A potentially novel nicotinic receptor in \textit{Aplysia} neuroendocrine cells

Sean H. White, Christopher J. Carter, and Neil S. Magoski

Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada

Submitted 7 November 2013; accepted in final form 15 April 2014

White SH, Carter CJ, Magoski NS. A potentially novel nicotinic receptor in \textit{Aplysia} neuroendocrine cells. \textit{J Neurophysiol} 112: 446–462, 2014. First published April 16, 2014; doi:10.1152/jn.00796.2013.—Nicotinic receptors form a diverse group of ligand-gated ionotropic receptors with roles in both synaptic transmission and the control of excitability. In the bag cell neurons of \textit{Aplysia}, acetylcholine activates an ionotropic receptor, which passes inward current to produce a long-lasting afterdischarge and hormone release, leading to reproduction. While testing the agonist profile of the cholinergic response, we observed a second current that appeared to be gated only by nicotine and not acetylcholine. The peak nicotine-evoked current was markedly smaller in magnitude than the acetylcholine-induced current, cooperative (Hill value of 2.7), had an EC50 near 500 nM, readily recovered from desensitization, showed Ca2+ permeability, and was blocked by mecamylamine, dihydro-beta-erythroidine, or strychnine, but not by \(\alpha\)-conotoxin I\textsubscript{ml}, methylycocyamine, or hexamethonium. \textit{Aplysia} transcriptome analysis followed by PCR yielded 20 full-length potential nicotinic receptor subunits. Sixteen of these were predicted to be cation selective, and real-time PCR suggested that 15 of the 16 subunits were expressed to varying degrees in the bag cell neurons. The acetylcholine-induced current, but not the nicotine current, was reduced by double-strand RNA treatment targeted to both subunits ApACH\textsubscript{R-C} and -E. Conversely, the nicotine-evoked current, but not the acetylcholine current, was lessened by targeting both subunits ApACH\textsubscript{R-H} and -P. To the best of our knowledge, this is the first report suggesting that a nicotinic receptor is not gated by acetylcholine. Separate receptors may serve as a means to differentially trigger plasticity or safeguard propagation by assuring that only acetylcholine, the endogenous agonist, initiates large enough responses to trigger reproduction.

acetylcholine receptor; \(\alpha\)-conotoxin I\textsubscript{ml}; Ca2+ permeability; desensitization; mollusc

\textit{Caenorhabditis elegans} (Richmond and Jorgensen 1999) and the mollusc \textit{Aplysia californica} (Kehoe and McIntosh 1998), as well as chicken \(\alpha\textsubscript{3}\beta\textsubscript{2}\) (Hussy et al. 1994) and mammalian \(\alpha\textsubscript{9}\) receptors (Elgoyhen et al. 1994; Rothlin et al. 1999) in expression systems. However, there are no prior reports of nicotinic ionotropic receptors failing to respond to acetylcholine. In the present study, we provide evidence for ionotropic receptors in \textit{Aplysia} neuroendocrine cells: one activated by nicotine alone and the other by acetylcholine alone.

The bag cell neurons are neuroendocrine cells that control reproduction in the marine snail, \textit{A. californica}. They are found in two clusters just rostral to the abdominal ganglion and in response to acetylcholine undergo an \(\sim 30\)-min afterdischarge of depolarization and spiking (Ferguson et al. 1989; Kauer and Kaczmarek 1985; Kupermann and Kandel 1970; White and Magoski 2012). During the afterdischarge, hormones are released into the blood to initiate egg-laying behavior (Arch 1972; Chiu et al. 1979; Sigvardt et al. 1986). Aside from an example of a metabotropically gated K+ channel (Kehoe 1994), the vast majority of responses to acetylcholine in \textit{Aplysia} neurons are ionotropic and inhibitory. However, in some neurons, such as the small unpigmented cells of the pleural ganglion, the RB cluster of the abdominal ganglion, and the bag cell neurons themselves, acetylcholine generates depolarization (Bodmer and Levitan 1984; Kehoe and McIntosh 1998; Simmons and Koester 1986; White and Magoski 2012).

While characterizing the bag cell neuron cholinergic ionotropic receptor, we found that nicotine failed to reproduce the acetylcholine response (White and Magoski 2012). Rather, nicotine induced a second cationic response not mimicked by acetylcholine. In this article we propose that these two currents are mediated by disparate receptors, on the basis of magnitude, desensitization, agonist profile, Ca2+ permeability, and RNA inhibition. This may represent a unique example of two cholinergic ionotropic receptors on the same neuron responding to different ligands. Such receptor diversity might allow for discrete activation of signaling pathways or be an adaptation that ensures reproductive success in the face of marine venoms and toxins that act as nicotinic agonists and antagonists (Bourne et al. 2010; Dwoskin and Crooks 2001; Kem 1997; Schwarz et al. 2003).

MATERIALS AND METHODS

\textit{Animals and cell culture.} Adult \textit{A. californica} (a hermaphrodite) weighing 150–500 g were obtained from Marinus (Long Beach, CA), housed in an \(\sim 300\)-liter aquarium containing continuously circulating, aerated artificial sea water (Instant Ocean; Aquarium Systems, Mentor, OH) at 15°C on a 12:12-h light-dark cycle, and fed Romaine lettuce 5 times a week. For primary cultures of isolated bag cell neurons, animals were anesthetized by an injection of isotonic MgCl2 (~50% body wt), and the abdominal ganglion was removed and
treated with neutral protease (13.33 mg/ml; catalog no. 165859; Roche Diagnostics, Indianapolis, IN) dissolved in tissue culture artificial seawater (tcASW; composition in mM: 460 NaCl, 10.4 KCl, 11 MgCl₂, 15 HEPES, 1 mg/ml glucose, 100 U/ml penicillin, and 0.1 mg/ml streptomycin; pH 7.8 with NaOH) for 18 h at 20–22°C. The ganglion was then rinsed in tcASW for 1 h, after which the bag cell neuron clusters were dissected from their connective tissue. With the use of a fire-polished Pasteur pipette and gentle trituration, neurons were dispersed in tcASW onto 35 × 10-mm polystyrene tissue culture dishes (catalog no. 353001; Falcon Becton-Dickinson, Franklin Lakes, NJ). Cultures were maintained in a 14°C incubator and used within 1–3 days. Salts were obtained from Fisher Scientific (Ottawa, ON, Canada), ICN (Aurora, OH), or Sigma-Aldrich (St. Louis, MO).

Sharp-electrode current-clamp and whole cell voltage-clamp recording. Current-clamp recordings were made from cultured bag cell neurons in normal artificial seawater (nASW) by using an AxoClamp 2B amplifier (Axon Instruments/Molecular Devices, Sunnyvale, CA) and the sharp-electrode, bridge-balanced method. Microelectrodes were pulled from 1.2-mm external, 0.9-mm internal diameter borosilicate glass capillaries (item no. TW120F-4; World Precision Instruments, Sarasota, FL) and had a resistance of 5–20 MΩ when filled with 2 M K-acetate plus 10 mM HEPES and 100 mM KCl (pH 7.3 with KOH). Current was delivered with either Clampxep software (version 8 or 10; Molecular Devices) or a Grass S88 stimulator (Astro-Med, Longueuil, QC, Canada). Voltage was filtered at 3 kHz using the AxoClamp Bessel filter and sampled at 2 kHz using a Digidata 1322A analog-to-digital converter (Molecular Devices), Clampxep, and an IBM-compatible personal computer.

Voltage-clamp recordings were made from cultured bag cell neurons using an EPC-8 amplifier (HEKA Electronics, Mahone Bay, NS, Canada) and the tight-seal, whole cell method. Microelectrodes were pulled from 1.5-mm external, 1.2-mm internal diameter borosilicate glass capillaries (item no. TW150F-4; World Precision Instruments) and had a resistance of 1–2 MΩ when fire-polished and filled with regular intracellular saline (see below). Before seal formation, pipette junction potentials were nullled. After seal formation, the pipette capacitive current was canceled, and following breakthrough, the whole cell capacitive current was also canceled, while the series resistive component was compensated to 80% and monitored throughout the experiment. Current was filtered at 1 kHz with the EPC-8 Bessel filter and sampled at 2 kHz as per current clamp. Data were gathered at room temperature (20–22°C).

Most voltage-clamp recordings were made in nASW, although in some cases Ca²⁺ was replaced with Mg²⁺ and 0.5 mM EGTA added to achieve Ca²⁺-free ASW. The recording pipette was filled with standard intracellular saline [composition in mM: 500 K-aspartate, 70 NaCl, 1.25 MgCl₂, 10 HEPES, 11 glucose, 5 EGTA, ATP disodium salt hydrate (A3377; Sigma-Aldrich), and 0.1 GTP sodium salt hydrate (catalog no. G8877; Sigma-Aldrich); pH 7.3 with KOH]. In some instances, the K⁺ was replaced with Cs⁺ or the GTP was replaced with 10 mM guanosine 5’-[3-thio]diphosphate triobutylstannyl salt (GDPβS; catalog no. G7637; Sigma-Aldrich). The free intracellular Ca²⁺ concentration was set at 300 nM by adding the appropriate amount of CaCl₂, as calculated using WebMaxC (http://www.stanford.edu/~cketton/webmaxcS.htm). A junction potential of 15 mV was calculated for intracellular saline vs. nASW and compensated for by subtraction off-line.

Ca²⁺ imaging. Ca²⁺ imaging was performed under whole cell voltage-clamp using the standard intracellular saline, but supplemented with 1 mM of the Ca²⁺-sensitive dye fura PE3 (Vorndran et al. 1995) and with the EGTA and Ca²⁺ removed. After breakthrough, neurons were dye-filled by being dialyzed for at least 10 min. Imaging was performed using a Nikon TS100-F inverted microscope (Nikon, Mississauga, ON, Canada) equipped with a Nikon Plan Fluor ×20 (numerical aperture 0.5) objective. The light source was a 75-W Xenon arc lamp and a multiwavelength DeltaRAM V monochromatic illuminator (Photon Technology International, London, ON, Canada) coupled to the microscope with a UV-grade liquid-light guide. Excitation wavelengths were 340 and 380 nm. Between acquisition episodes, the excitation illumination was blocked by a shutter, which along with the excitation wavelength was controlled by an IBM-compatible computer, a Photon Technology International computer interface, and EasyRatioPro software (version 1.10; Photon Technology International). The emitted light passed through a 400-nm dichroic mirror and a 510/40-nm emission barrier filter before being detected by a CoolSNAP HQ2 iX285 charge-coupled device camera (Photometrics, Tucson, AZ). The high threshold value was left at maximum, and, to reduce background, the low threshold value was set to 400 arbitrary units of fluorescence. From a focal plane near the middle of the neuron, fluorescence intensities were sampled using a region of interest defined over the soma at 2-s intervals and averaged 8 frames/acquisition. The ratio of the emission following 340- and 380-nm excitation (340/380) was taken to reflect free intracellular Ca²⁺ and saved for subsequent analysis. Threshold level, image acquisition, frame averaging, region of interest sampling, and ratio calculations were carried out using EasyRatioPro.

Drug application and reagents. The culture dish served as the bath, with transmitters and drugs applied using either single-cell micropipette-fusion or pressure ejection. The perfusion system consisted of a micromanipulator-controlled square-barreled glass pipette (~500-μm bore) positioned 300–500 μm from the soma and connected by a stopcock manifold to a series of gravity-driven reservoirs. This provided a constant flow (~0.5–1 ml/min) of control extracellular saline over the neuron, which was switched to agonist-containing saline by activating the appropriate stopcock. Additional experiments involved pressure ejection of an agonist from an unpolished patch pipette (1- to 2-μm bore, positioned ~10 μm from the soma) for 2 s at 75–150 kPa using a PMI-100 pressure microinjector (Dagan, Minneapolis, MN). For antagonists, the blocker was introduced directly into the bath by pipetting a small volume of concentrated stock solution before pressure application. As previously undertaken with bag cell neurons by Fisher et al. (1993) and our laboratory (White and Magoski 2012), perfusion was, with one exception, not employed during pressure application; however, the pipette was removed from the bath immediately after each ejection to minimize leakage and possible desensitization.

Stock solutions of drugs were made in water, frozen at −20°C, and then diluted to a working concentration in the appropriate extracellular saline as needed: acetylcholine chloride (catalog no. A6625; Sigma-Aldrich), α-conotoxin ImI (catalog no. c1101; Tocris Biosciences), dihydro-β-erythroidine hydrobromide (catalog no. D149; Sigma-Aldrich), 1,1-dimethyl-4-phenylpiperazinium iodide (DMP; catalog no. D5891; Sigma-Aldrich), hexamethonium bromide (catalog no. H2138; Sigma-Aldrich), mecamylamine hydrochloride (catalog no. M9020; Sigma-Aldrich), methyllycaconitine citrate salt hydrate (MLA; catalog no. M168; Sigma-Aldrich), nicotine (catalog no. N0257; Sigma-Aldrich), strychnine (catalog no. S0532; Sigma-Aldrich), and tetramethylammonium chloride (TMA; catalog no. T19526; Sigma-Aldrich).

In silico identification of cholinergic ionotropic receptor subunits. We initially searched for putative Aplysia receptor subunits in the University of California Santa Cruz Sea Hare Genome Browser (http://genome.ucsc.edu/; October 2008 Broad 2.0/aapl-Cal1 assembly) using the BLAST-like alignment tool (BLAT) with published acetylcholine receptor (AChR) subunit sequences from another mollusc, Lymnaea stagnalis (van Nierop et al. 2006). The BLAT queries used the following published Lymnaea receptor subunits: LnAChR-A (GenBank accession no. DQ167344), LnAChR-B (DQ167345), LnAChR-C (DQ167346), LnAChR-D (DQ167347), LnAChR-E (DQ167348), LnAChR-F (DQ167349), LnAChR-G (DQ167350), LnAChR-H (DQ167351), LnAChR-I (DQ167352), LnAChR-J (DQ167354), LnAChR-K (DQ167353) and LnAChR-L.
NICOTINE GATES A NOVEL RECEPTOR

For each nicotinic acetylcholine *Aplysia* receptor (ApAChR), the first primer pair amplifies from the 5'-untranslated region through to the internal coding region of the gene, and the last primer pair amplifies from the internal coding region through to the 3'-untranslated region. For those ApAChRs where a middle primer pair is listed, it amplifies a strictly internal coding region. In all cases, the resulting PCR products overlap to provide full-length open reading frames.
no. 170-8870; Bio-Rad Laboratories), and the following program: 3 min of denaturation at 95°C, 38 cycles at 95°C for 30 s, annealing at 68°C for 30 s, and elongation at 72°C for 90 s. Analysis of products was carried out on 1% agarose gels in TAE buffer (Tris-acetate-EDTA) stained with ethidium bromide. Fragments of interest were excised from the gel, purified with an UltraClean GelSpin DNA extraction kit (catalog no. 12400; MO BIO Laboratories, Carlsbad, CA), and sequenced by Génomé Québec (Montréal, QC, Canada) using an Applied Biosystems 3730xl DNA Analyzer. GenBank database accession numbers for the sequences are as follows: ApAChR-A (KC417388), ApAChR-C (KC411667), ApAChR-D (KC411668), ApAChR-E (KC411669), ApAChR-G (KC411660), ApAChR-H (KC411661), ApAChR-J2 (KC417389), ApAChR-J3 (KC413790), ApAChR-L (KC618637), ApAChR-M (KC618636), ApAChR-N (KC411662), ApAChR-O (KC411663), ApAChR-P (KC411664), ApAChR-Q (KC411665), and ApAChR-R (KC411666).

Real-time PCR. RNA was isolated from either *Aplysia* bag cell neuron clusters or abdominal ganglia (sans the bag cell neurons) using the Norgen Total RNA isolation kit. RNA purity was analyzed by spectrophotometry (NanoVue; GE Healthcare Bio-Sciences, Baie d’Urfe, QC, Canada) and cDNA was synthesized by reverse transcription using the iScript cDNA synthesis kit and 500 ng of total RNA with a mixture of polyA and random hexamer primers. Each forward and reverse primer (Table 2) was designed by Primer3 (http://frodo.wi.mit.edu/) to generate 100- to 150-bp amplicons. Prior testing ensured that each primer pair had a 95–99% amplification efficiency with the use of a 10-fold dilution series. The 20-μl final reaction mixture contained 1 μl of cDNA, 10 μl of iQ SYBR Green Supermix (catalog no. 170-8880; Bio-Rad Laboratories), and 0.4 μmol of each primer. For both bag cell neuron and abdominal ganglion cDNA, the relative expression of each cation-selective receptor (Table 2) was estimated in triplicate. Similarly to van Nierop et al. (2009), proposed signal peptide sequences were identified with SignalP 4.1 (http://www.cbs.dtu.dk/services/SignalP/). To examine the impact of reducing the expression of individual ApAChR subunits on acetylcholine- or nicotine-induced currents, bag cell neurons were incubated in long double-stranded ribonucleic acid (dsRNA) (Bhargava et al. 2004; Fire et al. 1998). cDNA fragments encoding ApAChR-C (543 bp), ApAChR-E (496 bp), ApAChR-H (507 bp), and ApAChR-P (526 bp) were separately PCR amplified using iTaq DNA polymerase and gene-specific primers (ApAChR-C: forward, 5’-ACACAGGGCGCGCAGGACATTGCAGAGGTCATTGCAGAGTGGGAACAGAATGCA-3’; reverse, 5’-AAAAACACAGGGCGCGCAGGACATTGCAGAGTGGGAACAGAATGCA-3’; ApAChR-H: forward, 5’-ACACAGGGCGCGCAGGACATTGCAGAGTGGGAACAGAATGCA-3’; reverse, 5’-TGGAGACCAAGTGGATCTGGTGCAGGACTATTACGCGGAGAAG-3’; ApAChR-P: forward, 5’-CAACAGGGCGCGCAGGACATTGCAGAGTGGGAACAGAATGCA-3’; reverse, 5’-CTTGGGATTGGGTTCCGTGACTG3’). With the use of 500 ng of bag cell neuron cluster cDNA (obtained as per *PCR of full-length sequences*), 5 cycles of PCR were performed with melting at 95°C for 30 s, annealing at 68°C for 30 s, and elongation at 72°C for 50 s, followed by 30 cycles of PCR with melting at 95°C for 30 s, annealing at 72°C for 30 s, and elongation at 72°C for 50 s. The PCR product was agarose gel purified with an UltraClean GelSpin DNA extraction kit and used to synthesize sense and antisense cRNA in the same reaction mix with 7T RNA polymerase (4 h at 37°C) from a MEGAscript RNAi kit (AM1626; Life Technologies, Burlington, ON, Canada). Reactions were treated with DNaseI and RNase (both from the MEGAscript kit) for 1 h at 37°C and 37°C followed by purification according to the MEGAscript kit protocol. As a negative control, a 450-bp dsRNA was prepared directed against the 5’-untranslated region of the newt (*Notophthalmus viridescens*) retinoic acid receptor (GenBank accession no. AY847515) using gene-specific primers (forward, 5’-CTTGGGATTGGGTTCCGTGACTG3’; reverse, 5’-TGGAGACCAAGTGGATCTGGTGCAGGACTATTACGCGGAGAAG-3’). In 7T ends. Bag cell neurons were first cultured overnight at 14°C and then bath-incubated at 14°C in 600 ng/ml dsRNA for an additional 3–4 days. This method of long dsRNA treatment has been successfully employed to knock down gene and protein expression in *Aplysia* bag cell bag (Hickey et al. 2013) and sensory neurons (Lee et al. 2009), as well as *Lymnaea* motor neurons (van Kesteren et al. 2006).

### Amino acid sequence analysis and phylogenetic tree generation

Amino acid sequences were translated from nucleotide sequences and aligned using multiple sequence comparison by log-expectation (MUSCLE) (Edgar 2004) with the default settings in Jalview 2.8 (Waterhouse et al. 2009). Proposed signal peptide sequences were identified with SignalP 4.1 (Bendtsen et al. 2004).

### Table 2. Real-time PCR primers for Aplysia nicotinic receptor subunits and GAPDH

<table>
<thead>
<tr>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5’-ATGACTTGGGAGGCTGTCACACAC-3’</td>
</tr>
<tr>
<td>C</td>
<td>5’-GAAAAACGAAAGCCGTTCATCAGA-3’</td>
</tr>
<tr>
<td>D</td>
<td>5’-TGAGCGTCATTTGCATCAATCAGA-3’</td>
</tr>
<tr>
<td>E</td>
<td>5’-TGACGATGGTCGAACCTGCACTAGA-3’</td>
</tr>
<tr>
<td>G</td>
<td>5’-GGTGTCCTCGGCTGTTTATT-3’</td>
</tr>
<tr>
<td>H</td>
<td>5’-ACTCGGAGGTCGGGACGAGACAG-3’</td>
</tr>
<tr>
<td>J1</td>
<td>5’-AGTGTCGAGGAGGCTGCTGTTA-3’</td>
</tr>
<tr>
<td>J2</td>
<td>5’-GTCAGCGTCATGCAGCGAGA-3’</td>
</tr>
<tr>
<td>J3</td>
<td>5’-GTGCCAGCTGCCAGGGATGA-3’</td>
</tr>
<tr>
<td>J4</td>
<td>5’-ATGGCACTGCTGGGATGAGA-3’</td>
</tr>
<tr>
<td>K</td>
<td>5’-ACGGCAGGCTATTCCCACACACAGA-3’</td>
</tr>
<tr>
<td>L</td>
<td>5’-GAGCGCGGCTATTCCACACACAGA-3’</td>
</tr>
<tr>
<td>M</td>
<td>5’-GAGCGCGGCTATTCCACACACAGA-3’</td>
</tr>
<tr>
<td>N</td>
<td>5’-TGGTCGAGGTCGGGACGAGACAG-3’</td>
</tr>
<tr>
<td>O</td>
<td>5’-GACCGCGGCTATTCCACACACAGA-3’</td>
</tr>
<tr>
<td>P</td>
<td>5’-GGTCGAGGTCGGGACGAGACAG-3’</td>
</tr>
<tr>
<td>Q</td>
<td>5’-CCACCGCGGCTATTCCACACACAGA-3’</td>
</tr>
<tr>
<td>R</td>
<td>5’-GGTCGAGGTCGGGACGAGACAG-3’</td>
</tr>
<tr>
<td>GAPDH</td>
<td>5’-GACCGCGGCTATTCCACACACAGA-3’</td>
</tr>
</tbody>
</table>
Nicotine agonists depolarize cultured bag cell neurons. In cultured bag cell neurons under sharp-electrode current clamp, a 2-s pressure application of 1 mM acetylcholine induced a response that either depolarized the cell, which then recovered toward resting potential (Fig. 1A), or activated a burst of action potentials (Fig. 1B). In 16 neurons, the average depolarization from −60 mV was ~35 mV (Fig. 1F), with 6 neurons firing action potentials. Considering that a strong depolarization will provoke voltage-gated Ca$^{2+}$ influx and potentially activate nonselective cation channels (Gardam and Magoski 2009; Hung and Magoski 2007; Lupinsky and Magoski 2006; Tam et al. 2009), it was not surprising to find that three of the neurons reached a new steady state of −53.6 ± 1.5 mV. On the other hand, a 2-s pressure application of 3 mM nicotine stimulated the neurons much less, with an average depolarization of ~18 mV (n = 15) that was significantly different from depolarization by acetylcholine (Fig. 1F), and induced action potentials in only 3 of 15 neurons (Fig. 1D). We also assessed TMA, which activates nicotinic receptors via the same quaternary ammonium ion motif as acetylcholine (Ascher et al. 1978; Schmitt et al. 1999). At a level between nicotine and acetylcholine, the TMA-induced depolarization was ~24 mV (n = 9) (Fig. 1F), which was significantly different from that induced by acetylcholine, but not nicotine (Fig. 1F), with spiking observed in just 1 of the 9 neurons.

Nicotine produces a concentration-dependent inward current by opening an ionotropic receptor. We sought to obtain evidence for nicotine activating a receptor different from that of acetylcholine. Initially, cultured bag cell neurons were whole cell voltage-clamped at −60 mV in nASW with standard K-aspartate-containing intracellular solution and were given 10-s microperfusion applications of 3 mM nicotine repeated every 10 min. Unlike the acetylcholine response, which we previously showed desensitizes with repeated doses (White and Magoski 2012), nicotine failed to desensitize at the concentration and application times involved. To generate a dose response, multiple concentrations of nicotine (30 μM–10 mM) were delivered. Although 10 mM was always applied, not all doses were given to every neuron because of the finite time for which one is able to hold a cell. Examples of responses to 100 μM, 300 μM, 1 mM, and 3 mM nicotine are shown in Fig. 2A. When normalized to the initial maximal current at 10 mM, the resulting dose-response curve had a cooperative Hill value of 2.4 and an EC$_{50}$ of 543 μM (Fig. 2B). Our prior work found acetylcholine to have a noncooperative Hill value of 0.7 and a smaller EC$_{50}$ of 267 μM (White and Magoski 2012).

The current evoked by nicotine involved channel opening. Bag cell neurons were voltage-clamped at −60 mV and given several 200-ms steps to −70 mV (Fig. 2C, bottom). Initially, two of these steps were delivered as control, separated by 1–2 min, followed by a third step 2 min later at the peak of the response to a 10-s perfusion of 3 mM nicotine (concentration from the top of the curve). With the use of Ohm’s law, conductance was calculated from the magnitude of the current produced by the step. The change in conductance during baseline conditions was determined by comparing the first and second control step currents. The conductance change due to nicotine was determined by comparing the second control step current and the acetylcholine step current. For display, leak...
was removed from both the second control step current and the acetylcholine step current by subtracting the appropriate prior step current. Compared with control (Fig. 2C, top, black), there was an increase in conductance with nicotine (n = 11) (Fig. 2C, top, gray). The control change in conductance, taken 2 min before application of nicotine, revealed only a slight increase of ~3%, which was significantly different from the ~100% change in nicotine (Fig. 2E, left).

The nicotine response did not appear to involve metabotropic receptors. Cultured bag cell neurons were dialyzed under whole cell voltage clamp at −60 mV for 30 min with standard intracellular solution, where the normal 0.1 mM GTP was replaced with 10 mM GDPβS, a nonhydrolyzable form of GDP (Eckstein et al. 1979). Compared with parallel controls dialyzed with GTP (n = 6), introduction of GDPβS did not alter the peak current to pressure-applied 3 mM nicotine (n = 5) (Fig. 2D, gray vs. black), and the averaged data fail to show a significant difference (Fig. 2E, right). We and others have employed GDPβS to block G protein-coupled receptor-dependent responses in both *Aplysia* and *Lymnaea* neurons (Kehoe 1994; Lemos and Levitan 1984; Magoski et al. 1995; Tam et al. 2011; White and Magoski 2012).

**Pharmacology of the nicotinic response.** Given both a Hill value of 2.4 for nicotine vs. 0.7 for acetylcholine and the lack of desensitization to repeated nicotine applications, it appears that nicotine may gate a different receptor than acetylcholine.

To explore this further, classic nicotinic antagonists were tested on the nicotine current in cultured bag cell neurons whole cell voltage-clamped at −60 mV. Nicotine (3 mM) was pressure-applied twice, for 2 s, with a minimum of 10 min between deliveries. Antagonists were introduced into the bath after the first nicotine application, and the relative effectiveness of the blocker was determined by the percent remaining peak current evoked during the second nicotine application.

Under control conditions, the nicotine response did not desensitize, i.e., when no antagonist was delivered, the second application of nicotine elicited a peak current that was essentially equal (~100%) to the first current (n = 34) (Fig. 3, A and D). We previously established that acetylcholine readily desensitizes and evoked a second current of just 55% of the first (White and Magoski 2012). Several antagonist proved effective on the nicotine-induced response. The noncompetitive cholinergic blocker mecamylamine (100 μM) (Stone et al. 1964), reduced the second current to ~60% of the first (n = 16) (Fig. 3, B and D). This was a less robust block compared with acetylcholine, where our prior observation was that mecamylamine nearly eliminated the acetylcholine current (White and Magoski 2012). The general competitive antagonist dihydro-β-erythroidine (500 μM) (Folkers and Major 1937), inhibited the second nicotine current to a level ~40% of the first (n = 6) (Fig. 3, B and D). However, dihydro-β-erythroidine did not block the acetylcholine response (control %re-
main peak current: 54.7 ± 3.5% (n = 26) vs. dihydro-β-erythroidine %remaining current: 49.7 ± 5.3% (n = 7); P > 0.05, unpaired Student’s t-test). Considering that strychnine blocks both the bag cell neuron afterdischarge and the acetylcholine current (Kaczmarek et al. 1978; White and Magoski 2012), as well as other Aplysia cholinergic synapses (Kehoe 1972), we examined its effect on the nicotine response and observed the second current to be ~60% of the first (n = 9) (Fig. 3, C and D). Finally, the nicotine current was not altered by either the competitive antagonist α-conotoxin lm1 (1 μM; n = 11) (Paton and Zaimis 1948) or the noncompetitive antagonist hexamethonium (100 μM; n = 6) (McIntosh et al. 1994), as well as methylyccanine (1 μM; n = 8), a potential selective α7-receptor blocker (Alkondon et al. 1992; Ward et al. 1990) (Fig. 3D). Our past work showed both α-conotoxin lm1 and hexamethonium strongly reduce the acetylcholine-elicited current in bag cell neurons (White and Magoski 2012).

The unipolarized small neurons from Aplysia right pleural ganglion present inward current in response to both acetylcholine and the quaternary ammonium motif-containing agonists TMA and DMPP (Ascher et al. 1978; Kehoe and McIntosh, 1998). When the latter two were tested on bag cell neurons, they evoked responses that were distinct in magnitude and comparable to acetylcholine and nicotine, respectively. Under whole cell voltage clamp at −60 mV, application of 10 mM TMA (n = 4), the simplest quaternary agonist (Burn and Dale 1915), produced a large current that at peak was similar in density to that elicited by 1 mM acetylcholine (n = 13) (Fig. 4, A, B, E). However, 10 mM DMPP (n = 9), a quaternary piperazine (Chen et al. 1951), and 3 mM nicotine (n = 8), both of which contain an aromatic ring, each provoked a 10-fold smaller response compared with acetylcholine or TMA (Fig. 4, C, D, E).

Ca2+ dependence of the acetylcholine and nicotine responses. Another factor that could distinguish between potentially disparate acetylcholine and nicotine receptors is Ca2+ permeability. Ionotropic acetylcholine receptors vary widely in the ability to pass Ca2+; for example, α7-receptors conduct Ca2+ much more readily than other nicotinic receptors (Castro and Albuquerque 1995). We replaced extracellular Ca2+ with Mg2+ and observed changes in the reversal potential of the bag cell neuron acetylcholine and nicotine responses. For these experiments, Cs+ was substituted for K+ in the recording pipette to remove any potential confounding influence from voltage-gated K+ currents. In initial tests, intracellular Cs+ did not alter the reversal potential of the current brought about by pressure- or perfusion-applied 1 mM acetylcholine (−15.9 ± 1.4 mV for Cs+ (n = 13) vs. −16.1 ± 1.9 mV for K+ (n =
10); \(P > 0.05\), unpaired Student’s \(t\)-test. To observe the reversal potential of acetylcholine- or nicotine-induced currents, a 6-s ramp from \(-60\) to 0 mV was delivered during the peak of the response to a 10-s perfusion of agonist and, to eliminate leak currents, subtracted from a prior control ramp. Figure 5A shows currents comparing the reversal potential of the acetylcholine-evoked current in nASW and \(\text{Ca}^{2+}\)-free conditions. For acetylcholine, the reversal potential in \(\text{Ca}^{2+}\)-free ASW (\(n = 9\)) was not significantly different from nASW (\(n = 13\)), with both being \(-18\) mV (Fig. 5C). However, for the nicotine-induced current there was a significant, 6-mV leftward shift in the current-voltage curve from approximately \(-24\) mV in nASW (\(n = 16\)) to approximately \(-30\) mV in the absence of \(\text{Ca}^{2+}\) (\(n = 9\)) (Fig. 5, B and C). Also, a comparison of reversal potentials in nASW showed a significant difference between the more depolarized reversal for acetylcholine and the more hyperpolarized reversal for nicotine (Fig. 5C).

Our earlier work (White and Magoski 2012) demonstrated that block of the acetylcholine response by \(\alpha\)-conotoxin Iml left behind a small current at \(-60\) mV in nASW, also shown here in Fig. 5D. To confirm that this remaining current was not mediated by the \(\alpha\)-conotoxin Iml-insensitive nicotine response, we examined the reversal potential at the peak of the response to 1 mM acetylcholine in the presence of 1 \(\mu\text{M}\) \(\alpha\)-conotoxin Iml (\(n = 6\)). This remaining current presented an average reversal potential of approximately \(-17\) mV and was not significantly different from that for acetylcholine alone in nASW (Fig. 5, C and E). There is also the prospect that, under control conditions, our 10-s perfusion or 2-s pressure applications of acetylcholine did in fact activate the nicotine receptor, but this portion of the response desensitized too quickly to be resolved. This was tested by pressure-applying 1 mM acetylcholine for 100 ms very close to bag cell neurons voltage-clamped at different potentials while perfusing with a fast-flowing stream of nASW (\(>1\) ml/min; \(n = 5\)). This resulted in a rapid-onset current that

Fig. 3. Antagonist profile for the nicotine-induced current. A: in cultured bag cell neurons whole cell voltage-clamped at \(-60\) mV, successive 2-s pressure applications of 3 mM nicotine, separated by \(-10\) min, produced similar currents with essentially no desensitization. The peak magnitude seen with the second application (black) was equal to that evoked by the first (gray; offset for clarity). B: the classic nicotinic antagonist mecamylamine blocked the nicotine-induced current. C: strychnine, a cholinergic blocker in molluscs, also reduced the second current. D: summary data showing the second nicotine application as a percentage of the first. Compared with control, 100 \(\mu\text{M}\) mecamylamine (mec), 500 \(\mu\text{M}\) dihydro-\(\beta\)-erythroidine (D-\(\beta\)-E), and 500 \(\mu\text{M}\) strychnine each significantly reduced the nicotine current, whereas 100 \(\mu\text{M}\) hexamethonium (hex), 1 \(\mu\text{M}\) \(\alpha\)-conotoxin Iml (ImI), and 1 \(\mu\text{M}\) methyllycaconitine (MLA) had no effect (\(P < 0.05\), Kruskal-Wallis ANOVA, Dunn’s multiple comparisons test). Values are means \(\pm\) SE; numbers in bars indicate number of neurons.

Fig. 4. Quaternary ammonium-based agonists exhibit differential potency. Examples are currents from cultured bag cell neurons induced by 2-s pressure applications of different nicotinic agonists held at \(-60\) mV under whole cell voltage clamp: 1 mM ACh (A), 10 mM TMA (B), 3 mM nicotine (C), and 10 mM 1,1-dimethyl-4-phenylpyrazinium iodide (DMPP). D: summary data indicating that the average peak current density induced by TMA was similar to that provoked by acetylcholine. Conversely, DMPP resulted in a far smaller current density that was near to the response elicited by nicotine. Values are means \(\pm\) SE; numbers in bars indicate number of neurons.
Fig. 5. The reversal potential of the nicotine- but not the ACh-induced current is sensitive to extracellular Ca\textsuperscript{2+}. A: leak-subtracted currents from separate cultured bag cell neurons under whole cell voltage clamp with Cs\textsuperscript{+}-based intracellular saline. There was no difference in the reversal potential in nASW (black) vs. Ca\textsuperscript{2+}-free medium (gray) of currents elicited by a 6-s ramp from -60 to 0 mV at the peak of the response to microperfused 1 mM ACh. B: when the same ramp was applied at the peak of the 3 mM nicotine response, a leftward shift of the reversal potential was observed in Ca\textsuperscript{2+}-free external compared with nASW. C: summary graph indicating no significant difference between the reversal potential of the acetylcholine-induced current in nASW alone vs. Ca\textsuperscript{2+}-free seawater and the current remaining in nASW after block by 1 mM \alpha-conotoxin ImI (P > 0.05, KW-ANOVA, Dunn’s multiple comparisons test). However, there was a significant change in the reversal potential of the nicotine current in Ca\textsuperscript{2+}-free seawater vs. nASW (*P < 0.05, Mann-Whitney U-test). The reversal potentials for nicotine and acetylcholine in nASW were also significantly different (**P < 0.01, unpaired Student’s t-test). Values are means ± SE; numbers in bars indicate number of neurons. D: whole cell voltage-clamp recordings in nASW from the same neuron held at -60 mV show that the current produced by a 2-s pressure application of 1 mM ACh was diminished with the subsequent introduction of 1 mM \alpha-conotoxin ImI. E: a subtraction current evoked in nASW by a ramp from -60 to 0 mV at the peak of the residual response to 1 mM ACh in the presence of 1 mM \alpha-conotoxin ImI. F: pressure application of 1 mM ACh for 100 ms in close proximity to the soma of a cultured bag cell neuron in a stream of nASW. A fast, inward current was evoked by the ACh that decreased in magnitude as the steady-state holding potential was changed from -60 to -10 mV. G: the mean peak current density of the fast ACh current at different voltages provided a reversal potential of approximately -15 mV.

reversed at approximately -15 mV (Fig. 5, F and G), which is very similar to that resolved using the voltage ramp and 10 s of acetylcholine perfusion.

The Ca\textsuperscript{2+} sensitivity of the nicotine current reversal potential suggests that the channel(s) responsible pass Ca\textsuperscript{2+}. To bolster this, we added 1 mM of the Ca\textsuperscript{2+}-imaging dye fura PE3 (Geiger et al. 2009; Kachoei et al. 2006; Vorndran et al. 1995) to the intracellular solution while excluding both EGTA and Ca\textsuperscript{2+}. After the neurons were fura-loaded with 10 min of whole-cell dialysis under voltage clamp at -60 mV, a 2-s pressure application of 1 mM acetylcholine (n = 13) induced a rapid, large inward current (Fig. 6A, bottom) but no measurable increase in the 340/380 ratio (Fig. 6A, top). In contrast, pressure application of 3 mM nicotine (n = 11) evoked a much smaller current (Fig. 6B, bottom) yet elevated intracellular Ca\textsuperscript{2+} (Fig. 6B, top). The average density of the peak acetylcholine current (approximately -2.5 pA/PF) was significantly different from that of nicotine (~0.1 pA/PF; Fig. 6C); nonetheless, nicotine caused a significantly larger Ca\textsuperscript{2+} rise, based on an increase in the 340/380 ratio (Fig. 6D).

Identification of potential nicotinic-type receptor subunits in Aplysia. If nicotine and acetylcholine gate distinct receptors, one may expect Aplysia to have multiple ionotropic acetylcholine receptors genes. However, prior to the present study, only two nicotinic receptors had been published in GenBank: an Aplysia \alpha1-subunit (accession no. AF467898) and an Aplysia non-\alpha-subunit (accession no. AAL37250). Yet, van Nierop et al. (2006) reported 12 nicotinic receptors in the related pond snail, Lymnaea (LnAChR-A through -L). Hence, we searched the University of California, Santa Cruz Aplysia genome using BLAT and Prot2Gene with LnAChR protein sequences as input. This produced predicted sequences for 12 Aplysia AChR subunits, which we named ApAChR-A through ApAChR-L, based on their similarity to the Lymnaea receptors (van Nierop et al. 2006). Subsequently, nine more receptors were found and, to continue the convention, designated ApAChR-J2 and J3.
(similar to ApAChR-J1), K2 (similar to ApAChR-K1), as well as M, N, O, P, Q, and R. With the exception of ApAChR-N, these additional subunits were first identified in a *Lymnaea* CNS transcriptome shotgun assembly as LnAChRs (Sadamoto et al. 2012) and then found via BLAST searches of an *Aplysia* RNA sequence assembly transcriptome from the Institute of Genome Sciences, University of Maryland.

After in silico sequences had been achieved for all 21 subunits, 16 were identified as putative cation-selective ApAChRs on the basis of an absence of the conserved Pro and Ala that line the pore adjacent to the second transmembrane domain of anion-selective cys-loop receptors (Galzi et al. 1992; Jensen et al. 2005). PCR was used to achieve overlapping full-length open reading frames for the putative cation-selective receptors: ApAChR-A, C, D, E, G, H, J1, J2, J3, L, M, N, O, P, Q, and R. See Table 1 for primers against selective receptors: ApAChR-A, C, D, E, G, H, J1, J2, J3, L, M, N, O, P, Q, and R. With the exception of ApAChR-N, these additional subunits were first identified in a *Lymnaea* CNS transcriptome shotgun assembly as LnAChRs (Sadamoto et al. 2012) and then found via BLAST searches of an *Aplysia* RNA sequence assembly transcriptome from the Institute of Genome Sciences, University of Maryland.

After in silico sequences had been achieved for all 21 subunits, 16 were identified as putative cation-selective ApAChRs on the basis of an absence of the conserved Pro and Ala that line the pore adjacent to the second transmembrane domain of anion-selective cys-loop receptors (Galzi et al. 1992; Jensen et al. 2005). PCR was used to achieve overlapping full-length open reading frames for the putative cation-selective receptors: ApAChR-A, C, D, E, G, H, J1, J2, J3, L, M, N, O, P, Q, and R. See Table 1 for primers against noncoding 5'- and 3'-untranslated regions as well as internal coding regions. ApAChR-E is nearly identical to the published *Aplysia* α1-receptor (only a 4-amino acid difference), whereas ApAChR-J1 is identical to the *Aplysia* non-α-receptor. Those five ApAChRs predicted to be anion selective, i.e., ApAChR-B, F, I, K1, and K2, were not pursued further.

Comparing the *Aplysia* protein sequences with the archetypical muscle nicotinic receptor α1-subunit from *Torpedo californica* (GenBank accession no. P027710) indicated that all putative cation-selective ApAChRs possess amino acid similarities to nicotinic receptors in the cys-loop ligand-gated channel superfamily, specifically, an extracellular NH₂-terminal binding domain with two highly conserved Cys residues (corresponding to Cys128 and Cys142 in *Torpedo*), six agonist binding loops (loops A–F), a membrane-spanning region containing the ion conduction pore, four conserved transmembrane domains (M1–M4), and a variable intracellular loop between M3 and M4 (Unwin 1998).

Based on the presence of vicinal Cys192 and Cys193 (*Torpedo* numbering) (Kao et al. 1984; Sine, 2002), potential α-receptors are ApAChR-A, C, D, E, G, H, L, M, N, O, P, and R (aligned in Fig. 7). Conversely, a lack of vicinal Cys suggests ApAChR-J1, J2, J3, and Q are candidate β-receptors. Among the α-receptors, ApAChR-A, C, E, G, and N contain all four highly conserved aromatic amino acids (Ty93, Trp94, Tyr98 in *Torpedo*) in loops A, B, and C of the principal component of the agonist binding pocket (Arias 2000). The binding pockets of ApAChR-D, M, P, and R have Phe substituted for Tyr in loop A at Cys128 and Cys142 in *Torpedo*), six agonist binding loops (loops A–F), a membrane-spanning region containing the ion conduction pore, four conserved transmembrane domains (M1–M4), and a variable intracellular loop between M3 and M4 (Unwin 1998).

Based on the presence of vicinal Cys192 and Cys193 (*Torpedo* numbering) (Kao et al. 1984; Sine, 2002), potential α-receptors are ApAChR-A, C, D, E, G, H, L, M, N, O, P, and R (aligned in Fig. 7). Conversely, a lack of vicinal Cys suggests ApAChR-J1, J2, J3, and Q are candidate β-receptors. Among the α-receptors, ApAChR-A, C, E, G, and N contain all four highly conserved aromatic amino acids (Ty93, Trp94, Tyr98 in *Torpedo*) in loops A, B, and C of the principal component of the agonist binding pocket (Arias 2000). The binding pockets of ApAChR-D, M, P, and R have Phe substituted for Tyr in loop A at Cys128 and Cys142 in *Torpedo*), six agonist binding loops (loops A–F), a membrane-spanning region containing the ion conduction pore, four conserved transmembrane domains (M1–M4), and a variable intracellular loop between M3 and M4 (Unwin 1998).

**Fig. 6.** Nicotine, but not ACh, induces an increase in intracellular Ca²⁺. Simultaneous measurement of free intracellular Ca²⁺, using fura PE3 fluorescence, and agonist-induced current under whole cell voltage clamp at −60 mV in cultured bag cell neurons. A: after a 2-s pressure application of 1 mM ACh, which induced a large rapid current (bottom), no observable change was apparent in the intensity of the 340/380 fluorescence ratio (top). B: conversely, application of 3 mM nicotine elicited a relatively small inward current and a simultaneous rise in intracellular Ca²⁺. C: summary data indicating a significantly smaller current density produced by nicotine compared with ACh (*P < 0.0001, Mann-Whitney U-test). D: summary data showing an average increase in the 340/380 fluorescence ratio due to the nicotine-evoked current that was significantly different from that due to ACh (*P < 0.05, Mann-Whitney U-test). Values are means ± SE; numbers in bars indicate number of neurons.
ApAChR-C, E, J1, J2, and J3 as one group, and ApAChR-D, G, H, L, M, O, P, Q, and R as another group (Fig. 8A). Of course, such analysis does not provide the complete history and can only imply what may have happened during evolution.

We next used the Aplysia GABA_A receptor as an out-group to root a second tree comparing Aplysia and human receptor subunits (Fig. 8B). This suggested many ApAChRs could have diverged from a common ancestor before the evolution of the human homomeric \( \alpha_7 \), \( \alpha_9 \), and \( \alpha_{10} \), with ApAChR-H and P possibly being the oldest. The Aplysia subunits closest to human nicotinic receptors are ApAChR-E, sharing 51 and 47% sequence identity with \( \alpha_2 \) and \( \alpha_3 \), respectively, and ApAChR-C, being 42 and 43% identical to \( \alpha_2 \) and \( \alpha_3 \) (Table 3). Despite an overall highest similarity with \( \alpha_2 \), ApAChR-J1, J2, and J3 possess homologous amino acids in loops D and E of the complementary binding domain (Arias 2000; Sine 2002), and not surprisingly, their next closest homologs are \( \alpha_2 \) and \( \alpha_4 \).
To gain an indication of which ApAChR subunits are potentially expressed in tissues of interest, real-time PCR was performed using cDNA from either bag cell neuron clusters or abdominal ganglion (sans the bag cell neurons) and normalized to the *Aplysia* housekeeping gene GAPDH. A similar undertaking was made by van Nierop et al. (2005, 2006) for LnAChR in different regions of the *Lymnaea* CNS.

Interestingly, ApAChR-Q had the highest relative expression in the bag cell neurons, despite the sequence data suggesting it would not contribute to agonist binding. The next highest relative expression was the /H9251-like ApAChR-C, followed by ApAChR-A, D, E, G, J1, L, and M to a roughly equal degree, along with the /H9252-like ApAChR-J1 (Fig. 8C, top). There was limited relative expression of ApAChR-H, J2, J3, O, P, and R, as well as a very small amount of ApAChR-N. For the abdominal ganglion, the relative expression of ApAChR-Q was again the greatest, with ApAChR-A, C, D, E, G, H, J1, J2, L, and M all present to a lesser extent, whereas ApAChR-J3, P, and R were the least expressed, and ApAChR-N, like the bag cell neurons, was almost absent (Fig. 8C, bottom). Both regions expressed very little, if any, of the ApAChR-N subunit.

dsRNA targeting of select *Aplysia* receptor subunits reduces the acetylcholine or nicotine current. We attempted to knock down subunits contributing to the acetylcholine- or nicotine-induced currents. ApAChR-C and E were selected as candidates for the acetylcholine receptor given that they should possess full binding potential for acetylcholine, are present in relatively high amounts in bag cell neurons, and appear most...
closely related to the prototypical α3 group (see Fig. 8, B and C). Conversely, ApAChR-H and P were chosen as candidates for the nicotine receptor because they appear to be the oldest, are some of the least abundant subunits, and lack a Trp at Torpedo equivalent W55 (see asterisk under loop D label in Fig. 7). Loss of this Trp more severely impairs gating by acetylcholine than by nicotine (Corringer et al. 1998; Xie and Cohen 2001).

Initially, we incubated cultured bag cell neurons for 3–4 days in 600 ng/ml dsRNA directed against ApAChR-C or E. As a control, neurons were treated with 600 ng/ml dsRNA corresponding to the untranslated region of the newt retinoic acid receptor (which has no significant sequence similarity to any known Aplysia transcripts). Compared with control (n = 5), exposure to ApAChR-C or E dsRNA (n = 6 and 6) produced no change in the peak current density evoked by a 2-s pressure application of 1 mM acetylcholine under whole cell voltage clamp at −60 mV (Fig. 9C). However, including dsRNA for both ApAChR-C and E (300 ng/ml each; n = 14) did reduce the acetylcholine-elicted current by ~50% compared with control (n = 14) (Fig. 9, A and D). Yet, the combination of dsRNA for ApAChR-C and E did not change the current in response to pressure-applied 3 mM nicotine (n = 11) relative to control (n = 5) (Fig. 9E). Conversely, treating neurons with both ApAChR-H and P dsRNA (300 ng/ml each; n = 10) attenuated the nicotine-evoked current, again by more than 50% in contrast with control (n = 7) (Fig. 9, B and F), whereas the response to acetylcholine was the same in neurons subjected to the ApAChR-H and P dsRNA cocktail (n = 6) and control cells (n = 10) (Fig. 9G).

### DISCUSSION

Ionotropic cholinergic receptors typically bind nicotine with high affinity and acetylcholine with low affinity, the latter thought to be necessary for high-frequency input (Hurst et al. 2012). However, we find that in bag cell neurons, nicotine appears to trigger a separate receptor from acetylcholine. Whereas there are ionotropic receptors that are acetylcholine sensitive and nicotine insensitive, the reverse has not been previously reported, and we believe our data is novel in suggesting separate acetylcholine- and nicotine-activated receptors. First, the current gated by nicotine, but not acetylcholine, is blocked by the competitive antagonist dihydro-β-erythroidine. Conversely, a different competitive antagonist, α-conotoxin Iml, as well as the noncompetitive antagonist hexamethonium, exclusively attenuates the acetylcholine-evoked current. Second, DMPP imitates the current elicited by nicotine, whereas the acetylcholine response is mimicked by TMA, which contains an amonium ion motif, like acetylcholine, and may bind in a similar manner (Lape et al. 2009). Third, Ca\(^{2+}\) removal left-shifts the nicotine current reversal potential and nicotine elevates intracellular Ca\(^{2+}\), suggesting the nicotine receptor is Ca\(^{2+}\) permeable. Meanwhile, the acetylcholine current reversal potential is not altered by Ca\(^{2+}\)-free saline and acetylcholine does not change intracellular Ca\(^{2+}\) concentration, consistent with this receptor not passing Ca\(^{2+}\). Fourth, the two responses present differential sensitivity to dsRNA exposure, with the targeting of ApAChR-H and P reducing the nicotine-evoked current and that of ApAChR-C and E lessening the current produced by acetylcholine.

In addition to presenting different pharmacology and Ca\(^{2+}\) permeability, the nicotine current is also smaller in magnitude, more cooperative, and desensitizes less compared with acetylcholine. Thus nicotine may activate a different receptor subtype with a different binding pocket. The highly conserved aromatic amino acids in the principal component of the ligand-binding site are responsible for affinity, whereas the more variable complementary component mediates selectivity (Albuquerque et al. 2009). Differences in certain residues on the principle subunits could reduce affinity or agonist-induced channel activation such that the receptor is selective for one agonist over the other (Arias 2000). Alternatively, if there are changes to key residues of the complementary subunits, this may result in the loss of selectivity for a particular agonist. A cholinergic ionotropic receptor failing to respond to nicotine is not unprecedented; for example, nicotine does not gate either the α9 or α9/10 nicotinic receptor (Elgoyhen et al. 1994, 2001). In the bag cell neurons, it is possible that nicotine evokes a smaller response because of a partial agonist effect on the acetylcholine receptor, as seen with the chicken α3β2

---

**Table 3. Pairwise amino acid identity of Aplysia nicotinic receptor subunits with human nicotinic receptor subunits**

<table>
<thead>
<tr>
<th>AChBP</th>
<th>α1</th>
<th>α2</th>
<th>α3</th>
<th>α4</th>
<th>α5</th>
<th>α7</th>
<th>α9</th>
<th>α10</th>
<th>β1</th>
<th>β2</th>
<th>β3</th>
<th>β4</th>
<th>δ</th>
<th>γ</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>28</td>
<td>34</td>
<td>39</td>
<td>38</td>
<td>37</td>
<td>33</td>
<td>37</td>
<td>43</td>
<td>32</td>
<td>35</td>
<td>31</td>
<td>36</td>
<td>33</td>
<td>35</td>
<td>32</td>
</tr>
<tr>
<td>C</td>
<td>28</td>
<td>38</td>
<td>42</td>
<td>44</td>
<td>38</td>
<td>37</td>
<td>41</td>
<td>36</td>
<td>34</td>
<td>36</td>
<td>35</td>
<td>39</td>
<td>38</td>
<td>40</td>
<td>36</td>
</tr>
<tr>
<td>D</td>
<td>30</td>
<td>30</td>
<td>32</td>
<td>33</td>
<td>31</td>
<td>33</td>
<td>32</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>E</td>
<td>27</td>
<td>38</td>
<td>51</td>
<td>47</td>
<td>42</td>
<td>42</td>
<td>45</td>
<td>37</td>
<td>37</td>
<td>36</td>
<td>37</td>
<td>46</td>
<td>44</td>
<td>46</td>
<td>36</td>
</tr>
<tr>
<td>G</td>
<td>29</td>
<td>34</td>
<td>36</td>
<td>34</td>
<td>33</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>35</td>
<td>37</td>
<td>39</td>
<td>33</td>
<td>32</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>J1</td>
<td>24</td>
<td>33</td>
<td>41</td>
<td>40</td>
<td>37</td>
<td>34</td>
<td>38</td>
<td>36</td>
<td>31</td>
<td>32</td>
<td>34</td>
<td>38</td>
<td>35</td>
<td>39</td>
<td>33</td>
</tr>
<tr>
<td>J2</td>
<td>24</td>
<td>31</td>
<td>31</td>
<td>32</td>
<td>30</td>
<td>34</td>
<td>32</td>
<td>30</td>
<td>25</td>
<td>28</td>
<td>28</td>
<td>31</td>
<td>34</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>J3</td>
<td>23</td>
<td>35</td>
<td>41</td>
<td>40</td>
<td>36</td>
<td>35</td>
<td>38</td>
<td>33</td>
<td>31</td>
<td>33</td>
<td>35</td>
<td>39</td>
<td>36</td>
<td>39</td>
<td>36</td>
</tr>
<tr>
<td>L</td>
<td>27</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>32</td>
<td>36</td>
<td>34</td>
<td>35</td>
<td>32</td>
<td>34</td>
<td>32</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>31</td>
</tr>
<tr>
<td>M</td>
<td>29</td>
<td>31</td>
<td>33</td>
<td>31</td>
<td>29</td>
<td>32</td>
<td>43</td>
<td>35</td>
<td>32</td>
<td>34</td>
<td>33</td>
<td>30</td>
<td>32</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>N</td>
<td>26</td>
<td>30</td>
<td>30</td>
<td>32</td>
<td>30</td>
<td>30</td>
<td>33</td>
<td>35</td>
<td>35</td>
<td>36</td>
<td>29</td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td>Q</td>
<td>24</td>
<td>30</td>
<td>28</td>
<td>28</td>
<td>26</td>
<td>29</td>
<td>28</td>
<td>29</td>
<td>31</td>
<td>31</td>
<td>27</td>
<td>25</td>
<td>30</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>R</td>
<td>32</td>
<td>30</td>
<td>34</td>
<td>32</td>
<td>32</td>
<td>34</td>
<td>30</td>
<td>32</td>
<td>31</td>
<td>35</td>
<td>30</td>
<td>29</td>
<td>32</td>
<td>31</td>
<td>28</td>
</tr>
</tbody>
</table>

Percent sequence identity of aligned ApACHR and human AChR subunits, as well as the Aplysia acetylcholine binding protein (AChBP). Bold numbers reflect the highest scores.
NICOTINE GATES A NOVEL RECEPTOR

Fig. 9. Double-stranded RNA (dsRNA) targeting of the ACh and nicotine currents. A, left: after incubation in 600 ng/ml dsRNA corresponding to the 5'-untranslated region of the newt retinoic acid receptor (acting as a control), a 2-s pressure application of 1 mM ACh generated a large inward current in a cultured bag cell neuron whole cell voltage-clamped to -60 mV. Right, the magnitude of the acetylcholine-induced current was reduced by half after culturing in 300 ng/ml dsRNA ApAChR-C and 300 ng/ml dsRNA ApAChR-E (C+E). B, left: subsequent to control dsRNA treatment, delivery of 3 mM nicotine elicited a typical inward current at -60 mV. Right, culturing in 300 ng/ml dsRNA of both ApAChR-H and ApAChR-P (H+P) attenuated the nicotine-evoked current. C–G: summary data of the peak current density for the ACh or nicotine responses after treatment with different dsRNAs. The ordinate label applies to all graphs. C: there was no significant difference in the current brought about by ACh between control and neurons incubated in either ApAChR-C or E dsRNA alone (P > 0.05, ANOVA, Dunnett multiple comparison test). D: however, the ACh-induced current was significantly different after culturing in a cocktail of ApAChR-C+E dsRNA (P < 0.05, unpaired Student’s t-test). E: the same ApAChR-C+E dsRNA treatment did not significantly alter the response to nicotine (P > 0.05, unpaired Student’s t-test). F: instead, compared with control, the current elicited by nicotine was rendered significantly smaller following incubation in 300 ng/ml each of ApAChR-H+P dsRNA (P < 0.05, Mann-Whitney U-test). G: this combination of ApAChR-H+P dsRNA did not result in a significant difference for the ACh-elicited current compared with control (unpaired Student’s t-test). Values are means ± SE; numbers in bars indicate number of neurons.

receptor (Hussy et al. 1994). This may occur through lower-affinity nicotine binding, failure to trigger full opening, or nicotine acting as a pore blocker (Kuryatov et al. 2000; Paradiso and Steinbach 2003; Rush et al. 2002). For NMDA receptors, low-affinity agonists produce currents that decay more quickly and recover from desensitization faster (Lester and Jahr 1992). However, these alternative mechanisms would likely not give rise to the differential block of the bag cell receptors, low-affinity agonists produce currents that decay more quickly and recover from desensitization faster (Lester and Jahr 1992). However, these alternative mechanisms would likely not give rise to the differential block of the bag cell neurons nicotine and acetylcholine currents by dihydro-β-erythroidine and α-conotoxin ImI/hexamethonium, respectively. The cation-selective, but not the chloride-selective, acetylcholine receptor from Aplysia buccal and pleural neurons is also exclusively sensitive to conotoxin ImI/hexamethonium (Kehoe and McIntosh 1998).

Differences between the magnitude and desensitization of the acetylcholine- and nicotine-gated currents do not necessarily distinguish between two receptors. For example, the single-channel conductance of human α7-receptors is different when opened by acetylcholine compared with an allosteric agonist (Palczynska et al. 2012). Yet, conductance is not a function of the agonist for cholinergic currents from unpigmented right pleural Aplysia neurons (Ascher et al. 1978), a mouse muscle-like cell line (Papke et al. 1988), and rat α4/β2 receptors (Akk and Auerbach 1999). In bag cell neurons, if both acetylcholine and nicotine were acting on the same channel, one would not expect nicotine to exclusively increase intracellular Ca²⁺ or the nicotine-induced current to have a more negative reversal potential and be sensitive to Ca²⁺ removal. Similarly, it is probably not the case that the larger acetylcholine response masks a nicotine component, given that the acetylcholine-elicited current remaining after α-conotoxin ImI presented the same reversal potential as acetylcholine alone. We also failed to uncover evidence that the nicotine receptor opens but then quickly desensitizes during acetylcholine delivery. Brief pressure application of acetylcholine under fast-flowing perfusion results in a rapid-onset current that reverses at a voltage similar to the other acetylcholine responses, but not at a voltage like the nicotine response or a combination of the two responses. Thus the possibility of two distinct receptors appears plausible.

The large number of ApAChR subunits present in bag cell neurons is enigmatic, since there are only two distinct currents. The Aplysia transcriptome contains at least 20 acetylcholine receptors, 16 of which could be excitatory, based on the sequence of the conserved M1–M2 linker involved in ion permeability (Sine and Engel 2006). Each subunit may have a specialized role in transmission, depending on agonist sensitivity, gating kinetics, permeability, and desensitization. The seemingly high expression of ApAChR-Q is equally puzzling, considering that the lack of conserved amino acids in the binding pocket implies it likely does not bind acetylcholine. Its function could be structural, as is the case for the α5, β1, and β3 receptor subunits, which are thought to occupy the non-
binding fifth position in certain cholinergic receptors (Arias 2000). Alternatively, ApAChR-Q could have a non-synaptic role, such as receptor trafficking and assembly, like the vertebrate α5-subunit (Ramirez-Latorre et al. 1996), or represent a chemotaxic sensor, similar to channels found in Caenorhabditis chemo-sensory neurons (Yassin et al. 2001) and certain prokaryotes (Tasneem et al. 2005).

The major cholinergic receptor in vertebrate autonomic ganglion is the heteromeric, α-conotoxin Idm-sensitive α3β2/β4 (Conroy and Berg 1995; Listerud et al. 1991; Ramirez-Latorre et al. 1996). Nicotine itself activates vertebrate α7 (Anand et al. 1993), the LnAChR-A homolog in Lymnaea (van Nierop et al. 2005), and the anionic-selective α7-like receptor in Aplysia (Kehoe and McIntosh 1998). Block of the bag cell neuron acetylcholine-induced current by α-conotoxin IIm suggests either an α7- or α3β2-type receptor (Ellison et al. 2004; Johnson et al. 1995). However, the lack of activation by nicotine and the failure of MLA to reduce the current rules against α7. The possibility of a α3β2-type heteromeric receptor is strengthened by the homology of α2α3 to the higher-expressing ApAChR-C and E, as well as the knockdown of the acetylcholine current by combined ApAChR-C and E dsRNA treatment. Assuming the nicotine response is mediated by a distinct receptor, the dsRNA experiments would suggest ApAChR-C or E are not involved, but rather ApAChR-H and P may contribute to the channel gated by nicotine. Consistent with this, the absence of a key Trp in loop D (Torpedo equivalent W55) of both ApAChR-H and P would likely impair acetylcholine binding (Corringer et al. 1998; Xie and Cohen 2001). The remaining subunits either are more likely to be acetylcholine sensitive (ApAChR-A and G), possess an altered binding pocket (ApAChR-D, L, M, O, and R), or are probably not present in significant enough abundance (ApAChR-N). These speculations are based on pharmacology and a limited application of dsRNA technology. Definitive proof would require heterologous expression of multiple combinations of ApAChR subunits and subsequent physiological characterization. Unfortunately, attempts at expressing invertebrate receptors in oocytes or cell lines have seen limited success. In fact, the only Lymnaea cation-selective receptor that has been expressed is LnAChR-A, and it is both acetylcholine and nicotine activated (van Nierop et al. 2005).

If there are two separate receptors in bag cell neurons, it begs the question, what is the endogenous agonist for the nicotine receptor? Like Aplysia, many other cloned invertebrate cys-loop receptors possess differences in binding pocket amino acids and may respond to other transmitters (Barbara et al. 2008; Dent 2006; Tricoire-Leignel and Than 2010). With the exception of acetylcholine, all classical neurotransmitters either inhibit or do not change the bag cell neuron membrane potential (Kaczmarek et al. 1978; Whim and Kaczmarek 1998; White and Magoski 2012). Thus, if there is an endogenous agonist for the nicotinic receptor, it may be a peptide, perhaps related to certain bungarotoxin-like peptides (Tsetlin 1999), or a metabolite (Grando 2008; Yassin et al. 2001). Because the putative nicotine receptor is Ca2+-permeable, it would allow for Ca2+ influx at voltages nearer to the resting membrane potential than that permitted by voltage-gated Ca2+ channels (Tam et al. 2009). For example, α7-receptors produce Ca2+ transients in dendritic spines, whereas α3-containing receptors augment global Ca2+ increases through Ca2+-induced Ca2+-release (Shoop et al. 2001). In addition, different states of receptor desensitization could confer a role in bag cell neuron plasticity; i.e., long after the acetylcholine response has desensitized, which presumably occurs during the afterdischarge, nicotine-gated channels could still be recruited to directly permit Ca2+ entry.

An alternative and intriguing prospect is that the separate acetylcholine and nicotine receptors are adaptive. Bourne et al. (2010) suggest the role of acetylcholine binding protein in Aplysia may be to buffer dinoflagellate toxins, such as red tide. By extension, the overwhelming prominence of acetylcholine-sensitive receptors in the bag cell neuron cholinergic response may serve as a defense against protists or predatory worms that have co-evolved nicotine-mimetic toxins (Kem 1997; Schwarz et al. 2003). The smaller-magnitude nicotinic response in bag cell neurons would be insufficient to permit toxin-mediated activation of reproduction. Because egg-laying behavior lowers the defenses of Aplysia (Goldsmith and Byrne 1993; Mackey and Carew 1983), this could protect the animal from predation.

ACKNOWLEDGMENTS

We thank S. L. Smith and H. M. Fuller-Hodgson for technical assistance, A. K. H. Tam for initial work on the acetylcholine current, and the anonymous reviewers for constructive criticism of the work.

GRANTS

S. H. White held a McLaughlin/Bracken and a Queen Elizabeth II Scholarship in Science Technology. N. S. Magoski held a Canadian Institutes of Health Research (CIHR) New Investigator Award. This work was supported by a CIHR operating grant (to N. S. Magoski).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS


REFERENCES


J Neurophysiol • doi:10.1152/jn.00796.2013 • www.jn.org