way ANOVA, \(n = 6\)) without influencing \(t_2\) (Fig. 4D; \(P = 0.97\), 1-way ANOVA, \(n = 6\)). As shown in Fig. 4, B–D, low [Na\(^{+}\)]\(_i\), did not significantly alter the peak amplitude or \(t_1\) and \(t_2\) recovery half-lives of Ca\(^{2+}\) transients evolved by 1\(\times\) stimulation (\(P = 0.84\), \(P = 0.95\), and \(P = 0.15\), respectively, paired \(t\)-tests, \(n = 7\)). Low [Na\(^{+}\)]\(_i\), also did not influence basal fluorescence (mean values were unchanged from 3,373 \(\pm\) 522 to 3,480 \(\pm\) 443; \(P = 0.4\), paired \(t\)-test, \(n = 7\)), indicating that NCX is inactive when PFs are at rest. Lowering [Na\(^{+}\)]\(_i\), will reduce the driving force for Na\(^{+}\) entry, which could broaden the PF presynaptic action potential (Hodgkin and Katz 1949) and thereby indirectly cause increased Ca\(^{2+}\) entry. As an additional approach, we therefore used a very low concentration of ouabain (80 nM) as an alternative way to enhance NCX reverse-mode flux. Ouabain (80 nM) inhibits the high-affinity \(\alpha\)-isoform of the Na\(^{-}\)–K\(^{-}\)-ATPase (NKA) and will raise [Na\(^{+}\)]\(_i\), to favor reverse-mode NCX (Zhang et al. 2005), and it is unlikely to cause as significant a shift in driving force as halving [Na\(^{+}\)]\(_i\),. As shown in Fig. 4, E and F, ouabain increased the peak of the 5\(\times\) stimulation-induced Ca\(^{2+}\) transient (\(P < 0.05\), 1-way ANOVA, \(n = 6\)). \(t_1\) was also significantly slowed by ouabain (Fig. 4G; \(P < 0.05\), 1-way ANOVA, \(n = 6\)) without influencing \(t_2\) (Fig. 4H; \(P = 0.56\), 1-way ANOVA, \(n = 6\)). Ouabain effects were also reversed by KB-R7943 (Fig. 4, E and F; \(P < 0.001\), 1-way ANOVA, \(n = 6\)). Importantly, ouabain did not alter the peak amplitude or \(t_1\) and \(t_2\) of Ca\(^{2+}\) transients evoked by 1\(\times\) stimulation (Fig. 4, F–H; \(P = 0.21\), \(P = 0.35\), and \(P = 0.9\), respectively, paired \(t\)-tests, \(n = 3\)) and did not alter basal fluorescence (mean values were unchanged from 3,373 \(\pm\) 522 to 3,480 \(\pm\) 443; \(P = 0.4\), paired \(t\)-test, \(n = 7\)).

Reverse-mode NCX-mediated Ca\(^{2+}\) entry promoted synaptic transmission for a few hundred milliseconds after 5\(\times\) PF stimulation. Thus far our findings indicated that a short burst of high-frequency action potentials switched NCX into reverse mode as [Na\(^{+}\)]\(_i\), accumulated within the PF terminal. The outcome was a boost to NCX-mediated Ca\(^{2+}\) influx during a time window that included the peak of the Ca\(^{2+}\) transient and a few hundred milliseconds thereafter. To determine if this additional presynaptic Ca\(^{2+}\) was relevant for the behavior of the synapse, we took advantage of the fact that the size of the PF-PN synaptic response and the extent to which it exhibits paired-pulse facilitation is influenced by residual Ca\(^{2+}\) in the terminal (Aalturi and Regenr 1996). We used the paired-pulse ratio (PPR), derived from the increase in size of the second of a pair of closely spaced PF-evoked EPSCs, to assess the facilitatory behavior of the synapse. As shown in Fig. 5A, we compared PPR just before the 5\(\times\) burst stimulus and at 200-ms intervals thereafter. These times corresponded to the early phase of decay of the 5\(\times\) Ca\(^{2+}\) transient where KB-R7943 was exerting its effect (see presynaptic Ca\(^{2+}\) transients in Figs. 2B and 5A). At 200 ms after the burst, when presynaptic Ca\(^{2+}\) was still high, PPR was reduced (Fig. 5, A and C) alongside an increase in the amplitude of the first of the pair of EPSCs (\(P = 0.0002\), 1-way ANOVA; mean values changed from 267 \(\pm\) 50 pA before 5\(\times\) stimulus to 367 \(\pm\) 61 pA at the 200-ms point after the stimulus, \(P < 0.05\), from the 1-way ANOVA Bonferroni multiple comparison at that time point, \(n = 5\)). The result supported the idea that sustained presynaptic Ca\(^{2+}\) 200 ms after the burst was sufficient to enhance glutamate release. Six hundred milliseconds later, both PPR and the first EPSC (and presynaptic Ca\(^{2+}\)) returned to prestimulus levels. (EPSC mean values were returned to 236 \(\pm\) 49 pA, similar to values before 5\(\times\) stimulation, \(P > 0.05\), 1-way ANOVA, \(n = 5\)). Since KB-R7943 reduced the boost to Ca\(^{2+}\) influx provided by reverse-mode NCX, we predicted that KB-R7943 should abolish the reduction of PPR and the increased size of the first EPSC at just after the burst. As shown in Fig. 5C, this was the case; in the presence of KB-R7943, PPR remained the same before and after the burst (\(P = 0.016\), 2-way ANOVA, \(n = 6\)). As shown in the example cell in Fig. 5B, KB-R7943 also abolished the increased amplitude of the first EPSC recorded 200 ms after the burst; in fact, the amplitude of EPSCs...
remained constant at all time points after the burst (P > 0.05, 1-way ANOVA, n = 6). Critically, KB-R7943 did not alter PPR or EPSC amplitudes evoked by the 1× stimulus independently from the 5× stimulus. This result also provided additional further evidence to eliminate off-target effects of KB-R7943 at voltage-gated Ca²⁺ channels during presynaptic Ca²⁺ entry (see also above). PPR remained unchanged by KB-R7943 (from 1.91 ± 0.12 to 1.86 ± 0.07; P = 0.51, paired t-test, n = 5), consistent with no change in the amplitudes of first or second EPSCs (P > 0.54 and P > 0.14, respectively, paired t-tests, n = 5). (Mean values of the 1st EPSC remained unchanged from 248.2 ± 1 s ± 56 to 248.5 ± 52 pA, and those of the

Fig. 4. Experimental manipulations of Na⁺ gradients to enhance reverse-mode NCX flux increased peak 5× Ca²⁺ transient and sustained the early phase of its fast recovery immediately after the peak. **A**: a representative Ca²⁺ transient before treatment (control), during treatment with low [Na⁺], and after additional treatment with KB-R7943. Note the increase in the amplitude of the Ca²⁺ transient and its reduction by KB-R7943. **B**: grouped data show a significant increase in amplitude of the Ca²⁺ transients evoked by the 5× burst stimulation by low [Na⁺], without any significant effect on the smaller 1× Ca²⁺ transient. The increased 5× Ca²⁺ transient amplitude was reversed by KB-R7943. **C**: grouped data show that low [Na⁺] slowed the initial phase (t₁) of recovery of the 5× Ca²⁺ transient that was partly reversed by the application of KB-R7943; t₁ values of 1× Ca²⁺ transients were unaffected by low [Na⁺]. **D**: grouped data show that the slower phases of recovery (t₂) in response to both 5× and 1× stimulation were unchanged by low [Na⁺]. **E**: a representative Ca²⁺ transient from a beam of PFs before treatment, during treatment with 80 nM ouabain, an inhibitor of the Na⁺-K⁺-ATPase, and after additional treatment with KB-R7943. Note the increase in the amplitude of the peak of the Ca²⁺ transient by ouabain and its reduction by KB-R7943. **F**: grouped data show a significant increase in amplitude of the Ca²⁺ transients evoked by the 5× burst stimulation by 80 nM ouabain, without any significant effect on the smaller 1× Ca²⁺ transient. KB-R7943 reversed the increased 5× Ca²⁺ transient amplitude. **G**: grouped data show that 80 nM ouabain also slowed the initial phase (t₁) of recovery of the 5× Ca²⁺ transient, which was partly reversed by the application of KB-R7943. Ouabain did not influence t₁ values of 1× Ca²⁺ transients. **H**: grouped data show that the slower phases of recovery (t₂) in response to both 5× and 1× stimulation were unchanged by ouabain. Values are means ± SE. *P < 0.05; **P < 0.01; ****P < 0.001, 1-way ANOVA for 5× comparisons under control, low [Na⁺], and external [Na⁺] with KB-R7943 (A–D) and under control, ouabain, and ouabain with KB-R7943 (E–H). We noted that exposure of the slice to 80 nM ouabain for more than 20 min reduced the amplitude and prolonged the Ca²⁺ transients, presumably as prolonged inhibition of the Na⁺-K⁺-ATPase caused a gradual depolarization of the presynaptic membrane and raised basal Ca²⁺. This is evident from the large variance in the slower recovery t₂, shown in H, during the necessarily longer exposure of PFs to ouabain and KB-R7943. Ouabain (800 nM) abolished all Ca²⁺ transients within 5–7 min of application. Ouabain (800 nM) abolished Ca²⁺ transients in 7–10 min (data not shown).
2nd EPSC from 389 \pm 72 to 422 \pm 74 \text{ pA}. \) Thus, all together, our results support a functional role for a reverse-mode NCX-mediated boost to Ca\(^{2+}\) influx that enhanced synaptic transmission during a 400-ms time window following a high-frequency burst of PF action potentials.

DISCUSSION

We have defined a new functional role for NCX at the cerebellar PF-PN synapse. Although NCX is generally thought to help clear Ca\(^{2+}\) from synaptic terminals under physiological conditions, we report here that the transporter transiently switches into its reverse, Ca\(^{2+}\) influx, mode during the type of high-frequency bursts typical of PFs in vivo (Chadderton et al. 2004). Functionally, this extra Ca\(^{2+}\) transiently boosts PF-PN synaptic transmission immediately after the burst.

Several experimental findings support these conclusions. Two different pharmacological inhibitors of reverse-mode NCX (KB-R7943 and SN-6) reduced the amplitude of the burst-evoked PF Ca\(^{2+}\) transient. This suggests that NCX normally operates in reverse mode during bursts of PF afferent activity and contributes to Ca\(^{2+}\) influx into the terminals rather than clearance. The timing of the NCX-driven boost to the Ca\(^{2+}\) transient occurred at its peak and for a few hundred milliseconds thereafter, as evidenced by the fact that both NCX inhibitors reduced the peak amplitude of the Ca\(^{2+}\) transient and also accelerated the initial, fast phase of recovery. Pharmacological manipulation of NCX did not influence the Ca\(^{2+}\) transients evoked by a single PF stimulation (1×), suggesting that NCX was not functional under these conditions. Indeed, a recent report showed that NCX only operates in forward (Ca\(^{2+}\) clearance) mode under 1× stimulation conditions upon removal of PMCA, a major calcium Ca\(^{2+}\) mechanism in PFs (Roome et al. 2013).

Together our experimental results indicated that short, high-frequency bursts of PF action potentials rapidly and selectively switch NCX into reverse (Ca\(^{2+}\) entry) mode. Several factors will influence the switch, the most significant being membrane depolarization beyond the reversal potential of NCX, and Na\(^{+}\) and Ca\(^{2+}\) binding to the internal reverse-mode activation sites of the NCX (Blaustein and Lederer 1999). The relative contributions of these factors are normally determined by directly measuring NCX flux, but this is technically impossible from the very small PF terminal. We therefore developed a simulation of NCX flux based on a previous model but with PF parameters. Critically, the simulation only reported reverse-mode NCX activity after a high-frequency burst of action potentials when presynaptic [Na\(^{+}\)], accumulated, as occurs in real PFs during high-frequency trains of presynaptic action potentials (Regher 1997). Presumably, under these conditions, [Na\(^{+}\)], rose sufficiently to activate the internal reverse-mode Na\(^{+}\) binding site (Blaustein and Lederer 1999). To experimentally test the importance of [Na\(^{+}\)] accumulation highlighted by our modeling approach, we used two experimental strategies to manipulate Na\(^{+}\) gradients. We lowered [Na\(^{+}\)]\(_{e}\) to favor Na\(^{+}\) exit (and Ca\(^{2+}\) entry) if [Na\(^{+}\)] is accumulating by reverse-mode NCX. In separate experiments we also used very low concentrations of ouabain to inhibit the Na\(^{+}-K^{+}\)-ATPase as an alternative way to favor [Na\(^{+}\)] accumulation. Both manipulations increased the amplitude of the 5× Ca\(^{2+}\) transients and slowed their initial recovery in a KB-R7943-sensitive manner.
These experimental results therefore endorsed the findings from the simulation and helped confirm the idea that Na\(^{+}\) accumulation in PFs augments NCX reverse-mode Ca\(^{2+}\) entry during, and immediately after, the high-frequency burst.

Whereas elevated [Na\(^{+}\)] is critical to switch NCX into reverse mode, so too is internal, nontransported and activating Ca\(^{2+}\) (DiPolo 1979). In the PF terminal, action potential-evoked residual Ca\(^{2+}\) levels are estimated at 600–900 nM (Brenowitz and Regehr 2007), close to the \(K_a\) of the internal Ca\(^{2+}\)-binding reverse-mode activation site (DiPolo 1979). Activation of forward-mode NCX by Ca\(^{2+}\) is typically thought to require somewhat higher levels of Ca\(^{2+}\), so it is possible that during sympathetically evoked Ca\(^{2+}\) transients, forward- and reverse-mode NCX operate simultaneously (Yu and Choi 1997) but that certain conditions favor one over the other. Our findings indicate that depolarization, Na\(^{+}\) accumulation, and residual Ca\(^{2+}\) all combine during short bursts of presynaptic action potentials in PFs (and perhaps other small-volume neuronal compartments) to favor reverse-mode NCX. The mechanism shares some similarity with the (still controversial) contribution of reverse-mode NCX during the cardiac action potential (Leblanc and Hume 1990). In cardiac myocytes, the dyadic (or “fuzzy”) space between the plasma membrane and the sarcoplasmic reticulum membrane allows rapid accumulation of [Na\(^{+}\)]. This is thought to drive transient, reverse-mode NCX-mediated Ca\(^{2+}\) entry (and associated depolarization) that enhances individual cardiac action potentials (Larbig et al. 2010). A similarly diffusion-restricted space exists in the PF presynaptic terminal (estimated as 0.8 \(\mu m\) long \(\times 0.25 \mu m\) wide; volume 0.2 \(\mu m^3\); Palay and Chan-Palay 1974) and could provide the anatomic basis for accumulation of [Na\(^{+}\)], that triggers reverse mode NCX, particularly during bursts of action potentials.

To identify how the reverse-mode NCX Ca\(^{2+}\) influx contributed to synaptic function, we used electrophysiological recordings from the Purkinje neuron to probe the behavior of the PF-PN synapse. We took advantage of the fact that paired-pulse facilitation at this synapse indirectly reports residual Ca\(^{2+}\) levels (Aturi and Regehr 1996) and applied paired stimulations immediately after the high-frequency burst, just as NCX was driving extra Ca\(^{2+}\) into the terminal. At this early time after the burst, coincident with NCX-mediated presynaptic Ca\(^{2+}\) influx, we observed enhanced PF-evoked EPSCs and reduced facilitation, both consistent with increased Ca\(^{2+}\)-dependent glutamate release and PF residual Ca\(^{2+}\). Since both changes were prevented by KB-R7943, the results provide convincing evidence that NCX normally boosts Ca\(^{2+}\) influx sufficiently to enhance synaptic transmission during a time window of \(~400\) ms after the burst. Thus this is the first demonstration of a physiological and functional dominance of reverse-mode NCX-mediated Ca\(^{2+}\) entry at a central synapse. A previous study identified how reverse-mode NCX-mediated presynaptic Ca\(^{2+}\) entry accompanied long periods (20 s) of tetanic stimulation at the crayfish neuromuscular junction (Zhong et al. 2001), but this extra Ca\(^{2+}\) did not influence long-term facilitation at this synapse (Minami et al. 2007). Another study showed that exposure of hippocampal neurons to veratridine for several seconds as a way to artificially raise [Na\(^{+}\)], also enhanced transmitter release via reverse-mode NCX (Bouron and Reuter 1996). From a pathological perspective, prolonged reverse-mode NCX-mediated Ca\(^{2+}\) influx into presynaptic terminals is undesirable. Indeed, nonphysiological [Na\(^{+}\)], overload of sympathetic nerves drives norepinephrine release through reverse-mode NCX (Torok et al. 2008), and reverse-mode NCX drives excessive glutamate release in a preclinical model of multiple sclerosis (Rossi et al. 2010). The same could apply in models of severe ischemia where NCX reverse-mode inhibitors may exert their neuroprotective effects by curtailing excessive glutamate release (Iwamoto and Kita 2006; Matsuda et al. 2001). However, there are some conflicting opinions about the direction of NCX flux in pathological conditions (Cross et al. 2010). For example, milder ischemic episodes (Jeon et al. 2008; Tanaka et al. 2002) activate forward-mode NCX to expel Ca\(^{2+}\), and ischemic preconditioning elevates NCX expression and ameliorates stroke-induced brain damage (Pignataro et al. 2012). Therefore, Ca\(^{2+}\) clearance by forward-mode NCX remains an important neuroprotection target.

In addition to the important Ca\(^{2+}\) recovery roles for forward-mode NCX, our results support a transient and physiological switch of NCX direction that boosts Ca\(^{2+}\) entry during brief bursts of PF activity. We know that P/Q-, N-, and R-type voltage-gated Ca\(^{2+}\) channels all drive Ca\(^{2+}\)-dependent glutamate release at the PF synapse (Mintz et al. 1995; Myoga and Regehr 2011), so why the need for additional Ca\(^{2+}\) entry via reverse-mode NCX? Perhaps during multiple high-frequency action potentials, rapid inactivation of voltage-gated channels limits Ca\(^{2+}\) entry and reduces the efficiency of glutamate release. If so, NCX reversal, triggered by fast accumulation of action potential-evoked Na\(^{+}\) influx, provides a plausible mechanism for activity-dependent amplification of Ca\(^{2+}\) entry into the PFs. As we have shown, this extra Ca\(^{2+}\) promotes and sustains synaptic transmission after the burst. It is tempting to speculate that the poor motor performance of NCX3 knockout mice (Sokolow et al. 2004) might be explained by critically weakened transmission of granule cell-encoded sensory input to PNs during this time window.

In summary, we have identified reverse-mode NCX as a new route for fast presynaptic Ca\(^{2+}\)-dependent glutamate release at the cerebellar PF-PN synapse. By boosting Ca\(^{2+}\) entry following high-frequency afferent input, NCX generates a time window of enhanced glutamate release that may optimize physiologically relevant, frequency-encoded sensory information transfer.

ACKNOWLEDGMENTS

We thank Drs. Stephen Bunn and Istvan Abraham for the kind donation of PC12 cells and Dr. Kajsa Igelström for constructive comments on the manuscript.

GRANTS

We acknowledge support from the Neurological Foundation of New Zealand, a University of Otago Research Grant, and University of Otago PhD Scholarship (to C. J. Roome), and a Department of Physiology AIM Grant.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS

REFERENCES

Atthuri PP, Regehr WG. Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J Neurosci 16: 5661–5671, 1996.

Taglialatela M, Di Renzo G, Annunziato L. Na(+)-Ca2+ exchange activity in central nerve endings. I. Ionic conditions that discriminate 45Ca2+ uptake

