Responses of Neurons in the Lateral Cervical Nucleus of the Cat to Noxious Cutaneous Stimulation
K. C. Kajander G. J. Giesler, Jr. 1686

Single-Cell Neuronal Model for Associative Learning
K. J. Gingrich J. H. Byrne 1705

Dynamics and Directional Sensitivity of Neck Muscle Spindle Responses to Head Rotation Y. S. Chan J. Kasper V. J. Wilson 1716

Maximal Force as a Function of Anatomical Features of Motor Units in the Cat Tibialis Anterior
S. C. Bodine R. R. Roy E. Eldred V. R. Edgerton 1730

Contribution of Auditory Cortex to Sound Localization by the Ferret (Mustela putorius) G. L. Kavanagh J. B. Kelly 1746

The Suppressive Influence of Moving Textured Backgrounds on Responses of Cat Striate Neurons to Moving Bars
B. Gulyás G. A. Orban J. Duysens H. Maes 1767

Influence of a Moving Textured Background on Direction Selectivity of Cat Striate Neurons
G. A. Orban B. Gulyás R. Vogels 1792

Mechanoreceptor Response to Mechanical and Thermal Stimuli in the Glans Penis of the Dog R. D. Johnson R. I. Kitchell 1813

Inputs to Intercostal Motoneurons From Ventrolateral Medullary Respiratory Neurons in the Cat E. G. Merrill J. Lipski 1837

Control of Abdominal and Expiratory Intercostal Muscle Activity During Vomiting: Role of Ventral Respiratory Group Expiratory Neurons A. D. Miller L. K. Tan I. Suzuki 1854


Neural Compensation for Muscular Fatigue: Evidence for Significant Force Regulation in Man R. F. Kirsch W. Z. Rymer 1893

4-Aminopyridine Produces Epileptiform Activity in Hippocampus and Enhances Synaptic Excitation and Inhibition P. A. Rutecki F. J. Lebeda D. Johnston 1911

Static and Dynamic Response Characteristics, Receptive Fields, and Interaction With Noxious Input of Midline Medullary Thermoresponsive Neurons in the Rat A. A. Young N. J. Dawson 1925

Announcements 1937
Indexes 1939

CORRIGENDUM

Vol. 56, September 1986

S. Warren, H. A. Hamalainen, and E. P. Gardner, “Objective classification of motion- and direction-sensitive neurons in primary somatosensory cortex of awake monkeys.” It was incorrectly stated that Orban and co-workers (J. Neurophysiol. 45: 1059–1073, 1981) attributed direction selectivity to cortical neurons having a direction index (DI) ≥ 20. Orban et al. actually used a weighted average of DIs and defined cells with a mean DI (MDI) above 50 as direction selective. Their criterion for direction selectivity was stricter and not less stringent, as stated in the paper. This error does not alter any of the data or conclusions of Warren et al.