Developmental upregulation of presynaptic NCKX underlies the decrease of mitochondria-dependent posttetanic potentiation at the rat calyx of Held synapse

Jae Sung Lee, Myoung-Hwan Kim, Won-Kyung Ho, and Suk-Ho Lee

Cell Physiology Laboratory, Department of Physiology and bioMembrane Plasticity Research Center, Seoul National University College of Medicine and Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea

Submitted 21 August 2012; accepted in final form 2 January 2013

The calyx of Held synapse undergoes a variety of structural and functional changes during postnatal development (Felny and Schneggenburger 2004; Taschenberger et al. 2002; Wang et al. 2008; Wimmer et al. 2006). The immature calyx of Held synapses exhibit higher sensitivity for PTP induction compared with more mature ones (Korogod et al. 2005), but the underlying mechanisms are not well defined. Previously, we have reported that Na⁺/Ca²⁺ exchanger (Na/CaX) clears Ca²⁺ loads more readily than mitochondria at the calyx of Held and that mitochondria take part in Ca²⁺ clearance only when Na/CaX is inhibited or its function is saturated (Kim et al. 2005). Ca²⁺ clearance becomes faster as the calyx of Held matures (Chuhma and Ohmori 2001), but it has not been investigated whether developmental changes in Ca²⁺ clearance are causally related to developmental changes in PTP. Given that presynaptic mitochondria compete with Na/CaX for incoming Ca²⁺ (Kim et al. 2005), we hypothesized that mitochondrial Ca²⁺ uptake during HFS could be reduced by a developmental increase in the activity of other Ca²⁺ clearance mechanisms such as Na/CaX or plasma membrane Ca²⁺-ATPase (PMCA). Such developmental decrease in the mitochondrial Ca²⁺ uptake may in turn suppress posttetanic Ca²⁺, and thus PTP, in mature calyx of Held synapses.

We studied whether the developmental change of Ca²⁺ clearance mechanisms underlies that of PTP at the calyx of Held synapse. To this end, we compared PTP, the peak of HFS-induced Ca²⁺ transients (HFS-CaTs), mitochondrial Ca²⁺ uptake during HFS, and posttetanic Ca²⁺ at the calyx of Held synapse at two developmental stages, postnatal days 4–6 (P4–6) and 9–11 (P9–11). We found that the peak Ca²⁺ levels ([Ca²⁺]ₚₑ𝐚ᵏ) of HFS-CaTs are closely correlated with the amount of mitochondrial Ca²⁺ uptake and posttetanic Ca²⁺ at the calyx of Held synapse and that the developmental upregulation of the K⁺-dependent Na⁺/Ca²⁺ exchanger (NCKX) activity limits the intracellular [Ca²⁺] buildup during HFS to reduce mitochondrial Ca²⁺ uptake during HFS, resulting in the reduction of posttetanic Ca²⁺ and PTP.

METHODS

Preparation of brain stem slices. Calyx of Held synapse preparations were prepared from transverse 200-µm-thick brain stem slices containing the medial nucleus of trapezoid body. P4–6 or P9–11 Sprague-Dawley rats were decapitated, and brain stems were chilled in ice-cold low-Ca²⁺ artificial cerebrospinal fluid (aCSF), which contained (in mM) 125 NaCl, 25 NaHCO₃, 2.5 KCl, 1.25 NaH₂PO₄, 2.5 MgCl₂, 0.5 CaCl₂, 25 glucose, 0.4 Na-ascorbate, 3 myo-inositol, and 2 Na-pyruvate [pH 7.4 when saturated with carbogen (95% O₂,5% CO₂); osmolarity ~320 mosM]. Slices were made using a vibratome slicer (VT1200; Leica, Wetzlar, Germany), and slices were...
Electrophysiological recording and reagents. Slices were transferred to a recording chamber in an upright microscope (BX50WI; Olympus, Tokyo, Japan). Whole cell patch-clamp recordings from calyces of Held were made under visual control using differential interference illumination. Presynaptic whole cell patch abolishes the PTP and reduces the Ca²⁺ at the calyx of Held synapse (Korogod et al. 2005; Lee et al. 2010). Thus, for estimation of PTP and presynaptic interference illumination. Presynaptic whole cell patch abolishes the K+ and K−pore solution composed of (mM) 120 K-gluconate, KCl, and KCl in the K-gluconate pipette solution were replaced with equimolar tetramethylammonium (TMA)-glucuronate and TEA-Cl, respectively. Presynaptic Ca²⁺ current was recorded in the presence of 1 μM tetrodotoxin (TTX) and 10 mM TEA-Cl using 3.2–3.4 MΩ. Pipette pipettes with a 3.5–4.5 μM were used for recordings. Postsynaptic patch pipettes contained in (mM) 110 Cs-gluconate, 20 tetraethylammonium (TEA)-Cl, 10 NaCl, 20 HEPES, 4 Mg-ATP, 5 Na₂-phosphocreatine, and 5 lidocaine N-ethyl bromide (QX314; an intracellular blocker of Na⁺ currents) (pH 7.3 adjusted with CsOH). For measuring presynaptic Ca²⁺ transients under presynaptic whole cell patch-clamp recording conditions, K-gluconate-containing pipette solution was used with 0.05 mM fura-4F instead of 0.2 mM fura-4F. For a K+−free pipette solution, K-gluconate and KCl in the K-gluconate pipette solution were replaced with equimolar tetramethylammonium (TMA)-glucuronate and TEA-Cl, respectively. Presynaptic Ca²⁺ current was recorded in the presence of 1 μM tetrodotoxin (TTX) and 10 mM TEA-Cl using 3.2–3.4 MΩ, with an EPC10 amplifier (HEKA, Lambrecht, Germany). EPSCs were evoked by stimulating presynaptic axons (0.1–0.2 ms, 10–20 V) with a bipolar stimulating electrode (TM55C5INS; World Precision Instruments, Sarasota, FL) placed at the midline of the brain stem. To enhance spatial voltage clamp of a postsynaptic neuron, EPSCs were reduced to 40 ± 4.6% or 43 ± 4.5% by bath application of 1 mM kynurenic acid (KYN; Fig. 1) or 100 nM 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzoxazaine-7-sulfonamide (NBQX; Fig. 2). KYN, a competitive antagonist of AMPA receptors, is a better AMPA receptor antagonist for monitoring presynaptic activity because it inhibits AMPA receptor desensitization. KYN, however, could not be used in combination with microfluorometry, because KYN had significant fluorescence at UV excitation light (maximum at 352 nm), which appreciably interferes with the Ca²⁺ indicator signal. Fura-4F and fura-FF were purchased from Molecular Probes (Eugene, OR). Ru360 was purchased from Calbiochem (Darmstadt, Germany). KYN, QX314, and TTX were purchased from Tocris (Bristol, UK). Other reagents including tetraphenylphosphonium (TPP⁺) were purchased from Sigma (St. Louis, MO).

Presynaptic imaging. Intracellular Ca²⁺ at the calyx of Held was measured as previously described (Kim et al. 2005). Briefly, excitation light from a monochromator (Polychrome-II; TILL Photonics, Graefelfing, Germany) was delivered to an upright microscope (BX50; Olympus). Imaging was performed with a ×60 water-immersion objective (NA 0.9; LUMPlanFl; Olympus) and an air-cooled slow-scan charge-coupled device camera (Seniscam; PCO, Kelheim, Germany) using on-chip binning (8 × 16 pixels). The fluorescence ratio (R = Fₚ/Fᵢ) at the isosbestic wavelength (360 nm; Fᵢ) to that at 380 nm (Fₚ) was converted to [Ca²⁺]ᵢ according to the equation

\[[Ca^{2+}]_i = K_{eq} \cdot (R - R_{min})/(R_{max} - R) \]

where \(K_{eq} \) is the dissociation constant of fura-FF and the endogenous Ca²⁺ buffering capacity of the pipette solution. The linearity coefficient of fura-FF and the endogenous Ca²⁺ buffering capacity of the pipette solution can be rewritten in terms of total calcium. Since the equation

\[\frac{\Delta [Ca^{2+}]_i}{\Delta t} = \frac{1}{\gamma} \frac{\Delta \log \left(\frac{F_380}{F_{Ru360}} \right)}{\Delta t} \]

where \(\Delta \log \left(\frac{F_380}{F_{Ru360}} \right) \) is a dose-response relationship between Ca²⁺ concentration in the pipette solution and the fluorescence intensity ratio of fura-FF and Ru360. The log-log plot of \(\frac{F_380}{F_{Ru360}} \) vs. Ca²⁺ concentration was fitted with a bi-exponential function having the form

\[\frac{F_380}{F_{Ru360}} = A_1 \cdot e^{-t/T_1} + A_2 \cdot e^{-t/T_2} \]

where \(T_1 \) and \(T_2 \) are the time constants of the two exponential components. The ratio of Ca²⁺ concentration in the pipette solution to the fluorescence intensity ratio can be expressed as

\[\frac{[Ca^{2+}]_i}{[Ca^{2+}]_{max}} = \frac{A_1 \cdot e^{-t/T_1} + A_2 \cdot e^{-t/T_2}}{A_1 \cdot e^{-t/T_1} + A_2 \cdot e^{-t/T_2}} \]

where \(A_1 \) and \(A_2 \) are the amplitudes of the two exponential components. The linearized fluorescence intensity ratio can be written as

\[\log \frac{F_380}{F_{Ru360}} = A \cdot [Ca^{2+}]_i \]

where \(A \) is the slope of the linear relationship between Ca²⁺ concentration and fluorescence intensity ratio. The linearized fluorescence intensity ratio can be expressed as

\[\log \frac{F_380}{F_{Ru360}} = A \cdot [Ca^{2+}]_i \]

where \(A \) is the slope of the linear relationship between Ca²⁺ concentration and fluorescence intensity ratio. The linearized fluorescence intensity ratio can be expressed as

\[\log \frac{F_380}{F_{Ru360}} = A \cdot [Ca^{2+}]_i \]

where \(A \) is the slope of the linear relationship between Ca²⁺ concentration and fluorescence intensity ratio.
error term is negligible, the cumulative total amount of mitochondrial Ca$^{2+}$ uptake (Φ_{mito}) at the nth pulse can be calculated as

$$\Phi_{\text{mito}} \equiv \Delta \text{Ca}_{\text{res}}(n)_{\text{post}} - \Delta \text{Ca}_{\text{res}}(n)_{\text{control}}.$$ (6)

Two terms in the right-hand side of Eq. 6 were measured at the same calyx terminal preloaded with fura-FF before and after the second patch with the pipette solution containing fura-FF and Ru360. The change in fura-FF concentration was estimated from fluorescence at 360 nm, which was typically increased by about 20–50% after repatch. Such increase in fura-FF concentration caused the change of the value for $(1 + \Sigma \kappa)$ by less than 5–10%.

The posttетanic Ca$^{2+}$ extrusion from mitochondria (J_{mito}) can be roughly estimated by the following equation (Lee et al. 2007a):

$$J_{\text{mito}}(t) = \gamma \int_0^t [\text{Ca}^{2+}]_{\text{res}}(t') dt',$$

where $[\text{Ca}^{2+}]_{\text{res}}(t')$ is the time course of the Ca$^{2+}$ clearance of the calyx of Held. The γ was estimated as follows:

$$\gamma = r_w \times (1 + \Sigma \kappa),$$

where r_w is the rate constant of a Ca$^{2+}$ transient induced by paired APs (Fig. 4). The κ value for fura-4F was calculated by assuming that K_d of fura-4F is 0.75 μM.

Statistics and data presentation. Data are presented as means ± SE, with n indicating the number of synapses analyzed. Statistical analyses on data measured at the same synapse and on data at different synapses were performed using the Student’s paired t-test and the Student’s t-test, respectively. The statistical significance for the difference of time courses of PTP (Figs. 1 and 2) or HFS-CaTs (Fig. 5) was determined using two-way analysis of variance (ANOVA). Statistical values are presented as means ± SE.

RESULTS

Developmental changes of mitochondria-dependent PTP at the calyx of Held synapse. The amplitude of PTP linearly depends on the level of posttetanic Ca$^{2+}$ res (Habets and Borst 2005; Korogod et al. 2005; Lee et al. 2008). The majority of posttetanic Ca$^{2+}$ res is caused by Na$^+$-dependent Ca$^{2+}$-efflux from mitochondria subsequent to Ca$^{2+}$ uptake during HFS (Lee et al. 2008). It has been reported that the amplitude of PTP evoked by the same HFS becomes smaller at the calyx of Held synapses from P8–10 rats than those from P4–6 rats, when the length of HFS (100 Hz) is 2 s or shorter (Korogod et al. 2005). To investigate whether the mitochondrial contribution to PTP undergoes a developmental change, we examined the effect of mitochondrial Na$^+$-dependent Ca$^{2+}$-efflux inhibition on PTP induced by HFS (100 Hz, 2 s) at the calyx of Held synapse from rats of two age groups, P4–6 (denoted by P5) and P9–11 (denoted by P10). We determined the baseline EPSC amplitude evoked by stimulation of afferent fibers every 10 s. The stimuli at 0.1 Hz were resumed 10 s after the end of HFS to monitor the change in synaptic strength. The baseline EPSC amplitude was not different between P5 (1.24 ± 0.17 nA, n = 7) and P10 (1.94 ± 0.47 nA, n = 6, P = 0.17, Fig. 1Ae). Consistent with the previous observation (Korogod et al. 2005), the amplitude of PTP at P10 was significantly smaller than at P5 (Fig. 1Af, P = 0.010) under control conditions.

Low-concentration PTP$^+$ (IC$_{50}$ 0.2 μM) is a selective inhibitor of mitochondrial Na$^+$-dependent Ca$^{2+}$-efflux, although it dissipates mitochondrial membrane potential at higher concentration (>10 μM) (Aiuchi et al. 1985; Karadjov et al. 1986; Wingrove and Gunter 1986). Previously, we have shown that 2 μM PTP$^+$ abolishes the posttetanic Ca$^{2+}$ res with little effect on the peak of HFS-CaT (100 Hz, 4 s) at the calyx of Held (Lee et al. 2008). We assessed the effects of TPP$^+$ on PTP induced by HFS (100 Hz, 2 s). The amplitude of the baseline EPSC was not altered by TPP$^+$ treatment (P5, 1.33 ± 0.19 nA, n = 7, P = 0.19; P10, 1.80 ± 0.40 nA, n = 6, P = 0.13, paired t-test). In both age groups, the peak amplitude of PTP was significantly reduced by bath application of 2 μM TPP$^+$, from 123.8 ± 18.9 to 64.4 ± 6.7% in P5 (n = 7, P = 0.014, paired t-test, Fig. 1Aa and Ab) and from 55.4 ± 8.3 to 38.8 ± 5.9% in P10 (n = 6, P = 0.012, paired t-test, Fig. 1Ac and Ad). As the calyx synapse matured, the TPP$^+$-sensitive component of PTP (denoted by PTP$_{\text{mito}}$) was reduced to a larger extent (59.4 ± 17.4% at P5, 16.6 ± 4.3% at P10, P = 0.048, Fig. 1Ag) than the TPP$^+$-insensitive component (PTP$_{\text{non-mito}}$, 64.4 ± 6.7%) at P5 and 38.8 ± 5.9% at P10 (P = 0.017, Fig. 1Ah). In addition to the peak of PTP, the time courses of PTP were compared between control conditions and in the presence of 2 μM TPP$^+$ using two-way ANOVA test. Whereas the time course of PTP at P5 was significantly different between these two conditions [F(1, 300) = 19.22, P < 0.001], that at P10 was not different [F(1, 250) = 2.409, P = 0.122]. These results indicate that the reduced contribution of mitochondria to PTP is primarily responsible for the different magnitude of PTP at P5 and P10.

The [Ca$^{2+}$]$_i$ elevation at axon terminals during HFS is essential for the induction of PTP and critically depends on temperature (David and Barrett 2000). We tested whether the developmental change of PTP$_{\text{mito}}$ also occurs in near physiological temperature. We did the same experiments at the bath temperature of 32–34 °C. The baseline EPSC amplitudes were not different between P5 (3.55 ± 0.31 nA, n = 7) and P10 (3.79 ± 0.84 nA, n = 6, P = 0.78, Fig. 1Be). The peak amplitude of PTP was significantly lower at 32–34°C than at room temperature in both age groups (P5, 31.84 ± 3.91%, n = 7, P < 0.01; P10, 14.81 ± 4.14%, n = 6, P < 0.01). Nonetheless, the PTP amplitude at P5 was significantly higher than at P10 (P = 0.012, Fig. 1Bf). Furthermore, bath-applied TPP$^+$ significantly reduced the peak amplitude of P5 (17.07 ± 2.29%, n = 7, P < 0.01, Fig. 1Bf) but not at P10 (15.91 ± 3.07%, n = 6, P = 0.836, paired t-test, Fig. 1Bd). Accordingly, PTP$_{\text{mito}}$ was significantly higher at P5 than at P10 (P5, 14.76 ± 2.49%; P10, 11.0 ± 2.13%, P < 0.01, Fig. 1Bf), but PTP$_{\text{non-mito}}$ was not different between two age groups (P5, 17.07 ± 2.29%; P10, 15.91 ± 3.07%, P = 0.76, Fig. 1Bb). Comparing the time course of PTP, we found that it was significantly affected by TPP$^+$ at P5 [F(1, 300) = 5.29, P = 0.022] but not at P10 [F(1, 250) = 0.292, P = 0.59]. Such different effects of TPP$^+$ on PTP between two age groups indicate the developmental decrease in the mitochondrial contribution to PTP at physiological temperature. TPP$^+$ had no effect on the baseline EPSC amplitude in both age groups (P5, 3.51 ± 0.31 nA, n = 7, P = 0.19; P10, 3.85 ± 0.76 nA, n = 6, P = 0.13). Next, we focused on the developmental changes of Ca$^{2+}$ dynamics responsible for the developmental decrease of PTP$_{\text{mito}}$ at postnatal calyx of Held synapse. All subsequent experiments were performed at room temperature.

Developmental changes in posttetanic residual Ca$^{2+}$ and PTP. The smaller effect of TPP$^+$ on PTP at the P10 calyx of Held implies a smaller amount of posttetanic Ca$^{2+}$ res at P10 than at P5. To test this prediction, we examined presynaptic Ca$^{2+}$ concentration ([Ca$^{2+}$]$_i$) and EPSC simultaneously at the same synapse. We loaded the calyx axon terminal with a Ca$^{2+}$...
VESICLES and Ca^{2+} consistent with the idea that the spatial coupling between synaptic effects of preloading on the baseline EPSC amplitude and PTP are 0.74) at the P10 synapses (Fig. 2, stimulation (HFS; 100 Hz for 2 s) was applied at time 0. Ab: mean values for PTP before and after bath application of TPP+). Data points measured from the same synapse are connected with a dotted line. Ac and Ad: the same experiment as in Ab and Ab in postnatal day 9–11 (P10) rats. Ae: amplitude for baseline EPSCs at P5 and P10. On the bar graph, each data point was measured from individual synapses. Af: mean amplitude for PTP at P5 and P10 under control conditions. Ag: mean values for the difference of PTP amplitudes between the control condition and after application of TPP+. Bf: the same experiments as in A except at 32–34°C. Values are means ± SE; n, no. of synapses analyzed; n.s., not significant (P > 0.05). *P < 0.05; **P < 0.01; Ad, Ab, Bd, and Bf: paired t-test; Ae–Ah and Be–Bh: unpaired t-test.

indicator dye via a whole cell patch pipette containing 200 μM fura-4F for a brief period (90 s) and pulled off the pipette (referred to as preloading technique; Korogod et al. 2005). The amount of posttetanic Ca_{res} is represented by the time integration of the Ca^{2+} signal 2 s after the cessation of HFS (Lee et al. 2007a; Lee et al. 2008), and this estimate is independent of Ca^{2+} buffer (Lee et al. 2007a).

Preloading the calyx terminal with fura-4F significantly reduced the baseline EPSC amplitude (to 0.61 ± 0.08 nA, n = 5, P = 0.017) and enhanced PTP induced by HFS (100 Hz, 2 s) (180.8 ± 5%, n = 5, P = 0.03) at the P5 calyx synapses, whereas it had no significant effect on the baseline EPSP amplitude (0.96 ± 0.26 nA, n = 6, P = 0.1) and on PTP (58.9 ± 5.9%, n = 6, P = 0.74) at the P10 synapses (Fig. 2, A and B). These differential effects of preloading on the baseline EPSP amplitude and PTP are consistent with the idea that the spatial coupling between synaptic vesicles and Ca^{2+} channels becomes tighter as the calyx synapse matures (Wang et al. 2008). As expected from the smaller PTP_{mito} at P10 synapses, the amount of posttetanic Ca_{res} was significantly smaller at P10 synapses (0.40 ± 0.07 μM·s, P < 0.01) than at P5 (2.48 ± 0.18 μM·s) (Fig. 2, A and B).

We used 2 μM TPP+ to inhibit the mitochondrial Na+/Ca^{2+}-dependent Ca^{2+} efflux without disturbing mitochondrial membrane potential and Ca^{2+} uptake (Lee et al. 2008). As expected, TPP+ did not alter the peak of HFS-CaTs (P5, P = 0.54; P10, P = 0.80, Fig. 2, Ae and Be), but it significantly suppressed PTP and posttetanic Ca_{res} in both age groups (PTP, P < 0.01 for P5, P = 0.014 for P10; posttetanic Ca_{res}, P < 0.05 for P5, P = 0.05 for P10, paired t-test, Fig. 2, A and B). For both age groups, the time course of PTP was significantly different between control and in the presence of TPP+ [P5, F_{(1,20)} = 33.55, P < 0.001; P10, F_{(1,250)} = 7.70, P = 0.006]. The developmental reduction of PTP_{mito} paralleled the mitochondrial-dependent Ca_{res} amount (Fig. 2C), indicating that the reduced PTP_{mito} at P10 can be ascribed to the smaller amount of mitochondria-dependent Ca_{res}.

Previously, we have reported that mitochondrial Ca^{2+} uptake occurs at high [Ca^{2+}]i levels, where Na/CaX is saturated (Kim et al. 2005). Thus we compared the peak of HFS-CaTs at P5 and at P10. The peak of HFS-CaTs were distinctly higher at P5 and at P10. The peak of HFS-CaTs were distinctly higher at P5 and at P10. The peak of HFS-CaTs were distinctly higher at P5 and at P10. The peak of HFS-CaTs were distinctly higher at P5 and at P10. The peak of HFS-CaTs were distinctly higher at P5 and at P10. The peak of HFS-CaTs were distinctly higher at P5 and at P10. The peak of HFS-CaTs were distinctly higher at P5 and at P10. The peak of HFS-CaTs were distinctly higher at P5 and at P10. The peak of HFS-CaTs were distinctly higher at P5 and at P10. The peak of HFS-CaTs were distinctly higher at P5 and at P10. The peak of HFS-CaTs were distinctly higher at P5 and at P10. The peak of HFS-CaTs were distinctly higher at P5 and at P10. The peak of HFS-CaTs were distinctly higher at P5 and at P10. The peak of HFS-CaTs were distinctly higher at P5 and at P10. The peak of HFS-CaTs were distinctly higher at P5 and at P10. The peak of HFS-CaTs were distinctly higher at P5 and at P10. The peak of HFS-CaTs were distinctly higher at P5 and at P10. The peak of HFS-CaTs were distinctly higher at P5 and at P10. The peak of HFS-CaTs were distinctly higher at P5 and at P10. The peak of HFS-CaT
Developmental change in mitochondrial Ca\(^{2+}\) uptake during HFS. The smaller amount of posttetanic Ca\(_{\text{pre}}\) at P10 suggests a lower mitochondrial Ca\(^{2+}\) uptake during HFS. To test this idea, we compared HFS-CaTs in each age group before and after inhibition of mitochondrial Ca\(^{2+}\) uptake using Ru360. It has been shown that Ru360 specifically inhibits the mitochondrial Ca\(^{2+}\) uniporter with little effect on L-type Ca\(^{2+}\) current and other Ca\(^{2+}\) clearance mechanisms including PMCA and Na/CaX (Matlib et al. 1998). The presynaptic terminal was preloaded with a K-glutamate internal solution with 200 μM fura-FF, a low-affinity Ca\(^{2+}\) indicator dye. After withdrawal of the pipette, we recorded Ca\(^{2+}\) transients evoked by HFS of afferent fibers (100 Hz for 2 s). The [Ca\(^{2+}\)]\(_{\text{peak}}\) of HFS-CaT was 3.85 ± 0.47 μM in control conditions at P5 (n = 5). Subsequently, we repatched the same axon terminal using a patch pipette containing 200 μM fura-FF and 20 μM Ru360. After a brief (~30 s) whole cell patch, we pulled off the pipette and recorded the HFS-CaT again. After intracellular application of Ru360, an inhibitor of the mitochondrial Ca\(^{2+}\) uniporter, the [Ca\(^{2+}\)]\(_{\text{peak}}\) was significantly elevated to 21.2 ± 2.0 μM at same axon terminal (n = 5, P < 0.01, paired t-test, Fig. 3A). In contrast, at P10 the [Ca\(^{2+}\)]\(_{\text{peak}}\) increased from 1.42 ± 0.1 μM to 3.5 ± 0.3 μM (n = 5, P < 0.01, paired t-test, Fig. 3B). The increment of the [Ca\(^{2+}\)]\(_{\text{peak}}\) caused by Ru360 was significantly higher at P5 than at P10 (17.4 ± 1.70 μM and 2.1 ± 0.15 μM, respectively, P < 0.01). We plotted the [Ca\(^{2+}\)]\(_{\text{peak}}\) values of HFS-CaTs in the presence of Ru360 as a function of the control [Ca\(^{2+}\)]\(_{\text{peak}}\) in Fig. 3C, showing the high correlation between these two parameters.

Figure 3C implies that the higher mitochondrial Ca\(^{2+}\) uptake may be related to the higher elevation of [Ca\(^{2+}\)]\(_{\text{i}}\) during HFS. To test this idea, we estimated the cumulative mitochondrial Ca\(^{2+}\) uptake (denoted by Φ\(_{\text{mito}}\)) during HFS according to Eq. 6 and plotted these values as a function of [Ca\(^{2+}\)]\(_{\text{i}}\) under control conditions in Fig. 3D. This plot shows a supralinear dependence of mitochondrial Ca\(^{2+}\) uptake on the presynaptic Ca\(^{2+}\) level. Furthermore, we found that the mitochondrial Ca\(^{2+}\) uptake during HFS.
Ca\(^{2+}\) uptake at P5 is not different from that at P10 as long as the \([\text{Ca}^{2+}]_i\) level is the same (Fig. 3D), arguing against the possibility that the lower posttetanic \(C_{\text{res}}\) at P10 is caused by lower mitochondrial function. These results indicate that the higher \([\text{Ca}^{2+}]_\text{peak}\) of a HFS-CaT leads to a higher mitochondrial \(C_{\text{CAx}}\) uptake (Fig. 3C), which in turn results in a higher mitochondria-dependent \(C_{\text{CAx}}\) (Fig. 2D) and \(P_{\text{TPmito}}\) (Fig. 2C).

Finally, we tested whether the amount of posttetanic mitochondrial \(C_{\text{CAx}}\) extrusion \(J_{\text{mito}}\) estimated by Eq. 7 is close to the mitochondrial \(C_{\text{CAx}}\) uptake estimated at the end of HFS according to Eq. 6. To estimate the former \(J_{\text{mito}}\), the time integral of TPP\(^{+}\)-sensitive \(C_{\text{res}}\) was calculated from the data in Fig. 2, and the \(\gamma\) value for \(C_{\text{CAx}}\) clearance was calculated according to Eq. 8 using the \(C_{\text{CAx}}\) decay rate constant \(r_{\text{CAx}}\) measured from CaTs evoked by double APs (interspike interval = 5 ms, 4.1/s for P5 and 4.9/s for P10, Fig. 4). The two estimates were not significantly different from each other in both age groups (Fig. 3E), suggesting that most of the \(C_{\text{CAx}}\) taken up by mitochondria during HFS is extruded after the end of HFS.

The estimates for mitochondrial \(C_{\text{CAx}}\) uptake are valid when Ru360 has no effect on the \(C_{\text{CAx}}\) current, but bath-applied Ru360 has been reported to reduce the amplitude of an AP-induced CaT in motor nerve terminal (David 1999). To test if intracellulary applied Ru360 has any effect on \(C_{\text{CAx}}\) current, we compared \(C_{\text{CAx}}\) currents induced by HFS (short depolarizing pulses at 100 Hz for 2 s) with or without 20 \(\mu\)M Ru360 in the pipette solution at the calyx of Held terminals of P10. Figure 3F shows that Ru360 has no significant effect on \(C_{\text{CAx}}\) current (\(P > 0.4\) at all time points). The total amounts of charge influx elicited by the HFS was not different between the two conditions either (411.8 ± 39.8 pC, \(n = 7\); 394.3 ± 23.5 pC, \(n = 6\), \(P = 0.724\)). Despite little effect of Ru360 on \(C_{\text{CAx}}\) uptake, higher elevation of \([\text{Ca}^{2+}]_i\) in the presence of Ru360 may enhance diffusion of \(C_{\text{CAx}}\) from the terminal to the attached axon, resulting in underestimation of mitochondrial \(C_{\text{CAx}}\) uptake. Nevertheless, such \(C_{\text{CAx}}\) clearance by diffusion may be limited because most afferent axon fibers are truncated during slice preparation.

Developmental upregulation of \(C_{\text{CAx}}\) clearance mechanisms. The lower peak of HFS-CaT at P10 can be ascribed to a smaller AP-induced \(C_{\text{CAx}}\) uptake, but both of them (denoted by \(\text{Na/CaX}\)) can be inhibited by intracellular perfusion of exchanger inhibitory peptide (XIP) and K\(^+\)-free TMA\(^{+}\) solution, respectively (Kim et al. 2005; Lee et al. 2002; 2007b; Li et al. 1991), whereas both of them (denoted by Na/CaX) can be inhibi-
edited by lowering the extracellular \([\text{Na}^+]\). We investigated the developmental changes of NCX and NCKX activities at the calyx of Held loaded with 50 \(\mu\text{M}\) fura-4F via a whole cell patch pipette. Because the Na/CaX activity is activated at higher \([\text{Ca}^{2+}]\) than PMCA (Kim et al. 2005), we examined the inhibitory effects on \([\text{Ca}^{2+}]\) transients of two different amplitudes evoked by 2 or 20 repetitive depolarizing pulses at 200 Hz (denoted by CaT2 or CaT20, respectively; pulse duration, 2 ms). From a holding potential of \(-70 \text{ mV}\), the depolarization step was adjusted between \(-20 \text{ and } 0 \text{ mV}\) such that the peak of the resulting CaT20 was near \(2 \text{ M}\) (in the range of 1.5–2.5 \(\text{M}\)). The statistical means of the decay rate constants under various conditions are summarized in Table 1.

Under control conditions, that is, in the presence of normal concentrations of intracellular \([\text{K}^+]\) and extracellular \([\text{Na}^+]\), the decay rate constant of CaT2 was not different between P5 and P10 (Fig. 4Aa). However, the decay rate constant \(r_w\) of CaT20 was significantly faster at P10 than at P5 \((P < 0.01, \text{Fig. 4Ab})\). Next, we compared the decay rate constant using the TMA-internal solution for selective inhibition of NCKX. Under this condition, both decay rate constants, CaT2 and CaT20, were not significantly different between P5 and P10 (Fig. 4B), suggesting that NCKX is responsible for the developmental acceleration of the decay rate. To study the contribution of NCX, we intracellularly perfused the calyx terminal with K-gluconate internal solution containing 10 \(\mu\text{M}\) XIP. Under this condition, the decay rate constant of CaT20 was faster at P10 than at P5 (Fig. 4Cb), whereas that of CaT2 was not affected at either age (Fig. 4Ca). Furthermore, the difference in the decay rate constant of CaT20 between P5 and P10 in the presence of XIP (4.7/s) was comparable to that under control conditions (5.3/s), suggesting that NCX is not

Fig. 4. Developmental changes in Na\(^{+}/\text{Ca}^{2+}\) exchangers. Aa: averaged traces of Ca\(^{2+}\) transients evoked by double depolarizing pulses (CaT2: pulse duration, 2 ms; interspike interval, 5 ms) under presynaptic whole cell voltage clamp with K-gluconate internal (K\(^{-}\)-int.) pipette solution at P5 (black) and P10 (gray) (left) and mean values for amplitudes (\(\Delta[\text{Ca}^{2+}]\), middle) and decay rate constant \((r_w)\) of CaT2s (right). Ab: averaged traces of Ca\(^{2+}\) transients evoked by a train of 20 depolarizing pulses at 200 Hz (CaT20) under the same conditions as in Aa (left) and mean values for \(\Delta[\text{Ca}^{2+}]\) (middle) and \(r_w\) of CaT20s (right). B and C: the same experiments as in A except that the whole cell voltage clamp was used with TMA-gluconate internal pipette solution (TMA\(^{-}\)-int.; B) or with K-gluconate internal pipette solution including exchanger inhibitor peptide (K\(^{-}\)-int. + XIP; C). D: the same experiment as in A except that external Na\(^{+}\) was replaced with Li\(^{+}\) (ext. Li\(^{+}\)). E and F: estimations of K\(^{-}\)-dependent (NCKX) and K\(^{-}\)-independent Na\(^{+}/\text{Ca}^{2+}\) exchanger (NCX) activities at P5 and P10. The NCKX activity was calculated from the difference of Ca\(^{2+}\) decay rate constants between CaT20s under K\(^{-}\) and TMA\(^{-}\) internal conditions. The NCX activity was calculated from the difference between K\(^{-}\) and XIP conditions. Values are means ± SE; the number of synapses or calyceal terminals is indicated on each bar; n.s., not significant \((P > 0.05)\). **\(P < 0.01\); unpaired t-test.
between K*D, indicating little developmental changes of Ca2+. CaT\textsubscript{20} was significantly different between P5 and P10 (Fig. 4D), indicating little developmental changes of Ca2+ clearance mechanisms other than the Na/CaX. Furthermore, within the same age group, the decay rate constant of CaT2 was not affected by any of the above inhibitors (P > 0.05), implying no developmental change of PMCA.

Finally, we estimated contributions of NCKX and NCX to Ca2+ clearance from difference in decay rate constants between K+ and TMAi (for NCKX) and between K+ and XIP (for NCX) at P5 and P10 (Fig. 4, E and F). The contribution of NCKX was significantly increased during development (P5, 2.13 ± 0.52; P10, 6.32 ± 0.83, P < 0.01), whereas the NCX activity was not different between P5 and P10 (P5, 3.82 ± 0.65; P10, 4.37 ± 1.33, P = 0.71). These results suggest that the developmental upregulation of the NCX activity is responsible for the faster Ca2+ clearance at mature calyx of Held terminals.

Shaping of a HFS-induced Ca2+ transient by Ca2+ clearance mechanisms. We tested how such developmental changes of NCX and NCKX shape the HFS-CaT evoked by a train of depolarizing pulses (100 Hz for 4 s; denoted by CaT\textsubscript{400}) under whole cell patch-clamp recording conditions. We used the same step depolarizing pulse as in Fig. 4. First, we confirmed that the [Ca2+]\textsubscript{peak} of CaT\textsubscript{400} under whole cell patch-clamp recording conditions is not different from that evoked by afferent fiber stimulation without a presynaptic whole cell recording conditions is not different from that evoked by afferent fiber stimulation without a presynaptic whole cell recording conditions.

In the present study, we found that the lower amplitude of PTP at P10 is caused in part by the decrease in mitochondria-derived Ca\textsubscript{res} (Fig. 2C). The lower posttetanic Ca\textsubscript{res} at P10 is closely related to the lower [Ca2+]\textsubscript{peak} of the HFS-CaT (Fig. 2D) because a lower [Ca2+]\textsubscript{peak} buildup leads to lower mitochondrial Ca2+ uptake and thus lower posttetanic Ca\textsubscript{res} (Fig. 3, C and D). This finding is consistent with our previous reports that mitochondrial Ca2+ uptake is activated at high [Ca2+]\textsubscript{i}, where Na/CaX is saturated (Kim et al. 2005). We showed that NCKX is most prominently upregulated at P10 (Fig. 4) and that the higher NCKX activity results in the lower [Ca2+]\textsubscript{peak} of HFS-CaTs at P10 (Fig. 5). Therefore, we conclude that the reduced mitochondrial Ca2+ uptake during HFS at P10 can be ascribed to developmental upregulation of NCKX.

During the second postnatal week, the calyx of Held undergoes drastic developmental changes not only in Ca2+ clearance but also in its morphology, electrophysiological properties, short-term plasticity of EPSCs and synaptic ultrastructures (Chuhma and Ohmori 2001; Lee et al. 2012a; Taschenberger et al. 2002; Taschenberger and von Gersdorff 2000; Wang et al. 2008), implying that the developmental increase in NCKX occurs in parallel with other changes which optimize the calyx of Held for precise synaptic transmission. Similar rapid changes in Ca2+ clearance have been reported in other parts of the mammalian brain during early postnatal weeks. For example, SERCA and NCX activities greatly increase in supraoptic magnocellular neurons within a few days during the weaning period (Lee et al. 2007c). The mRNA expression levels of NCKX2, NCKX3, and NCX2 are strongly upregulated during the second week in cul-

| Table 1. Statistical mean values of decay rate constant and peak Ca2+ amplitude of CaT2 and CaT20 under various conditions |
|-------------------|-------------------|-------------------|-------------------|
| | P5 | P10 | P value, P5 vs. P10 |
| | APs, n | APs, n | APs, n |
| K+ | 2, 8 | 2, 7 | 0.24 ± 0.02 | 0.17 ± 0.03 |
| | | | 4.14 ± 0.28 | 4.92 ± 0.55 |
| | | | r\textsubscript{w} | 0.97 |
| TMAi | 20, 11 | 20, 9 | 2.07 ± 0.10 | 1.98 ± 0.16 |
| | | | 9.60 ± 0.37 | 14.91 ± 0.61 |
| XIP | 2, 8 | 2, 6 | 0.28 ± 0.03 | 0.23 ± 0.03 |
| | | | 4.61 ± 0.68 | 5.77 ± 0.57 |
| | | | r\textsubscript{w} | 0.97 |
| | | | | 0.01 |
| XIP | 20, 9 | 20, 7 | 2.00 ± 0.12 | 2.19 ± 0.13 |
| | | | 7.48 ± 0.36 | 8.59 ± 0.57 |
| Li\textsubscript{ext} | 2, 5 | 2, 5 | 0.23 ± 0.05 | 0.19 ± 0.03 |
| | | | 3.40 ± 0.93 | 4.34 ± 0.40 |
| | | | r\textsubscript{w} | 0.97 |
| Li\textsubscript{ext} | 20, 6 | 20, 6 | 2.17 ± 1.00 | 2.12 ± 0.08 |
| | | | 5.78 ± 0.53 | 10.54 ± 1.18 |
| | | | r\textsubscript{w} | 0.01 |
| | | | | 0.38 |
| | 20, 8 | | 2.18 ± 0.17 | 2.19 ± 0.15 |
| | | | 5.70 ± 0.53 | 6.59 ± 0.45 |

Values are means ± SE (n = no. of synapses analyzed) for the decay rate constant (r\textsubscript{w}) and the peak Ca2+ amplitude (Δ[Ca2+]) of CaT\textsubscript{20} transients evoked by 2 or 20 repetitive depolarizing pulses (CaT\textsubscript{2} or CaT\textsubscript{20}, respectively) under various conditions.
DEVELOPMENTAL CHANGES IN Ca²⁺ CLEARANCE AND SHORT-TERM PLASTICITY

Fig. 5. Shaping of the HFS-induced Ca²⁺ buildup by block of NCX1 or NCX2. Aa: averaged traces of Ca²⁺ transients evoked by HFS (100 Hz for 4 s) of afferent fibers (fiber stim., left) and by a similar train of depolarizing pulses in whole cell voltage-clamp mode (depol. pulses, right). The calyx of Held at P5 (black) or P10 (gray) was loaded with fura-4F using preloading techniques (left) or via whole cell patch pipette (right). Ab: mean values for [Ca²⁺]peak of the HFS-CaTs shown in Aa. A, B, and C: averaged traces of CaTs evoked by a train of short depolarizing pulses at 100 Hz for 4 s (CaT400) under the presynaptic whole cell voltage-clamp condition at P5 (B) and P10 (C). The presynaptic whole cell mode utilized G-glutamate internal solution as the control condition (black traces) or TMA-glutamate pipette solution for inhibition of NCX (left, blue) or K-glutamate pipette solution including 10 μM XIP for inhibition of NCX (middle, red); at right, averaged CaT400 traces under the 3 conditions are superimposed. D: comparison of averaged traces of CaT400 at P5 (black) and P10 (gray) under the conditions of TMA⁻ internal solution including XIP (Db) or K⁺ internal solution including XIP (Db). E: averaged traces of presynaptic Ca²⁺ influx elicited by a train of depolarizing pulses at 100 Hz for 4 s at P5 (black) and P10 (gray). Shading indicates the SE range of each averaged trace. Values are means ± SE; n.s., not significant (P > 0.05); **P < 0.01; unpaired t-test.

(Habets and Borst 2006), increase in quantal size mediated by compound vesicles (He et al. 2009; Xue and Wu 2010) and Ca²⁺-dependent activation of protein kinase C (PKC) (Fioravante et al. 2011; Korogod et al. 2007). Nonmitochondrial mechanisms are responsible for about half of the PTP at P5 and the majority of the PTP at P10 (Fig. 1).

Previously, we have reported that the posttetanic increase in release probability was mediated by mitochondria-dependent Ca_{res} (Lee et al. 2008). Consistent with this view, Fioravante et al. (2011) showed that the posttetanic release probability increase in the calyx synapses of PKC k/o mice, where posttetanic Ca_{res} was not altered, is not different from that in the wild-type synapses. The present study shows that mitochondria-dependent mechanisms play a minor role in PTP at the mature calyx of Held. The experiments in Fioravante et al. (2011; P11–14) and Korogod et al. (2007; P7–10) have been performed in the relatively mature calyx of Held (P11–14) compared with Lee et al. (2008, P6–8). The minor role of mitochondrial Ca_{res} in PTP at the mature calyx of Held may explain why most but not all of the PTP was suppressed at the calyx of Held in PKC k/o mice, given that PKC is involved in the posttetanic increase in the readily releasable vesicle pool size.

The postnatal calyx of Held synapses are developmentally heterogeneous. Numerous parameters involving synaptic transmission are developmentally regulated (Taschenberger et al. 2002). Therefore, synaptic mechanisms underlying synaptic plasticity may be heterogeneous to result in seemingly inconsistent findings at the early postnatal calyx of Held synapses.

Interpretation of presynaptic Ca²⁺ buildup during HFS. A Ca²⁺ buildup during HFS depends on the net flux of Ca²⁺ into and out of the cytosolic compartment. In Fig. 3D, we estimated the cumulative mitochondrial Ca²⁺ uptake during HFS from the difference of Ca²⁺ buildup between the control and in the presence of Ru360. This estimation is valid when the activity of other Ca²⁺ clearance mechanisms and Ca²⁺ influx are not altered by internal application of Ru360 (Matlib et al. 1998) (Fig. 3F). Even if Ru360 has no direct effect on other Ca²⁺ clearance mechanisms, higher [Ca²⁺] buildup itself can increase the activity of other Ca²⁺ clearance mechanisms (or dCa_{res}/dt), and thus the error term in Eq. 3 may not be negligible, which can invalidate Eq. 6. But this concern is unlikely. The slope of the [Ca²⁺] buildup during HFS depends on Ca²⁺ influx and clearance. If Ca²⁺ clearance increases linearly as [Ca²⁺] increases in the presence of Ru360, the slope of Ca²⁺ buildup should become diminished, because Ca²⁺ influx is rather reduced at the late period of HFS (Fig. 5E). Figure 3, A and B, shows that the slope of the [Ca²⁺] buildup did not lessen during the experiment. Therefore, dCa_{res}/dt may be little dependent on [Ca²⁺], at least in the range where mitochondrial Ca²⁺ uptake is active, and thus the error term in Eq. 5 may not seriously affect the Φ_{in} estimates calculated according to Eq. 6 (Fig. 3D). This argument is further supported by the statistical similarity between estimates for mitochondrial Ca²⁺ uptake during HFS and TPP⁺-sensitive posttetanic Ca²⁺ extrusion from mitochondria (Fig. 3, E and F).

This way of estimation of Ca²⁺ clearance, however, cannot be used for blockers of Ca²⁺ clearance mechanisms other than mitochondria. Because the higher buildup of [Ca²⁺] caused by inhibition of NCX or NCKX invoke new participation of mitochondria in Ca²⁺ clearance (Fig. 3D), the [Ca²⁺] buildup in the presence of a Ca²⁺ clearance mechanism blocker can be alleviated by mitochondria. This idea can explain why the increase in the peak Ca²⁺ of CaT400s caused by XIP is larger in P10 than that in P5 (Fig. 5, B and C), despite that the NCX activity estimated from CaT20s was not different between at P5 and at P10 (Fig. 4). Given that NCX is the major Ca²⁺ clearance mechanism in the moderate [Ca²⁺] range and that the [Ca²⁺] dynamic range of the control CaT400 at P5 is higher than that of P10, the higher Ca²⁺ buildup caused by XIP may recruit mitochondrial Ca²⁺ uptake more readily at P5 than P10, which in turn can alleviate excessive rise of [Ca²⁺], during HFS at P5. In contrast, inhibition of NCX may invoke little such mitochondrial Ca²⁺ uptake at P5 because NCX is still active and intrinsic NCKX activity is low at P5.
Finally, it should be noted that the dependence of mitochondrial contribution to Ca\(^{2+}\) clearance on [Ca\(^{2+}\)], in the present study is different from our previous results (Kim et al. 2005). When the CaT was induced by a short depolarizing pulse (50 ms), mitochondrial Ca\(^{2+}\) uptake started at [Ca\(^{2+}\)] > 2.5 \mu M. In contrast, it started at [Ca\(^{2+}\)] > 1 \mu M when CaTs were induced by HFS (Fig. 3D). Assuming that more homogeneous Ca\(^{2+}\) elevation is induced by HFS than by a short depolarizing pulse, this discrepancy may result from difference in the spatial distances from Ca\(^{2+}\) channels to mitochondria or NCX(K)X. The second possibility is suppression of NCX(K)X during HFS. It is well known that Na/CaX activity is steeply dependent on the membrane potential (V\(_{m}\)) (Earm et al. 1990). The V\(_{m}\) of the calyx of Held is not completely depolarized during repetitive firing at 100 Hz, but the trough of V\(_{m}\) is kept depolarized by ~20 mV (Kim et al. 2007). Such 20-mV depolarization can profoundly reduce the Na/CaX activity (Earm et al. 1990). Given that NC(K)X competes with mitochondria for Ca\(^{2+}\) (Kim et al. 2005), such suppression of NC(K)X may provide more chance for mitochondria to take up cytosolic Ca\(^{2+}\). Third, a shift of the threshold for the mitochondrial Ca\(^{2+}\) uptake in Kim et al. (2005) may be caused by a washout of cytosolic factors that facilitate mitochondrial Ca\(^{2+}\) uptake such as polyamines under the whole cell configuration (Jensen et al. 1987).

Ca\(^{2+}\) clearance mechanisms in the axon terminal. The present study showed that NCX is the major Ca\(^{2+}\) clearance mechanism, and NCKX plays a minor role at P5 (Fig. 4, E and F). As the calyx matures, the NCKX activity increases by a factor of 3, whereas the NCX activity is relatively stable, resulting in NCKX and NCX contributions to total Ca\(^{2+}\) clearance of 42% and 29% at P10. These values are comparable to 41% and 28% that we have previously reported for contributions of NCKX and NCX (Kim et al. 2005). It should be noted, however, that these estimates are valid for the [Ca\(^{2+}\)]\(_{e}\), elevation of about 2 \mu M. As shown in Fig. 4, neither NCKX nor NCX contributes to Ca\(^{2+}\) clearance in the decay phase of lower amplitude Ca\(^{2+}\) transients induced by two APs. Furthermore, NCKX might be saturated at lower cytosolic [Ca\(^{2+}\)]\(_{i}\) than NCX. The comparison of Ca\(^{2+}\) build-up phases of CaT400s under TMA and XIP conditions implies that the Ca\(^{2+}\) build up is more effectively suppressed by NCKX than NCX at the early phase of the CaT400 where [Ca\(^{2+}\)]\(_{i}\) is ~2 \mu M (red trace in Fig. 5C), consistent with higher contribution of NCKX in this [Ca\(^{2+}\)]\(_{i}\) range (Fig. 4, E and F). The Ca\(^{2+}\) build up under the XIP condition (red trace), however, crossed over that under the TMA condition (blue trace in Fig. 5C) at the time point when the 300th AP invaded and the [Ca\(^{2+}\)]\(_{i}\) was ~4 \mu M, implying that the NCKX activity might be not so strong as NCX at such high [Ca\(^{2+}\)]\(_{i}\), range.

The present study demonstrates that the major developmental change in Ca\(^{2+}\) clearance is the increase in the NCKX activity at calyx of Held axon terminal. Among the NCKX family, NCKX2 may mediate the NCKX activity at axon terminals because NCKX2 at axon terminals exhibits low affinity for K\(^+\) (Lee et al. 2002) and PKC-dependent enhancement (Lee et al. 2006), which are characteristics of NCKX2. More importantly, NCKX2 has been shown to be transported to the axon terminal via KIF21A, whereas it undergoes endocytosis in somatodendritic regions (Lee et al. 2012b). These results are consistent with functional studies that have shown a lack of the NCKX activity in somatodendritic regions (Kim et al. 2003; Lee et al. 2007b, 2009).

Fast Ca\(^{2+}\) clearance enables an axon terminal to keep the presynaptic global [Ca\(^{2+}\)] low during HFS. High Ca\(^{2+}\) buildup promotes asynchronous neurotransmitter release (Chuahna et al. 2001; Otsu et al. 2004), which in turn dissipates the reluctant synaptic vesicles that can be readily recruited for synchronous release (Lee et al. 2012a). Furthermore, presynaptic axon terminals, which have a higher surface-to-volume ratio, undergo much higher [Ca\(^{2+}\)]\(_{i}\) elevation during HFS than soma, which renders involvement of mitochondria inevitable without other efficient Ca\(^{2+}\) clearance mechanisms. As shown in the present study, mitochondrial Ca\(^{2+}\) uptake is closely associated with PTP. Therefore, efficient Ca\(^{2+}\) clearance is essential for precise synaptic transmission and avoiding excessive depression. The developmental upregulation of NCKX might be one of the mechanisms that optimize the calyx of Held for fast and accurate synaptic transmission.

REFERENCES

GRANTS

This work was supported by National Research Foundation of Korea Grant 2012-0004904 and 2012-0009135.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS

J Neurophysiol • doi:10.1152/jn.00728.2012 • www.jn.org

10.1152/jn.00728.2012

Lee SH, Kim MH, Lee JY, Lee D, Park KH, Ho WK. Na+/Ca2+ exchange and Ca2+ homeostasis in axon terminals of mammalian central neurons. Ann NY Acad Sci 1099: 396–412, 2007b.

Lee SH, Park KH, Ho WK. Postnatal developmental changes in Ca2+ homeostasis in supraoptic magnocellular neurons. Cell Calcium 41: 441–450, 2007c.

