Evolution of Anisotropic Diffusion in the Developing Rat Corpus Callosum

IVAN VÖRŠEK1 AND EVA SYKOVÁ1,2
1Department of Neuroscience, Institute of Experimental Medicine, Academy of Science of the Czech Republic, Prague 142 20; and 2Department of Neuroscience, Second Medical Faculty, Charles University, Prague 150 18, Czech Republic

Vöršek, Ivan and Eva Sykova. Evolution of anisotropic diffusion in the developing rat corpus callosum. J. Neurophysiol. 78: 912–919, 1997. Diffusion anisotropy was investigated in the developing rat brain [postnatal day (P)6–29] with the use of ion-selective microelectrodes to measure the three-dimensional distribution of tetramethylammonium (TMA+) iontophoresed into the extracellular space (ECS). The diffusion parameters, ECS volume fraction α ($\alpha = \text{ECS volume/total tissue volume}$), tortuosity λ ($\lambda = \text{apparent diffusion coefficient/free diffusion coefficient}$), and non-specific TMA+ uptake (k^+) were studied in cortical gray matter (layer V) and corpus callosum (CC) of anesthetized rats. ECS volume fraction in cortex and CC was about twice as large in the newborn rat as in adults. In this study, more detailed analysis revealed that α in CC gradually decreased from P4, when α ranged between 0.42 and 0.45, and reached a final value of 0.26 ± 0.01 (SE, $n = 12$ measurements, 6 animals) at about P21. Diffusion in the ECS of CC was isotropic until about P12, i.e., there was no significant difference in the tortuosity factor, λ, between the three perpendicular axes. From P13 to P17 anisotropy greatly increased as a result of preferential diffusion along the myelinated axons (X-axis). At P21–23 the tortuosity values were $\lambda_x = 1.46 \pm 0.03$, $\lambda_y = 1.70 \pm 0.01$, and $\lambda_z = 1.72 \pm 0.02$ ($n = 12$), and there were no further changes up to the last postnatal day studied, P29. In contrast to the myelinated CC, cortical gray matter remained isotropic up to P29, with a tortuosity of 1.54 ± 0.02 ($n = 12$). The results suggest that diffusion anisotropy in the rat CC is related to myelination; it reaches a maximum at P17, when myelination is well advanced. In myelinated pathways, preferential diffusion of ions and transmitters occurs along the axons. These results are relevant to volume transmission and the interpretation of diffusion-weighted magnetic resonance imaging.

INTRODUCTION

Extrasynaptic transmission plays an important role in short- and long-distance communication between neurons, axons, and glia. It is mediated by the diffusion of neuroactive substances, including ions and transmitters, through the extracellular space (ECS). In this way, transmitters can reach high-affinity receptors located outside synapses and often coupled to G proteins (Gilman 1987), as well as on glial cells (for review see Berger et al. 1995; Blankenfeld et al. 1995). This type of transmission is also called volume transmission, because the neuroactive substances and ions move through the volume of the ECS (Fuxe and Agati 1991). ECS is a communication channel whose size, structure, and composition determine the migration of molecules in the brain, i.e., the movement of substances by extracellular diffusion (Sykova 1997). In principle, the structure of cellular aggregates and/or extracellular matrix can channel the migration of molecules in the ECS, so that diffusion in certain regions is facilitated in one direction rather than another. This could be a mechanism to allow a certain degree of specificity in volume transmission.

The real-time iontophoretic method using tetramethylammonium (TMA+)-selective microelectrodes (Nicholson and Phillips 1981) can be used to determine the volume of the ECS, the so-called ECS volume fraction α ($\alpha = \text{ECS volume/total tissue volume}$), and the tortuosity factor λ, which describes how the migration of molecules is slowed down by pore size, shape, and connectivity. Tortuosity describes the geometry of the ECS and is calculated from the measured TMA+ diffusion coefficients as $\lambda = (D/ADC)^{0.5}$, where D is the free diffusion coefficient and ADC is the apparent diffusion coefficient of TMA+ in brain tissue.

It has been shown that the diffusion properties of the ECS in brain (Lehmenkühler et al. 1993; McBain et al. 1990; Rice et al. 1993; Sykova et al. 1996b) and spinal cord (Šimónová et al. 1996; Sykova et al. 1994) are heterogeneous, i.e., they vary with anatomic structure and CNS region. Moreover, diffusion may be anisotropic, which means that the movement of substances even in homogeneous tissue, e.g., in white matter, is different in different directions.

With the use of the TMA+ method, anisotropic diffusion has so far been demonstrated only in the molecular layer of the isolated turtle cerebellum (Rice et al. 1993). This in vitro study on a nonmammalian preparation examined a gray matter region with isotropic and anisotropic subregions. Anisotropic diffusion of water was described with the use of diffusion-weighted magnetic resonance imaging (MRI). It was shown that water diffusion is anisotropic in regions of white matter (Douek et al. 1991; Hajnal et al. 1991; Le Bihan et al. 1993; Moseley et al. 1990; Pierpaoli et al. 1996; Sakuma et al. 1991). However, it is not clear whether this anisotropy is due to anisotropic water diffusion in the ECS, because cell membranes are readily permeable to water and these measurements cannot distinguish between the intracellular and extracellular compartments. The mechanisms responsible for the diffusion anisotropy in white matter are therefore far from clear.

To study diffusion anisotropy in the ECS in vivo, we measured TMA+ diffusion in the rat cortex and corpus callosum (CC) during postnatal development. In contrast to water, cellular membranes are relatively impermeable to TMA+. Diffusion occurs in all directions and, with the use of the
TMA\(^+\) method, we could measure it independently in three orthogonal axes (X, Y, and Z). The X-axis lies along the axons; the Y-axis and Z-axis lie across the fibers in CC. We addressed the question of whether anisotropic diffusion of substances in the ECS is related to gliogenesis and, particularly, myelination. Diffusion anisotropy in white matter ECS has not been studied previously, yet it is critical for MRI interpretation.

METHODS

Animal preparation

Experiments were performed on rat pups (Wistar strain) from postnatal day (P)4 to P29 (date of birth taken as P0) anesthetized with urethan (1.6–2.5 g/kg ip) and placed in a rat headholder. The body temperature was maintained at 36–37°C by supporting the rat on a heated, curved platform that enclosed the lower part of the body. The animals spontaneously breathed air. A hole, 2.0 mm in diameter, was made ~1.5 mm (P14–29) or 1 mm (P4–13) caudal from the bregma and ~2 mm lateral to the sutura medialis, and the dura was carefully removed. The exposed brain tissue was bathed in warmed (37°C) artificial cerebrospinal fluid (Lehmenkühler et al. 1993). Microelectrodes were introduced to the levels of cortical layer V and CC with the use of a remote control micromanipulator (Nanostepper, SPI, Oppenheim, Germany) and stereotaxic coordinates as described in our previous study (Lehmenkühler et al. 1993).

Ion-selective microelectrodes

Ion-selective microelectrodes (ISMs) were used to measure TMA\(^+\) diffusion parameters in ECS. TMA\(^+\)-selective microelectrodes were prepared as described for K\(^+\)-selective electrodes (Kfiz et al. 1974); the ion exchanger was Corning 477317, but the ion-sensing barrel was backfilled with 100 mM TMA chloride instead of 150 mM KCl. Electrodes were calibrated with the use of the fixed-interference method before and after each experiment in a sequence of solutions of 150 mM NaCl plus 3 mM KCl with the addition of the following concentrations of TMA chloride: 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, and 10.0 mM NaCl. For diffusion measurements, iontophoresis pipettes were prepared from theta glass (Clark Electrochemical Instruments, Pangbourne, UK). The shank was bent before backfilling with 0.5 M TMA chloride so that it could be aligned parallel to the ISM. Electrode arrays were made by gluing together an ISM and two iontophoresis pipettes, each with a tip separation of 110–180 \(\mu\)m from the tip of the ISM (Fig. 1). The tips of the three pipettes formed a 90° angle in a horizontal plane for measurements along the X- and Y-axes; for measurements along the Z-axis, one iontophoresis pipette tip was lowered 110–180 \(\mu\)m below the tip of the ISM. Typical iontophoresis parameters were ~20-nA bias current (continuously applied to maintain a constant transport number), with a ~200-nA current step 60 s in duration to generate the diffusion curve. The indifferent electrode (Ag/AgCl wire) was placed in the muscle. Potentials recorded on the reference barrel of the ISM were subtracted from the ion-selective barrel voltage measurements by means of buffer and subtraction amplifiers.

Expression for anisotropic diffusion

The expected extracellular TMA\(^+\) concentration, \(C\), generated by iontophoresis in an anisotropic medium has been derived by Rice et al. (1993) as follows: when the iontophoresis pulse is applied for duration \(d\), then \(C = G(t)\) for the rising phase of the curve \((t < d)\), and \(C = G(t) - G(t - d)\) for the falling phase of the curve \((t \geq d)\). The general expression for this function, \(G(u)\), can be given as

\[
G(u) = \frac{Q_0 \lambda \lambda \lambda}{8 \pi D \sigma_{r}} \left[\exp \left(\frac{r}{2 \sqrt{D}} \right) \text{erfc} \left(\frac{r}{2 \sqrt{D}} - \sqrt{k' u} \right) \right]
\]

\[
+ \exp \left(- \frac{r}{2 \sqrt{D}} \right) \text{erfc} \left(\frac{r}{2 \sqrt{D}} - \sqrt{k' u} \right) \right] \quad (1)
\]

The parameter \(r = (x^2 \lambda_1^2 + y^2 \lambda_2^2 + z^2 \lambda_3^2)^{1/2}\), where \(x\), \(y\), and \(z\) are the distances in the rectangular Cartesian coordinates defined in Fig. 1. The source is defined by \(Q = InzF\), where \(I\) is the current applied to the iontophoresis electrode, \(n\) is the transport number of this electrode, \(z\) is the number of ionic charges on the ion, and \(F\) is Faraday’s electrochemical equivalent. Nonspecific concentration-dependent uptake is \(k'\) (Nicholson 1992; Nicholson and Philips 1981; Rice and Nicholson 1991). The function \(\text{erfc}\) is the complementary error function

\[
\text{erfc}(x) = \left(\frac{2}{\sqrt{\pi}} \right) \int_x^{\infty} \exp(-t^2) dt
\]

To determine the five parameters \(\lambda_1, \lambda_2, \lambda_3, \alpha\), and \(k'\), measurements were made at the coordinates \((x, 0, 0)\), \((0, y, 0)\), and \((0, 0, z)\) relative to the iontophoresis electrode at the origin \((0, 0, 0)\). Then for \((x, 0, 0)\)

\[
G_i(u) = \frac{Q_0 \lambda_1}{8 \pi D_{x}} \left[\exp \left(\frac{\lambda_1}{2 \sqrt{D_{x}}} \right) \text{erfc} \left(\frac{\lambda_1}{2 \sqrt{D_{x}}} - \sqrt{k' u} \right) \right]
\]

\[
+ \exp \left(- \lambda_1 \right) \text{erfc} \left(\frac{\lambda_1}{2 \sqrt{D_{x}}} - \sqrt{k' u} \right) \right] \quad (2A)
\]

similar expressions can be written down for \(G_j(u)\), \(A_j\), and \(G_k(u)\), \(A_k\).

The parameters \(\alpha, \lambda_1, \lambda_2, \lambda_3, k'\) were determined from Eq. 2A with the use of a nonlinear curve fitting procedure (see next section); \(\alpha, \lambda_1, \lambda_2, \lambda_3, k'\) were obtained similarly. The value of \(\alpha\) could then be calculated with the use of Eq. 2B with averaged experimental data from each axis, and similar expressions for the other components. The three estimates of \(\alpha\) and \(k'\) obtained with this method were not statistically significantly different and were therefore averaged to yield \(\alpha\) and \(k'\) for layer V and CC. The anisotropy can be characterized by the three components of \(\lambda\) here designated as \(\lambda_1, \lambda_2, \lambda_3\).

Measurements of ECS diffusion parameters

Concentration-versus-time curves for TMA\(^+\) diffusion were first recorded in 0.3% agar gel (Difco, Special Noble Agar) made up in a solution composed of (in mM) 150 NaCl, 3 KCl, and 1 TMA chloride in a Lucite cup placed just above the brain. The array of electrodes was then lowered into the cortex to appropriate depths to coincide with the known distribution of gray matter—layer V and CC at various ages (Lehmenkühler et al. 1993).

A nonlinear curve-fitting simplex algorithm, implemented in the program VOLTORO (C. Nicholson, unpublished data) was used to fit Eq. 1, with \(\alpha = 1, \lambda = 1, k' = 0\), to determine the transport number \(n\) of the iontophoresis micropipette and the free diffusion coefficient, \(D\). For TMA\(^+\), after \(n\) was determined in agar gel, measurements were made in the brain to obtain \(\lambda_1, \lambda_2, \lambda_3\), \(\alpha\), and \(k'\). These parameters were extracted from the concentration-versus-time profiles by fitting Eq. 2A and 2B and similar equations for the other axes with VOLTORO.
Statistical analysis and data processing

All data are presented as means ± SE. Statistical analysis of the differences between groups was evaluated by the Mann-Whitney test. Values of P < 0.05 were considered significant. Three-dimensional plots were made with the MATLAB version 4.2 program (MathWorks).

Results

Diffusion parameters of the cortex and CC

Diffusion in nervous tissue is affected by α and λ, as is readily apparent from an inspection of the time course and amplitude of the TMA⁺ diffusion curves in agar gel and brain (Fig. 1). The diffusion curves obtained in the cortex or CC have a greater amplitude than those in agar because the same amount of TMA⁺ released from the iontophoretic electrode results in a greater increase in TMA⁺ concentration in brain than in free medium because of the restricted ECS available for diffusion. TMA⁺ diffusion curves in brain also rose more slowly than those in agar gel (Fig. 1), reflecting the reduction of the TMA⁺ ADC in brain tissue and therefore an increase in λ (Nicholson 1992; Nicholson and Philips 1981).

TMA⁺ diffusion curves recorded from the cortical gray matter and CC revealed distinct diffusion properties of these structures at the third postnatal week and later. Although the same diffusion curves were recorded from the X-, Y-, and Z-axes within the cortical layer V, different diffusion curves were recorded along each of the axes in CC (Fig. 2). As can be seen, preferential diffusion in white matter occurred along the myelinated axons.

Diffusion parameters during development

In previous papers, we showed that ECS volume decreases in gray matter in the first two, and in white matter in the first three, postnatal weeks to about one-half of its size at P2–3 while the tortuosity is essentially unchanged (Lehmenkühler et al. 1993; Sykova et al. 1996b). Our measurements, however, were performed only along the X-axis and were correct only if one assumes that the diffusion in this developmental period is isotropic. Although this is the case in cortical gray matter, the present experiments revealed substantial anisotropy in white matter from about P13 and later. Two distinct age groups, P9–11 (n = 6) and P21–23 (n = 6), were selected for comparison and results are presented in Table 1. Table 1 shows that the diffusion in the cortex is isotropic in both age groups, whereas in CC, diffusion is isotropic in animals at P9–11 and anisotropic at P21–23. At P21–23, a significant difference (P < 0.001) was found between λx and λz values and between λx and λy values. Although the tortuosity along the X-axis (i.e., parallel to the axons) remains the same from P4 to P29, the λ values in both Y and Z axes (i.e., across the axons) gradually increase from P13 to reach their maximal values at P17 (Fig. 3). This time course of tortuosity increase across the axon fibers correlates with CC myelination (Bjartmar 1996; Hamano et al. 1996).

We previously reported that the decrease in α during postnatal development is faster in gray than in white matter. In the present study, more detailed measurements confirm this finding, but show that the decrease in white matter is faster than we could predict from measurements along the X-axis only (Lehmenkühler et al. 1993). Importantly, the decrease in α was already observed at P5 and therefore precedes the increase in λx and λy by ≈7 days (Fig. 3). The values of α at P21–120 (0.19–0.20) described in myelinated CC by Lehmenkühler et al. (1993) are lower than the true values of α found in this study (0.26), now obviously calculated from three measured λ values (x, y, and z, Table 1).

The values of α in the gray matter and CC at P9–11 are
The mean value of a, i.e., the significant difference in a during development (Table 1). The mean value of different, which is an indication of diffusion heterogeneity increases between P14 and P21 but does not significantly Y electrode track was made with array fixed in Y (along axons) and in X and Z-axes (across axons). The X-axis were same as those obtained with first array (not shown). In Z-axis, microelectrode spacing was $137 \, \mu m$ and $n = 0.335$. Shape and amplitude of diffusion curves reflect different diffusion coefficients along each of the selected axes.

Isoconcentration ellipsoids

The three-dimensional pattern of diffusion away from a point source can be illustrated by constructing iso-concentration spheres (isotropic diffusion) and ellipsoids (anisotropic diffusion) for extracellular TMA$^+$ concentration (Fig. 4). The surfaces in Fig. 4 represent the locations where TMA$^+$ concentration first reached 1 mM, 10 s after the initiation of a 200-nA iontophoresis current. The value of r for which $G(t)$ was equal to 1 mM was found graphically by solving $Eq. \, 1$ and 2. We used the mean values for λ_1, λ_2, and λ_3 given in Table 1 together with the following parameters: $D = 1.311 \times 10^{-3} \, \text{cm}^2/\text{s}$ at 37°C, $n = 0.300$, and $k' = 4.0 \times 10^{-3} \, \text{s}^{-1}$. The three-dimensional plots were then generated from the expression $Z = (r^2 + \lambda_2^2 - \lambda_3^2)^{1/2} / \lambda_1$, derived from the definition of r (Rice et al. 1993). The single values for r, which describe the equivalent spheres determined by this procedure, were 36 μm for the agar gel, 102 and 117 μm for gray matter at P6 and P21, respectively, and 92 μm for CC at P6. The tiny sphere representing diffusion in agar gel (Fig. 4) shows the dramatic difference between a free medium and constrained diffusion in the brain. Figure 4 also shows that the larger the ECS value, the smaller the sphere. The spherical surface in gray matter and CC at P6 reflects the ability of particles to diffuse equally along the X-, Y-, and Z-axes of these structures. In CC at P21, the r_x, and $r_{x,z}$ describing the equivalent ellipsoids were 130 and 107, respectively. The ellipsoidal surface in Fig. 4 reflects the different abilities of substances to diffuse along the X-, Y-, and Z-axes of the myelinated CC.

DISCUSSION

Structural anisotropy of the ECS

To characterize anisotropy of mammalian ECS, we studied extracellular diffusion in the rat CC and layer V of the somatosensory neocortex. These regions were selected because the axons in CC are myelinated and oriented in parallel, and therefore should constrain diffusion. On the other hand, layer V of the cortex is rich with cell bodies, dendrites, and axons that have no preferential orientation, and therefore the diffusion might be rather isotropic. To find out whether axon fiber orientation and/or myelination plays a crucial role in white matter anisotropy, we investigated rats at different ages. At P4–6 the axons in rat CC are largely unmyelinated (Hamano et al. 1996) although already oriented in parallel; at P12 about two-thirds of the axonal length is still unsheathed, whereas at P17 only ~20% is unsheathed (Bjartmar 1996; Hildebrand et al. 1993). Hamano et al. (1996) found that the intensity of myelination in rat CC quickly increases between P14 and P21 but does not significantly increase after about P21. Indeed, this corresponds well with our findings that below P13 there is no anisotropic TMA$^+$ diffusion in CC and above P17 there is no further significant increase in anisotropy (see Fig. 3). Our data therefore show that diffusion in the ECS of unmyelinated axon bundles is isotropic. Because TMA$^+$ diffuses almost solely through the ECS (see also very low uptake in unmyelinated as well as in myelinated CC), the myelin sheaths apparently slow down the diffusion around the axons but have no effect on diffusion in the ECS along the axons.

FIG. 2. Representative records obtained in corpus callosum in X-axis (along axons) and in Y- and Z-axes (across axons). All recordings are from same animal at P21 and were recorded with 2 microelectrode arrays. Values of α, λ, and k' are shown with each curve. Recordings were first made with microelectrode array in X- and Y-axes (array spacing in X-axis was $132 \, \mu m$ and $n = 0.352$; in Y-axis, $140 \, \mu m$ and $n = 0.339$). Second microelectrode track was made with array fixed in Y- and Z-axes. Values obtained in Y-axis were same as those obtained with first array (not shown). In Z-axis, microelectrode spacing was $137 \, \mu m$ and $n = 0.335$. Shape and amplitude of diffusion curves reflect different diffusion coefficients along each of the selected axes.
TABLE 1. Comparison of λ, α, and k' in the corpus callosum and cortical gray matter (layer V)

<table>
<thead>
<tr>
<th></th>
<th>P9–11</th>
<th>P21–23</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corpus callosum</td>
<td>Gray matter</td>
</tr>
<tr>
<td>λ_x</td>
<td>1.49 ± 0.03</td>
<td>1.56 ± 0.01</td>
</tr>
<tr>
<td>λ_y</td>
<td>1.53 ± 0.2</td>
<td>1.55 ± 0.02</td>
</tr>
<tr>
<td>λ_z</td>
<td>1.54 ± 0.02</td>
<td>1.56 ± 0.02</td>
</tr>
<tr>
<td>α</td>
<td>0.36 ± 0.01</td>
<td>0.27 ± 0.01</td>
</tr>
<tr>
<td>k' ($\times 10^3$ s$^{-1}$)</td>
<td>3.6 ± 0.2</td>
<td>3.4 ± 0.4</td>
</tr>
</tbody>
</table>

Shown are 2 distinct age groups, postnatal day (P)9–11 and P21–23. Values for tortuosity (λ_x, λ_y, λ_z), volume fraction (α) and nonspecific uptake (k') are means ± SE ($n = 12$ measurements, 6 animals for each). Individual records were analyzed using Eq. 1 and 2.

Our finding that ECS volume clearly decreases before myelination suggests that the anisotropy is not the result of a more compacted ECS in myelinated CC. Moreover, the smaller ECS volume in cortex (0.23) as compared with CC (0.26) is not accompanied by an increase in the λ values. We therefore conclude that as glia mature in the first postnatal week, these developing cellular elements cause a decrease in α, without altering λ. The lack of anisotropy at this stage can be explained by the absence of directionality in the developing glial cells. In contrast, the beginning of myelination results in the maturation of a structural component that does have directionality, and thus the tissue becomes increasingly anisotropic. In this case, λ increases in directions perpendicular to the myelinated fibers, because diffusing molecules have to go around those fibers in the Y and Z directions, whereas in the X direction, the molecules simply go along the fibers so that the tortuosity is comparatively lower (Fig. 5). Our model in Fig. 5, which is based on present TMA$^+$ diffusion data and immunohistochemical studies (Bjartmar 1996; Hamano et al. 1996) furthermore suggests that not only the number of myelin sheaths but also the length of myelin sheaths versus unmyelinated axon parts might be important for the extracellular tortuosity increase and CC anisotropy observed with the TMA$^+$ method.

Structural anisotropy in some regions of the brain has also been inferred from impedance measurements and MRI. Neither impedance (Garden-Medwin 1980) nor MRI (Moseley et al. 1990) can, however, distinguish between the intracellular and extracellular compartments, and therefore these studies could not confirm the extent of anisotropy in the ECS. Many recent MRI studies of water diffusion reveal anisotropy in ADC_w across the fibers was reportedly found in unmyelin-
FIG. 4. Diffusion spheres in agar, cortical layer V (gray matter), and corpus callosum in animals at P6 and P21. Isoconcentration surfaces for 1 mM TMA⁺ concentration contour 10 s after onset of 200-nA iontophoretic pulse reveal spherical diffusion in agar gel and isotropic diffusion in cortical gray matter and corpus callosum at P6. Anisotropic diffusion was found in corpus callosum at P21 (ellipsoidal surface). Surfaces were generated as described in text with the use of measured values for \(\lambda_x, \lambda_y, \lambda_z \), and \(\alpha \) in given experiment. \(n, \alpha, \lambda_x, \lambda_y, \lambda_z \), and \(k^* \) (\(10^{-5} \text{s}^{-1} \)) in diffusion measurements in brain were as follows: P6, gray matter—0.367, 0.35, 1.55, 3.3; P6, corpus callosum—0.367, 0.44, 1.51, 3.8; P21, gray matter—0.342, 0.23, 1.56, 4.8 and P21, corpus callosum—values as in Fig. 2. For all measurements, \(D = 1.311 \times 10^{-5} \text{cm}^2/\text{s}; n \) in agar = 0.352.

Unmyelinated tissue

Partly myelinated axons

Myelinated tissue

FIG. 5. Diffusion in extracellular space of unmyelinated, partly myelinated, and myelinated corpus callosum. Top: diffusion along increasingly myelinated axons is not affected by decrease in extracellular space \(\alpha \) up to \(\sim 50\% \). Bottom: extracellular diffusion in direction perpendicular to orientation of axons, i.e., around axons, is compromised by number of myelin sheaths, number of myelinated axons, and length of myelin sheaths along axons. Scheme demonstrates increased anisotropy as myelination progresses.

This has been explained by anisotropic water diffusion in anisotropic tissue (including unmyelinated tissue) because the extracellular diffusion of water is retarded by cell membranes (Basser et al. 1994), or the anisotropy can be due to different intrinsic properties of axoplasm so that intracellular water diffusion can be hindered by microtubules or neurofilaments, or the water diffusion can be actively facilitated by axoplasmatic transport or bulk flow in ECS (Le Bihan et al. 1993). If it is true that water diffusion is anisotropic even in unmyelinated tissue, anisotropic diffusion could be used to determine nerve fiber tract orientation noninvasively in vivo, with the use of diffusion-weighted MRI (Basser et al. 1994). However, some of the MRI studies (Wimberger et al. 1995) that report anisotropy in white matter before the onset of myelination did not employ sensitive immunohistochemical methods. Wimberger et al. (1995) report that the onset of anisotropic magnetic resonance signal occurs at P18–20, but they report that CC myelination was first visible in rats at P26–28 with the use of staining with Luxol fast blue and Holmes silver nitrate. This is apparently an underestimation; to show the beginning and extent of myelination one should probably use antibodies directed against myelin proteins, i.e., myelin
I. VOŘÍŠEK AND E. SYKOVÁ

basic protein (MBP) or proteolipid protein, which reveal that myelination starts much earlier, before P14, and that at P21 CC is extensively myelinated (Hamano et al. 1996; Yamada et al. 1996).

One might speculate that the packing density of fibers would contribute to the measured TMA \(^+\) and/or water diffusion anisotropy. Hajnal et al. (1991) reported that the packing density of fibers in white matter tracts varies tenfold and suggested that tracts with lower packing density also have a lower anisotropy. However, this has not been proven to be the case in human brain, taking into account the packing density of fibers as well as the packing density of glial cells (Pierpaoli and Basser 1996; Pierpaoli et al. 1996). In the present study we show that a significant decrease in the ECS volume fraction occurs before myelination from P4 to P12, yet the ADC\(_{TMA}\) and tortuosity are not changing and diffusion is isotropic.

In light of our study, it is hard to believe that myelination would not substantially slow down the diffusion of water in the direction perpendicular to the orientation of myelinated axons, because myelin is 10–50 times less permeable to water than unmyelinated membranes (Finkelstein 1987). It is, however, a question whether the anisotropy in water diffusion is linearly proportional to the number of myelin sheaths. This might be true for water but not for other molecules diffusing in the ECS, including TMA \(^+\). It is also possible that it is not the number of myelinated axons and/or the number of myelin sheaths, but rather the length of myelin sheaths along the myelinated axon versus the length of unmyelinated axon, that is of particular importance for the anisotropy of water diffusion.

Nature of tortuosity increase in white matter

Tortuosity is a geometric parameter that incorporates many factors we presently cannot determine as separate entities. These might be: membrane barriers including neuronal and glial processes, myelin sheaths, macromolecules including the molecules of the extracellular matrix, molecules with fixed negative surface charges, ECS size, and pore geometry. Our recent studies support the role of geometric constraints, because the increase in tortuosity accompanies astrogliosis (Roitbak et al. 1996; Syková et al. 1996a,b), myelination in grafted tissue (Roitbak et al. 1996), and a rise in the macromolecular content of the extracellular fluid (Tao and Nicholson 1996). On the other hand, changes in ECS size during development are not accompanied by an increase in tortuosity (Lehmenkühler et al. 1993). The importance of the tortuosity increase due to myelination and not fiber packing is also supported by the fact that the developmental decrease in ECS volume in CC (Fig. 3) has a different time course than myelination and the occurrence of anisotropic diffusion of TMA \(^+\). Our model in Fig. 5 also shows that diffusion along the axons might not be more hindered, because the size of the space between axons is still large enough not to affect TMA \(^+\) diffusion along the axons. Our data show that the three distinct values of \(\lambda\) in anisotropic tissue result from geometric diversity rather than from changes in the size of the ECS.

Functional significance of anisotropic diffusion

The functional relevance of anisotropic diffusion in the cerebellar molecular layer was demonstrated by the effect of the putative parallel fiber transmitter glutamate on ion shifts (K\(^+\) and Ca\(^{2+}\)) along the X- and Y-axes; about a twofold greater increase in extracellular K\(^+\) and decrease in extracellular Ca\(^{2+}\) was found in the X-axis along the parallel fibers after iontophoretic application of glutamate (Rice et al. 1993). Although these results are preliminary, this suggests that anisotropic diffusion may play an important role in the action of extrasynaptic glutamatergic transmission. Our recent data also show that cellular swelling induced by an application of hypotonic solutions or 50 mM K\(^+\) results in different geometric changes, even when ECS volume decreased to the same level (the 3 tortuosity values were not affected by the same magnitude) (Prokopová and Syková 1997).

ECS represents the pathway for volume transmission and for intercellular, particularly neuron-glial, communication. ECS diffusion parameters, including anisotropy, may help to limit the diffusion of transmitters to regions occupied by their high-affinity receptors, located extrasynaptically and often coupled to G proteins (Gilman 1987). In addition, ECS diffusion parameters affect the diffusion of other neurotransmitter substances and ions during physiological and pathological states. The anisotropy of the ECS in CC and in some other brain areas including cerebellum (Rice et al. 1993), hippocampus (E. Syková and T. Mazel, unpublished data) and neostriatum (Bjelke et al. 1995) may allow for some specificity as well as for new modes of extrasynaptic transmission by diffusion.

This work was supported by Grant Agency of the Czech Republic Grants 309/96/0884, 307/96/K226, and 309/97/K048 and Internal Grant Agency of the Ministry of Health, Czech Republic, Grants 3423-3 and 9517.

Address for reprint requests: E. Syková, Institute of Experimental Medicine, Academy of Science of the Czech Republic, Vídeňská 1083, Prague 142 20, Czech Republic.

Received 11 February 1997; accepted in final form 21 April 1997.

REFERENCES

