A novel analysis of excitatory currents during an action potential from suprachiasmatic nucleus neurons

John R. Clay
National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland

Submitted 24 June 2013; accepted in final form 11 September 2013

Clay JR. A novel analysis of excitatory currents during an action potential from suprachiasmatic nucleus neurons. J Neurophysiol 110: 2574–2579, 2013. First published September 18, 2013; doi:10.1152/jn.00462.2013.—A new application of the action potential (AP) voltage-clamp technique is described based on computational analysis. An experimentally recorded AP is digitized. The resulting V_{h} vs. t_{s} data set is applied to mathematical models of the ionic conductances underlying excitability for the cell from which the AP was recorded to test model validity. The method is illustrated for APs from suprachiasmatic nucleus (SCN) neurons and the underlying tetrodotoxin-sensitive Na+ current, I_{Na}, and the Ca2+ current, I_{Ca}. Voltage-step recordings have been made for both components from SCN neurons (Jackson et al. 2004). The combination of voltage-step and AP clamp results provides richer constraints for mathematical models of voltage-gated ionic conductances than either set of results alone, in particular the voltage-step results. For SCN neurons the long-term goal of this work is a realistic comprehensive analysis of the ionic currents associated with SCN neurons. They obtained results with voltage-clamp technique (Bean 2007; Doerr et al. 1989; Llinas et al. 1982). This work demonstrates that a combination of voltage-step and AP clamp results in which recordings of APs from the preparation under study are used in the analysis provides a useful test of models of ionic currents in excitable cells.

METHODS

The results described in this article were obtained with Mathematica (Wolfram Research, Champaign, IL). Details of the methodology are given in RESULTS.

RESULTS

The AP from the inset of Fig. 3 of Jackson et al. (2004), along with the underlying I_{Na} and I_{Ca} components, were digitized; those records are illustrated in Fig. 1. The I_{Na} result is the difference current obtained from application of the AP record to the preparation in voltage clamp for control conditions and following bath application of tetrodotoxin. Similarly, the I_{Ca} result is the difference between AP clamp results in control and following exchange of Ca2+ in the bath with Mg2+. Further details are given in Jackson et al. (2004).

The I_{Na} component: voltage-step results. The model of I_{Na} from Engel and Jonas (2005) was the starting point of this analysis. They used the m^{h} gating model of I_{Na} from Hodgkin and Huxley (1952), where

$$\frac{dm}{dt} = -\left[\alpha_{m}(V) + \beta_{m}(V)\right]m + \alpha_{m}(V);$$

$$\frac{dh}{dt} = -\left[\alpha_{h}(V) + \beta_{h}(V)\right]h + \alpha_{h}(V).$$

The α and β values in Eq. 1 used by Engel and Jonas (2005) are

$$\alpha_{m}(V) = -93.8(V - 105)/\{\exp[-(V - 105)/17.7] - 1\};$$

$$\beta_{m}(V) = 0.17\exp(-V/23.3);$$

$$\alpha_{h}(V) = 0.00035\times\exp(-V/18.7);$$

$$\beta_{h}(V) = 6.6/\{\exp[-(V + 17.7)/13.3] + 1\}.$$

The voltage V in the above equations is in millivolts, all α and β values are in units of reciprocal milliseconds, and the time t is in milliseconds. The above expressions were modified to give a qualitative description, by eye (Fig. 2A), to the I_{Na} results in Fig. 8B of Jackson et al. (2004), as well as a description of steady-state inactivation, i.e., the $h(V)$ curve (Huang 1993) and the $m_{h}(V)$ curve (Fig. 8C of Jackson et al. 2004), with $h(V) = \alpha_{h}(V)/[\alpha_{h}(V) + \beta_{h}(V)]$ and $m_{h}(V) = \alpha_{m}(V)/[\alpha_{m}(V) + \beta_{m}(V)]$. The $h(V)$ and $m_{h}(V)$ curves are illustrated in Fig. 2B. The results in Fig. 2A correspond to $I_{Na} = 120m^{h}(V)h(V - 45)$ with $h(V)$ in picoammeters and $V = -53$, -48, -43, -38, -33, -28, -18, and -8 mV. Holding potential is -78 mV. The α and β values obtained from this analysis, modified from Eq. 2, were

$$\alpha_{m}(V) = -14(V - 88)/\{\exp[-(V - 88)/17.7] - 1\};$$

$$\beta_{m}(V) = 0.026\times\exp(-(V + 12)/8);$$

$$\alpha_{h}(V) = 1.2 \times 10^{-4}\exp[-(V + 7)/8];$$

$$\beta_{h}(V) = 2.3/\{\exp[-(V + 24.7)/13.3] + 1\}.$$
The expressions given in Eq. 3 were used in the results that follow.

The I_{Na} component: AP clamp results. The I_{Na} result from the AP clamp recording (Fig. 1) was simulated using a non-traditional iterative methodology. The start point of the AP in Fig. 1 was -56.7 mV (t_0 = 0 ms, $V_o = -56.7$ mV). The initial values of m and h, m_0 and h_0, respectively, as determined from Eq. 3 with $V = V_o$, were $m_0 = 0.076$ and $h_0 = 0.24$. The next iterative m and h values, m_1 and h_1, were determined from Eqs. 1 and 3 with NDsolve (Mathematica) with $V(t) = V_o + (V_i - V_o)(t - t_0)/(t_1 - t_0)$ for $t_0 < t < t_1$ ($V_i = -56.1$ mV, $t_1 = 0.44$ ms). The results were $m_0 = 0.081$ and $h_0 = 0.24$. This procedure was continued throughout the waveform for $i = 2, 3, 4, ...$. The resulting digitized values of I_{Na} were determined according to $I_{Na} = 100(m(t)h(t) - 45)$. The last results are illustrated in Fig. 3 below the AP along with the experimental I_{Na} recording. The model provides a good description of the experiment other than a slight discrepancy near the peak of the AP (arrow in Fig. 3).

The AP clamp analysis illustrates the behavior of inactivation, $h(t)$, and activation, $m(t)$, during repolarization (Fig. 4A). Inactivation rapidly goes to completion ($h = 0$) close to the peak of the AP. Before this occurs, $h(t)$ and $m(t)$ have a non-zero overlap, indicated by the shaded area in Fig. 4A, middle, which produces a non-zero value of I_{Na}. If $h(t)$ went to 0 even more rapidly during this phase of the AP, the discrepancy between theory and experiment shown in Fig. 2 would be reduced or, perhaps, eliminated. Attempts to accomplish this result without modifying other aspects of the results were unsuccessful. Activation, $m(t)$, rapidly changes from 1 to 0 during the major portion of repolarization (Fig. 4A) just before inactivation begins to recover from 0. Consequently, no additional overlap of $h(t)$ and $m(t)$ occurs throughout the remainder of the AP (Fig. 4A).

The above results are compared with a similar analysis of the Hodgkin and Huxley (1952) model with their original expressions for the α and β values for I_{Na} (Fig. 4B). Inactivation in their model does not go to completion during the AP. Moreover, $m(t)$ does not return to 0 as early in the AP as is the case in the SCN I_{Na} analysis. For both reasons, $h(t)$ and $m(t)$ overlap considerably during repolarization, which leads to a significant I_{Na} especially since the driving force for Na^+ increases as the membrane potential travels down the repolarization phase of the AP. Indeed, peak I_{Na} during the AP is twice as large as the peak I_{Na} during the upstroke phase (Fig. 4B: bottom). As a number of groups have noted, the Hodgkin and Huxley (1952) model is not energetically efficient since I_K must overcome I_{Na} during the AP to return the membrane potential to rest (Alle et al. 2009; Carter and Bean 2009; Crotty...
et al. 2006; Sengupta et al. 2010). In contrast, \(I_{Na} \) flows primarily during the initial rise of the AP in mammalian neurons (Alle et al. 2009; Carter and Bean 2009), as is the case for SCN neurons (Jackson et al. 2004; Fig. 1).

An alternative model for \(I_{Na} \), gating in SCN neurons. Sim and Forger (2007) have described a model of the AP from SCN neurons. The equations for \(I_{Na} \) in their model were based on the voltage-step results of Jackson et al. (2004), as was the case for the model of \(I_{Na} \) described above. They used \(I_{Na} = 229m^2(t)h(t)(V-45) \) with \(dm/dt = (m_m - m_r)/m_r, dh/dt = (h_m - h)/h_r, \) and \(m_m = \{1 + \exp[-(V + 35.2)/7.9]\}^{-1}, h_m = \{1 + \exp[(V + 62)/5.5]\}^{-1}, \) and \(m_r = 0.51 + \exp[-(V + 26.6)/7.1]\). AP clamp analysis was applied to these equations (Fig. 5). A discrepancy between theory and experiment is apparent during the latter part of the declining phase of \(I_{Na} \) (arrow b in Fig. 5) similar to the results described above (Fig. 3), suggesting that this portion of the AP clamp recording is a challenge for models of \(I_{Na} \). More significantly, the Sim and Forger (2007) model does not provide an adequate description of \(I_{Na} \) just before and during the initial upstroke phase of the AP (arrow a in Fig. 5) in contrast to the model given in the present report (Fig. 3), which does successfully describe this portion of the \(I_{Na} \) results. This portion of the \(I_{Na} \) recording is important for near-threshold excitability (see Discussion).

The \(I_{Ca} \) component: voltage-step results. Channel activation for \(I_{Ca} \) is modeled by \(r(t) \) with

\[
dr/dt = -[\alpha_r(V) + \beta_r(V)]r + \alpha_r(V).
\]

Inactivation is described by \(f(t) \) (Tuckwell 2012). The fully activated \(I_{Ca} \) current-voltage relation (\(r = 1 \)) is given by the Goldman-Hodgkin-Katz (GHK) equation:

\[
I_{Ca} = -Ca^{2+}P_{Ca}F(A(qV/kT))/[\exp(qV/kT) - 1],
\]

where \(Ca^{2+} \) is the extracellular \(Ca^{2+} \) concentration, \(P_{Ca} \) is the membrane’s permeability to \(Ca^{2+} \), \(F \) is the Faraday constant, \(k \) is the area of the cell, \(q \) is the unit electronic charge, \(k \) is the Boltzmann constant, and \(T \) is absolute temperature (\(kT/q = 25 \) mV at room temperature). The intracellular \(Ca^{2+} \) concentration, \(Ca^{2+} \) is \(\leq Ca^{2+} \). It was set to zero in the above. Equation 5 can be written simply as \(I_{Ca} = aGHK(V) \), where \(a \) is a constant in units of picocompasses and \(GHK(V) = (V/25)/[\exp(V/25) - 1] \). (Note that \(x/\exp(x) - 1 = 1 \) when \(x = 0 \).) The peak \(Ca^{2+} \) currents in Fig. 9A, top left, of Jackson et al. (2004) were divided by \(GHK(V) \) (Clay 2009). Those results are shown in Fig. 6B along with the \(r_{Ca}(V) \) curve, where \(r_{Ca}(V) = \alpha_r(V)/[\alpha_r(V) + \beta_r(V)] \) with \(\alpha_r(V) = -0.048(V + 32)/[\exp(-0.13(V + 32)) - 1] \) and \(\beta_r(V) = 0.6 \times \exp(-0.05(V + 42)) \). Attempts to describe \(I_{Ca} \) inactivation, \(f(t) \), to a voltage-dependent process were unsuccessful. Calcium-dependent inactivation was used instead (Fox et al. 2002; Kay 1991; Luo and Rudy 1984; Standen and Stanfield 1982). The intracellular calcium concentration, an integral part of a model of \(Ca^{2+} \)-dependent inactivation, was determined from

\[
dCa^{2+}/dt = -K_1I_{Ca} - K_2Ca^{2+},
\]

with \(K_1 = 8 \times 10^{-5} \) M and \(K_2 = 0.04 \) ms\(^{-1} \) (Purvis and Butera 2005). Inactivation is given by

\[
df(t)/dt = [f_1(Ca^{2+}) - f(t)]/\tau_{Ca},
\]

where \(f_1(Ca^{2+}) = 1/[1 + (Ca^{2+}/K_d)]^3 \)

with \(K_d = 0.01 \) \(\mu \)M and \(\tau_{Ca} = 30 \) ms (Fox et al. 2002). The full model of \(I_{Ca} \) is

\[
I_{Ca} = ar^2(V)f(t)GHK(V),
\]

with \(r(t) \) given by Eq. 4, \(f(t) \) by Eq. 7, and \(GHK(V) \) as given above. The predictions of Eq. 8 for voltage steps are illustrated in Fig. 6A for \(V = -48, -38, -28, -18, -8, \) and +2 mV for \(a = 160 \) pA. Holding potential is \(-78 \) mV. Return potential following depolarizing steps is \(-58 \) mV. The records for \(-18, -8, \) and +2 mV are very similar to each other, as is the case experimentally (Fig. 9 in Jackson et al. 2004). [Note that \(a = 160 \) pA corresponds to \(P_{Ca} = 4.2 \times 10^{-6} \) cm/s based on \(Ca^{2+} = 1.2 \) mM and a cell diameter of 10 \(\mu \)m (Jackson et al. 2004)].

The \(I_{Ca} \) component: AP clamp results. The \(I_{Ca} \) current from the AP clamp recording (Fig. 1) was simulated as with the \(I_{Na} \) result. Channel activation, \(r(t) \), was determined iteratively throughout the AP record, similar to the procedure used for the \(m(t) \) and \(h(t) \) results described above, using Eq. 4 and NDSolve. Inactivation, \(f(t) \), was also determined iteratively using NDSolve and Eqs. 6 and 7. For example, the initial conditions at the start point of the AP in Fig. 1 (\(t_0 = 0 \) ms, \(V_0 = -56.7 \) mV) were \(Ca^{2+} = 0, f = 1, \) and \(I_{Ca} = -0.27 \) pA. The values of \(Ca^{2+} \) and \(f \) at the next point of the \(V \) vs. \(t \) data set (\(t_1 = 0.44 \) ms; \(V_1 = -56.1 \) mV) as determined from Eqs. 6 and 7 were \(Ca^{2+} = 0.0035 \) \(\mu \)M and \(f = 1 \). This procedure was continued throughout the AP record. [Inactivation remains...
essentially unchanged until later in the AP.] The digitized values of \(I_{\text{Ca}} \), \(I_{\text{Ca,t}} = a r_1^2 g_{\text{GHK}}(V) \), are superimposed on the \(I_{\text{Ca}} \) experimental recording in Fig. 7. The model provides a good overall description of the result, in particular the initial rising phase and the decay phase of \(I_{\text{Ca}} \) later in the AP, although it does not accurately describe subthreshold \(I_{\text{Ca}} \). The latter discrepancy is not clearly apparent in Fig. 7.

Two \(I_{\text{Ca}} \) components in SCN neurons. Jackson et al. (2004) demonstrated the presence of two kinetically and pharmacologically distinct \(I_{\text{Ca}} \) components in SCN neurons, a nimodipine-sensitive component and a nimodipine-insensitive component. The former is relatively small, is activated at relatively negative potentials, and has considerably faster kinetics compared with the nimodipine-insensitive component (Fig. 9 in Jackson et al. 2004).

These results were modeled as above with \(r_1(t) \), the activation variable for the nimodipine-insensitive \(I_{\text{Ca}} \) given by Eq. 4 with \(\alpha_4(V) = -0.034(V + 35)/[\exp(-0.13(V + 35)] - 1 \) and \(\beta_4(V) = 0.42 \times \exp[{-0.065(V + 45)] \). The activation variable for the nimodipine-sensitive component, \(r_2(t) \), is also given by Eq. 4 with \(\alpha_2(V) = -0.096(V + 42)/[\exp(-0.15(V + 42)] - 1 \) and \(\beta_2(V) = 1.2 \times \exp[{-0.08(V + 54)] \). The inactivation variable was assumed to be the same for both components, i.e., the \(f \) variable. The \(I_{\text{Ca}} \) amplitude, parameter \(a \) in Eq. 8, was 120 pA for the nimodipine-insensitive component and 38 pA for the nimodipine-sensitive component. The predictions of the model for voltage steps are shown in the Fig. 8, \(\text{top} \), for \(V = -58, -53, -48, -38, -28, -18 \), and \(-8 \) mV. The activation curves, \(r_1^2(t) \) and \(r_2^2(t) \), respectively, are shown in Fig. 8, \(\text{bottom} \), along with data points taken from Fig. 9 of Jackson et al. (2004). Further details are given in the legend of Fig. 8.

Jackson et al. (2004) provided AP clamp recordings of \(I_{\text{Ca}} \) before and after addition of nimodipine to the bath (their Fig. 12). These results shown in Fig. 9 of the present article were simulated using the two-component model of \(I_{\text{Ca}} \) and the procedures describe above. A notable feature of the total \(I_{\text{Ca}} \) result (Fig. 9A) is the inflection on the rising phase, a result mimicked by the simulations (see DISCUSSION). The AP clamp results in the presence of nimodipine are illustrated in Fig. 9B. The \(r_1(t) \) component of the \(I_{\text{Ca}} \) model was deleted from this analysis.

DISCUSSION

This report describes a novel method for testing models of ionic currents in excitatory preparations in which voltage steps together with AP clamp recordings are used. The traditional approach relies on voltage-step recordings of membrane current alone, as in the original analysis of Hodgkin and Huxley (1952). Models of the voltage-gated currents underlying excitability, \(I_{\text{Na}} \) and \(I_{\text{K}} \), in the case of squid axons, are fitted to the voltage-step results. The equations for \(I_{\text{Na}} \) and \(I_{\text{K}} \) obtained from this analysis are then used to simulate an AP. A comparison of simulated and experimental APs provides a test of the model. An intermediate step in this process is proposed in this report in which the model of each individual ionic component obtained from voltage-step analysis, \(I_{\text{Na}} \) for example, is further tested by an experimental recording of an AP together with a recording of the respective ionic component in AP clamp. This approach may be an appropriate first step in the development of an AP model for a cell having many different voltage-gated ionic conductances, such as SCN neurons. One of the goals of this report is a realistic mathematical model of the SCN AP. The equations for \(I_{\text{Na}} \) and \(I_{\text{Ca}} \) described above will be used in that model.

The \(I_{\text{Na}} \) component. The model of Engel and Jonas (2005) was a significant part of this analysis. Initial attempts to simulate \(I_{\text{Na}} \) during an AP from an SCN neuron based on modifications of the Hodgkin and Huxley (1952) \(\alpha \) and \(\beta \) values for \(I_{\text{Na}} \) led to a substantial \(I_{\text{Ca}} \) during repolarization (simulations not shown). The AP model of Engel and Jonas...
(2005) predicts a separation of the I_{Na} and I_{K} components on the time axis (Clay 2013) consistent with experiment (Alle et al. 2009), which makes their model of I_{Na} gating a more appropriate starting point for building a model of I_{Na} gating for SCN neurons than the Hodgkin and Huxley (1952) model. The α and β values for the SCN I_{Na} (Eq. 3), which correspond to results obtained at room temperature (Jackson et al. 2004), are \sim10 times smaller than the α and β values for hippocampal mossy fiber I_{Na} (Eq. 2), results also obtained at room temperature (Engel and Jonas 2005). This comparison is consistent with considerably faster I_{Na} gating for the latter preparation compared with SCN neurons. Both results have been described with m^3h, a squid-based model (Hodgkin and Huxley 1952). Later work found their model to be incomplete primarily on the basis of gating currents (Vandenberg and Bezanilla 1991a and other studies cited therein). Vandenberg and Bezanilla (1991b) proposed an alternative model that describes most, if not all, I_{Na} results from squid axons. Their model is, unfortunately, cumbersome (not easy to use) and probably not applicable to mammalian preparations. The original m^3h model is relatively simple and does describe whole cell currents from squid axons and mammalian preparations (Clay 2013). Therefore, its continued use appears to be appropriate provided the relevant α and β values are also used.

As noted above, the combination of voltage-step and AP clamp results provides a more rigorous test of models of ion channel gating than voltage-step results alone. This claim is supported by the analysis of the Sim and Forger (2007) model described in Fig. 5. Their model of I_{Ca}, developed solely from the voltage-step results of Jackson et al. (2004), provides an inferior description of the AP clamp recording of this component compared with the model of I_{Ca} described in this report.

The I_{Ca} component. The voltage-step recordings of I_{Ca} of Jackson et al. (2004), L-type Ca^{2+} channel, in the absence of similar results with nimbodine do not clearly indicate the presence of two kinetically distinct I_{Ca} components. In contrast, their AP clamp recording of I_{Ca} in Fig. 9A is suggestive of this result, i.e., the inflection on the rising phase. This result is elucidated by the simulation in Fig. 9A. The nimbodine-sensitive component is activated at relatively negative potentials with sufficiently rapid kinetics (Fig. 8) so that it is nearly in step with the membrane potential during the upstroke phase of the AP. The nimbodine-insensitive component is activated at a slower rate, which accounts for the inflection in I_{Ca} in the AP clamp recording. The model does not completely describe the secondary increase of I_{Ca} following the inflection, although it does provide a good overall description of the AP clamp recording, perhaps sufficient for its use in a full model of the SCN AP. The model of I_{Ca} in which this component was ascribed to a homogeneous population of channels does not exhibit an inflection in the rising phase of the current during AP clamp (Fig. 7). These results provide further evidence for the utility of the AP clamp methodology.

The fully activated current-voltage relation is an important component of models of I_{Ca} regardless of channel type. A linear driving force, $(V - E_{\text{Ca}})$, for this relation, where E_{Ca} is the Nernst potential for Ca^{2+}, is not reasonable since E_{Ca} is not clearly defined, especially for a cell at rest. The Goldman-Hodgkin-Katz equation provides a sufficient description of this relation, in particular the inward rectification of I_{Ca}.

The simulation in Fig. 9A predicts that Ca^{2+} briefly reaches the 10 μM level near the latter part of the AP (results not shown), which is sufficient to activate the Ca^{2+}-dependent K^+ channel, $I_{\text{K,Ca}}$ (Cui et al. 1997). Jackson et al. (2004) also applied the AP clamp technique to the $I_{\text{K,Ca}}$ component. The modeling approach described in this report may be useful in describing those results.

Other current components. Analysis of non-Ca^{2+}-activated K^+ currents in SCN neurons with the AP clamp technique does not appear straightforward. Jackson et al. (2004) found that addition of 10 mM tetraethylammonium (TEA$^+$) to the bath completely removed net outward current during an AP. In contrast, 30 mM TEA$^+$ did not completely block the delayed rectifier K^+ current, I_{DR}, in voltage-step analysis (Bouskila and Dudek 1995). Perhaps modeling of both sets of results may lead to a resolution of this apparent paradox. SCN neurons also have the transient, rapidly inactivating K^+ current, I_A (Bouskila and Dudek 1995; Itri et al. 2010), which is completely blocked by 5 mM 4-aminopyridine (4-AP) (Huang et al. 1993). Moreover, 4-AP modifies spiking behavior of SCN neurons and the shape of the SCN AP (Itri et al. 2005). These results suggest that AP clamp analysis of SCN neurons before and after bath application of 4-AP would be of interest.

Dynamic clamp: comparison with AP clamp and voltage-step techniques. The AP clamp technique is similar to the dynamic clamp method, an approach originally used in cardiac electrophysiology that also has been used in neuroscience and in other fields (Goaillard and Marder 2006; Wilders 2006). As the name implies, this technique involves real-time injection of current into the preparation under investigation during an ongoing experiment, a procedure not required with AP clamp. The AP clamp method does require the preparation under study to be sufficiently stable to permit several steps: 1) recording of an AP, 2) application of the AP waveform to the preparation in voltage-clamp mode in control conditions, 3) voltage-step recordings in control with a particular ionic conductance in mind, I_{Na}, for example, and 4) application of the AP waveform and voltage steps in voltage clamp after the addition of tetrodotoxin to the bath. The results are the differences in membrane currents in control and test conditions for both the AP and voltage steps. This report describes an extension of the method in which an experimentally recorded AP is digitized and the resulting V_i vs. t_i data set applied to mathematical models of the relevant ionic conductance, such as I_{Na}. The result is compared with an experimental AP clamp recording of that component either for model validation or for modification of model parameters so that the model provides a satisfactory description of both voltage-step and AP clamp measurements of the particular ionic component under investigation. A review of the literature did not yield any other reports in which this procedure had been used. A related approach concerning models of I_{Na} has been reported for raphe pacemaker neurons (Miles et al. 2008). Moreover, waveforms other than rectangular steps have been used previously. For example, Fohlmeister and Adelman (1985) used sinusoids in voltage clamp to measure I_{Na} gating currents in squid giant axons, and they analyzed their results with the Hodgkin-Huxley I_{Na} model. An AP waveform is, perhaps, of greater interest compared with sine waves or rectangular steps since it has direct physiological relevance. The utility of a voltage-clamp step, as shown originally by Hodgkin and Huxley (1952), is that it

J Neurophysiol • doi:10.1152/jn.00462.2013 • www.jn.org
allows the investigator to change in a controlled and predetermined manner the primary independent variable of an excitable membrane, the membrane potential, and record the resulting change in the dependent variable, the net membrane ionic current. Voltage steps also, ideally, short-circuit the membrane capacitance. For these reasons they have been widely used since Hodgkin and Huxley (1952).

Summary. A novel extension of the AP clamp technique is described involving models of the ionic conductances in the cell from which the AP was recorded. The method is general. It has been applied to SCN neurons with a goal of describing a complete mathematical model of the AP in these cells. The equations for I_{Na} and I_{Ca} given above form one part of that model, a model that may have broad applicability not only for the SCN but also for other mammalian preparations.

REFERENCES

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engel D, Jonas P</td>
<td>Presynaptic action potential amplification by voltage-gated Na(^{+}) channels in hippocampal mossy fiber boutons</td>
<td>Neuron</td>
<td>45</td>
<td>405–417</td>
<td>2005</td>
</tr>
<tr>
<td>Gaolillard JM, Marder E</td>
<td>Dynamic clamp analysis of cardiac, endocrine, and neural function.</td>
<td>Physiology</td>
<td>21</td>
<td>197–206</td>
<td>2006</td>
</tr>
<tr>
<td>Goldman DE</td>
<td>Potential, impedance, and rectification in membranes.</td>
<td>J Gen Physiol</td>
<td>27</td>
<td>37–60</td>
<td>1943</td>
</tr>
<tr>
<td>Huang RC</td>
<td>Sodium and calcium currents in acutely dissociated neurons from rat suprachiasmatic nucleus.</td>
<td>J Neurophysiol</td>
<td>70</td>
<td>1602–1703</td>
<td>1993</td>
</tr>
<tr>
<td>Huang RC, Peng YW, Yan KW</td>
<td>Zinc modulation of a transient potassium current and histochemical localization of the metal in neurons of the suprachiasmatic nucleus.</td>
<td>Proc Natl Acad Sci USA</td>
<td>84</td>
<td>11806–11810</td>
<td>1987</td>
</tr>
<tr>
<td>Kay AR</td>
<td>Inactivation kinetics of calcium current of acutely dissociated CA1 pyramidal cells of the mature guinea-pig hippocampus.</td>
<td>J Physiol</td>
<td>437</td>
<td>10–21</td>
<td>1991</td>
</tr>
<tr>
<td>Tuckwell HC</td>
<td>Quantitative aspects of L-type Ca(^{2+}) currents.</td>
<td>Prog Neurobiol</td>
<td>96</td>
<td>1–31</td>
<td>2012</td>
</tr>
<tr>
<td>Vandenberg CA, Bezanilla F</td>
<td>Single-channel, macroscopic, and gating currents from sodium channels in squid giant axon.</td>
<td>Biophys J</td>
<td>60</td>
<td>1499–1510</td>
<td>1991a</td>
</tr>
<tr>
<td>Vandenberg CA, Bezanilla F</td>
<td>A sodium channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant axon.</td>
<td>Biophys J</td>
<td>60</td>
<td>511–1533</td>
<td>1991b</td>
</tr>
</tbody>
</table>

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author.

AUTHOR CONTRIBUTIONS

J.R.C. conception and design of research; J.R.C. analyzed data; J.R.C. drafted manuscript; J.R.C. edited and revised manuscript; J.R.C. approved final version of manuscript.

GRANTS

This research was supported by the Intramural Research Program of the National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.

Equation 5 in this report contains an incorrect valence, $z = 1$, for Ca$^{2+}$ instead of the correct valence, $z = 2$. As such, results presented in Figs. 6–9 are incorrect. The author apologizes for this error and for any inconvenience associated with the publication of the article. The paper is therefore being retracted by the American Physiological Society at the request of Dr. Clay.