Inhibition of Bradykinin-Induced Plasma Extravasation Produced by Noxious Cutaneous and Visceral Stimuli and Its Modulation by Vagal Activity

FREDERICK JIA-PEI MIAO, 1 WILFRID JÄNIG, 4 PAUL G. GREEN, 1 AND JON D. LEVINE 1,2
1 Department of Medicine, 2 Department of Anatomy, and 3 Department of Oral and Maxillofacial Surgery, Schools of Medicine and Dentistry, University of California at San Francisco, San Francisco, California 94143-0452; and 4 Physiologisches Institut, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany

Miao, Frederick Jia-Pei, Wilfrid Jäning, Paul G. Green, and Jon D. Levine. Inhibition of bradykinin-induced plasma extravasation produced by noxious cutaneous and visceral stimuli and its modulation by vagal activity. J. Neurophysiol. 78: 1285–1292, 1997. Intrathecal nicotine inhibits BK-induced plasma extravasation (BK-induced PE) in rats. The inhibition is mediated by the hypothalamic-pituitary-adrenal (HPA) axis and is enhanced by interruption of impulse traffic in afferents of the abdominal vagus nerve. Like intrathecal nicotine, electrical stimulation of unmyelinated cutaneous fibers also depresses BK-induced PE, which is also dependent on an intact HPA axis. In this study, we investigated whether the inhibitory effect of intrathecal nicotine can be mimicked by noxious stimulation of skin and of viscera. Furthermore, we determined whether this depression is potentiated by subdiaphragmatic vagotomy. Stimulation of visceral afferents in the peritoneum, by intraperitoneal capsaicin injection, dose-dependently decreased BK-induced PE. The capsaicin dose-response function was shifted by 1.5–2 orders of magnitude to the left after vagotomy. Stimulation of visceral afferents in the urinary bladder by capsaicin also dose-dependently reduced BK-induced PE, which similarly was potentiated after vagotomy. Transcutaneous stimulation of unmyelinated nociceptive afferents from the plantar skin of the paw depressed BK-induced PE. This depression had a threshold of ~0.25 Hz and was maximal at a stimulation frequency of ~1 Hz. After subdiaphragmatic vagotomy, the stimulus response function shifted to the left and the inhibition was significantly larger than in controls, in the range of 0.125–1 Hz stimulation. These results show that nociceptive stimulation of skin and viscera depressed BK-induced PE and that such depression was potentiated after subdiaphragmatic vagotomy in a manner similar to that of intrathecal nicotine. Based on these observations, we hypothesize that intrathecal nicotine depresses BK-induced PE by exciting spinal nociceptive or the central projections of nociceptive primary afferent neurons.

INTRODUCTION

Synovial plasma extravasation induced experimentally by intra-articular infusion of bradykinin (BK-induced PE) is dose dependently decreased by nicotine injected intrathecally at the level of the lumbar spinal cord (Miao et al. 1994). BK-induced PE is also decreased by transcutaneous electrical stimulation of unmyelinated afferent nerve fibers (Green et al. 1995, 1997). Both of these effects are abolished after transection of the spinal cord at the thoracic level of T1/T2, after hypophysectomy, or after blockade of synthesis of corticosterone (Green et al. 1995; Miao et al. 1994, 1996c, 1997a). However, they are not affected by acute interruption or decentralization (interruption of the preganglionic axons) of the lumbar sympathetic innervation of the knee joint nor by epinephrine or another substance released from the adrenal medulla (Green et al. 1995; Miao et al. 1996a,c). Thus reduction of BK-induced PE, generated by both intrathecal nicotine as well as by transcutaneous electrical stimulation of unmyelinated afferents, appears to be mediated by ascending tracts in the spinal cord and by activation of the hypothalamo-pituitary-adrenal (HPA) axis. The depression of BK-induced PE produced by intrathecal nicotine is potentiated by several orders of magnitude after subdiaphragmatic vagotomy, which is reversed by electrical stimulation of the central stump of the cut vagus nerve (Miao et al. 1994).

These results are compatible with the view that intrathecal nicotine activates neurons in the spinal cord associated with the nociceptive system or central projections of these nociceptive primary afferent neurons. Indeed nicotinic receptors are found in the cord at this level (Boyd et al. 1991; Khan et al. 1994b). Furthermore, previous experiments in which the abdominal vagal afferents were interrupted or stimulated suggest that activity in these visceral afferents regulates the suppression of BK-induced PE by central inhibitory actions (Miao et al. 1994). To further characterize these phenomena, we tested whether graded stimulation of unmyelinated cutaneous afferents, of spinal peritoneal afferents from the abdominal cavity and of visceral afferents from the urinary bladder, lead to a graded inhibition of BK-induced PE and whether this inhibition is potentiated after interruption of the subdiaphragmatic vagus. In these experiments, the cutaneous afferents were excited by transcutaneous electrical stimulation at a strength that was suprathreshold for unmyelinated fibers and at a variable frequency; the visceral afferents were stimulated with capsaicin, over a range of doses.

METHODS

The experiments were performed on male Sprague-Dawley rats except for those experiments in which the visceral afferents from the urinary bladder were stimulated. In these experiments female Sprague-Dawley rats were used (300–400 g; Bantin and Kingman, Fremont, CA). Rats were anesthetized by intraperitoneal injection of sodium pentobarbital (65 mg/kg, Anthony Products, Arcadia, CA). Animal care and use conformed to the guidelines of the National Institutes of Health for the care and use of experimental
TABLE 1. Maximum plasma extravasation (PE) induced by bradykinin (BK) in the knee joint

<table>
<thead>
<tr>
<th>Group</th>
<th>Max BK-PE*</th>
<th>Max inhibition of BK-PE</th>
<th>ED$_{50}$, mg/kg</th>
<th>na</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham + i.p. Cap, mg/kg</td>
<td>0.160 ± 0.01</td>
<td>80.1 ± 3.1</td>
<td>3.6 (0.7–19.0) \times 10$^{-4}$</td>
<td>8</td>
</tr>
<tr>
<td>Subdiaphragmatic vagotomy + i.p. Cap, mg/kg</td>
<td>0.254 ± 0.03*</td>
<td>83.5 ± 2.0</td>
<td>1.9 (0.6–6.6) \times 10$^{-6}$</td>
<td>8</td>
</tr>
<tr>
<td>Cervical vagotomy + i.p. Cap, mg/kg</td>
<td>0.225 ± 0.02*</td>
<td>80.6 ± 2.5</td>
<td>1.1 (0.7–1.7) \times 10$^{-6}$</td>
<td>8</td>
</tr>
<tr>
<td>Sham + i.u. Cap, M</td>
<td>0.115 ± 0.01</td>
<td>79.8 ± 2.5</td>
<td>1.6 (0.7–3.3) \times 10$^{-7}$</td>
<td>8</td>
</tr>
<tr>
<td>Subdiaphragmatic vagotomy + i.u. Cap, M</td>
<td>0.126 ± 0.02</td>
<td>71.3 ± 2.8</td>
<td>6.9 (2.4–20.0) \times 10$^{-10}$</td>
<td>10</td>
</tr>
</tbody>
</table>

Table shows the maximum depression of BK-induced PE and ED$_{50}$ values of the inhibitory effect generated by capsaicin (Cap) injected intraperitoneally (i.p.) or into the urinary bladder (i.u.). * Significantly different from the data obtained in the sham control ($P < 0.05$). BK-PE values are means ± SE. a Plateau level of BK-induced PE (BK-PE) before administration of capsaicin (absorbance at 620 nm, a parameter that is related linearly to the concentration of the blue dye). b Percent of decrease from plateau level of BK-PE. c Geometric means with 95% confidence intervals for the ED$_{50}$ of the inhibitory effect of i.p. capsaicin. n, number of knees. f Female rats.
FIG. 1. Effect of intraperitoneal capsaicin on bradykinin-induced plasma extravasation (BK-induced PE) in sham surgery control and in acute subdiaphragmatic vagotomized rats. After baseline plasma extravasation in the first 3 samples, bradykinin (BK; 160 ng/ml) was added to perfusion fluid, and for remainder of the experiment, was the only substance in the perfusion fluid. In control group, rats were with intact vagus nerves and did not receive any injection of capsaicin (●, n = 8). In sham control group, the abdomen was only opened to expose subdiaphragmatic vagus nerves, without cutting them, and then closed again (●, n = 8). Bilateral subdiaphragmatic vagus nerves of rats in vagotomy group were cut 1 h before knee joint perfusion experiment (●, n = 8). In sham and vagotomy groups, capsaicin was injected in cumulative doses into the peritoneal cavity (10⁻⁶ to 1 mg/kg). In this and subsequent figures, data are presented as means ± SE. Time-effect curve of sham control group was significantly different from that of acute vagotomy group (F = 32.619, P < 0.01). Both curves of sham and vagotomy groups were significantly different from that in control group in which no capsaicin was injected (F = 49.681 and 170.970, respectively, both P < 0.01).

Table 1). Data are presented as means ± SE; significant differences between pairs of time-effect curves were determined by two-way (group × time) repeated measures analysis of variance (ANOVA). Significant differences between pairs of dose-response curves were determined by two-way (group × dose) repeated measures ANOVA. Differences were considered statistically significant at P < 0.05.

RESULTS

Effects of graded stimulation of spinal visceral afferents by capsaicin

STIMULATION BY INTRAPERITONEAL APPLICATION OF CAPSAICIN. Stimulation of visceral afferents by capsaicin injected intraperitoneally dose dependently inhibited BK-induced PE in the knee joint. This inhibition started at 10⁻⁴ mg/kg and was maximal at ~10⁻¹ mg/kg (● in Fig. 1 and ○ in Fig. 2). Acute subdiaphragmatic or cervical vagotomy significantly potentiated the inhibition of BK-induced PE, which was generated by intraperitoneal capsaicin (subdiaphragmatic vagotomy: ○ in Fig. 1 and ● in Fig. 2; cervical vagotomy: × in Fig. 2). After vagotomy, inhibition is now detectable from 10⁻⁶ mg/kg capsaicin and maximal at ~10⁻² mg/kg. The ED₅₀ for inhibition in the sham surgery group was significantly larger than those of subdiaphragmatic vagotomy as well as cervical vagotomy (1.9 × 10⁻⁶ mg/kg subdiaphragmatic vagotomy) and 1.1 × 10⁻⁶ mg/kg (cervical vagotomy) vs. 3.6 × 10⁻⁴ mg/kg (sham surgery), all P < 0.01; Table 1). There was no significant difference in the dose-response curves of the inhibition of BK-induced PE between both types of vagotomy (Fig. 2 and Table 1).

STIMULATION OF AFFERENTS OF THE URINARY BLADDER BY INTRAVESICAL INJECTION OF CAPSAICIN. Stimulation of visceral afferents from the urinary bladder by intravesical instillation of capsaicin solution dose dependently inhibited BK-induced PE in sham-vagotomized animals. The inhibition started at ~10⁻⁶ M and was maximal at 10⁻⁴ M capsaicin. Acute subdiaphragmatic vagotomy significantly potentiated this inhibition (● vs. ○ in Fig. 3). The inhibition now started at ~10⁻¹⁰ M, and the ED₅₀ of the inhibition after vagotomy was significantly smaller than the ED₅₀ before vagotomy (6.9 × 10⁻¹⁰ M vs. 1.6 × 10⁻⁷ M, P < 0.01; Table 1).

Effects of graded stimulation of cutaneous afferents by transcutaneous electrical stimulation of the plantar skin

BK-induced PE was depressed powerfully by transcutaneous electrical stimulation of C fibers as described previously (Green et al. 1995, 1997). The depression of BK-induced PE was graded when the frequency of the electrical stimulus at C-fiber strength (25 mA) was varied from 0.0625 to 1 Hz being maximal at 1 Hz stimulation (● in Fig. 4 and ○ in Fig. 5). After acute subdiaphragmatic vagotomy, low frequency stimulation at 0.0625 Hz, which did not affect BK-induced PE in sham control rats, already produced a depression of BK-induced PE (● in Fig. 4 and ○ in Fig. 5).
transcutaneous electrical stimulation led to a graded depression of BK-induced PE and, second, that vagotomy potentiated depression produced by both stimuli. Based on these results, we hypothesize that intrathecal nicotine does excite neurons of the nociceptive pathway. The arguments in favor of this hypothesis are as follows: 1) the nicotinic action was mimicked by stimulation of somatic and visceral nociceptive afferents; 2) vagotomy potentiated the inhibition elicited by both stimulation of nociceptive afferents and intrathecal nicotine (Miao et al. 1994, 1997b); 3) hypophysectomy attenuated both (Green et al. 1995; Miao et al. 1996c); and 4) blockade of glucocorticoid receptors attenuated both (Green et al. 1995; Miao et al. 1996c). These observations suggest a common modulatory mechanism shared by functionally different types of somatic and visceral nociceptive afferent input systems and that a nociceptive-neuroendocrine negative feedback loop, which controls neurogenic inflammatory processes in the synovia of the rat knee joint, is inhibited continuously by activity in vagal afferents and released after vagotomy.

We also found that acute vagotomy does not influence basal synovial plasma extravasation but increases maximal BK-induced PE (see Table 1). At present we have no expla-

DISCUSSION

Previously we have shown that BK-induced PE in the rat knee joint is inhibited dose dependently by intrathecal administration of nicotine and by electrical stimulation of cutaneous C but not A fibers. It furthermore was shown that both depressions were mediated by the HPA axis but not by the sympathetic outflow to the knee joint or by the sympatho-adrenal system (Green et al. 1995; Miao et al. 1996c). In the present study, we have shown first that graded stimulation of peritoneal afferents and visceral afferents from the urinary bladder by capsaicin and of cutaneous C-fiber afferents by

FIG. 2. Stimulus-response functions for inhibition of BK-induced PE generated by intraperitoneal capsaicin in sham surgery control and in acute subdiaphragmatic and cervical vagotomized rats. Capsaicin was injected in increasing concentrations (10^−6 to 1 mg/kg), cumulatively, into peritoneal cavity. Acute cervical (×, n = 8) or subdiaphragmatic vagotomy (●, n = 8) potentiated action of intraperitoneal capsaicin, shifting dose-response curve significantly to the left (× vs. ○, F = 22.946, ○ vs. ○, F = 44.008, both P < 0.01). Dose-response curves of cervical vagotomized and that of subdiaphragmatic vagotomized rats were the same as those presented as time-effect curves in Fig. 1.

5). The dose-response curve for the depression of BK-induced PE was significantly shifted to the left after vagotomy (P < 0.01, ○ vs. ● in Fig. 5). For example, at a stimulation frequency of 0.125 Hz, the BK-induced PE was little changed in control animals but depressed by ~50% in the vagotomized animals. Similar results were obtained from animals that were vagotomized 10 days before the experiment (data not shown).

FIG. 3. Effects of acute subdiaphragmatic vagotomy on inhibition of applied nicotine and by electrical stimulation of cutaneous C but not A fibers. It furthermore was shown that both depressions were mediated by the HPA axis but not by the sympathetic outflow to the knee joint or by the sympatho-adrenal system (Green et al. 1995; Miao et al. 1996c). In the present study, we have shown first that graded stimulation of peritoneal afferents and visceral afferents from the urinary bladder by capsaicin and of cutaneous C-fiber afferents by

transcutaneous electrical stimulation led to a graded depression of BK-induced PE and, second, that vagotomy potentiated depression produced by both stimuli. Based on these results, we hypothesize that intrathecal nicotine does excite neurons of the nociceptive pathway. The arguments in favor of this hypothesis are as follows: 1) the nicotinic action was mimicked by stimulation of somatic and visceral nociceptive afferents; 2) vagotomy potentiated the inhibition elicited by both stimulation of nociceptive afferents and intrathecal nicotine (Miao et al. 1994, 1997b); 3) hypophysectomy attenuated both (Green et al. 1995; Miao et al. 1996c); and 4) blockade of glucocorticoid receptors attenuated both (Green et al. 1995; Miao et al. 1996c). These observations suggest a common modulatory mechanism shared by functionally different types of somatic and visceral nociceptive afferent input systems and that a nociceptive-neuroendocrine negative feedback loop, which controls neurogenic inflammatory processes in the synovia of the rat knee joint, is inhibited continuously by activity in vagal afferents and released after vagotomy.

We also found that acute vagotomy does not influence basal synovial plasma extravasation but increases maximal BK-induced PE (see Table 1). At present we have no expla-
FIG. 4. Effect of subdiaphragmatic vagotomy on depression of BK-induced PE into knee joint generated by continuous transcutaneous electrical stimulation of unmyelinated afferents (25 mA, 0.0625 ± 1 Hz, of 0.5 ms duration). After establishment of baseline PE in first 3 samples, BK (160 ng/ml) was added to perfusion fluid and, for remainder of the experiment, was the only substance in perfusion fluid (○, n = 8). In a second group of rats with intact vagus nerves (●, n = 8), C fibers were stimulated electrically, via electrodes in 1 hindpaw, starting 40 min after onset of perfusion of BK, whereas in a third group of animals (▲, n = 8) cutaneous C fibers also were stimulated, but these animals were vagotomized subdiaphragmatically immediately before the experiments. Frequency of stimuli varied from 0.0625 to 1 Hz. Time-effect curve in acute vagotomy group was significantly different from that in sham surgery group (▲ vs. ●, F = 20.085, P < 0.01). Curves of both the acute vagotomy and sham surgery groups were significantly different from that of no-stimulation control group (○ vs. ▲, F = 349.166, ● vs. ○, F = 25.756, both P < 0.01).

Although the spinal mechanism by which intrathecal nicotine inhibits BK-induced PE is not known, several lines of evidence suggest that it is through spinal nociceptive neurons because there are nicotinic receptors on nociceptive sensory neurons (Boyd et al. 1991; Khan et al. 1994b). Given that the nociceptive neurons can be activated by nicotine via these nicotinic cholinergic receptors (Renshaw et al. 1993; Steen and Reeh 1993), nicotine also should stimulate the central terminals of these afferent neurons. Although some investigators have shown that intrathecal nicotine generates nociceptive behavior in rats (Khan et al. 1994a–c) others have elicited antinociceptive effects by these nicotinic stimuli (Gillberg et al. 1990; Rogers and Iwamoto 1993). The reason for these differences are unknown but may be related to the fact that nicotinic receptors are not only on the central terminals of nociceptive afferent neurons but also on other neurons in the spinal cord (Hösl and Hösl 1994; Khan et al. 1994d).

Intraperitoneal capsaicin probably produces depression of BK-induced PE through stimulation of two sets of afferents. First, it may stimulate spinal afferents from the visceral peritoneal lining covering abdominal and pelvic organs that project through different splanchnic nerves to the thoracic and upper lumbar spinal cord (Jänig and Morrison 1986). Most of these afferents are mechanosensitive and chemosensitive (i.e., responding to inflammatory agents, ischemia, etc.) (for review, see Jänig 1996). They are involved in visceral nociception and visceral pain (see Cervero and Morrison 1986; Gebhart 1995), visceral protective reflexes (Jänig 1996;
tory responses via the HPA axis is in agreement with reports that indicate that activity in the vagus nerve inhibits this axis (Bueno et al. 1989; Gonzalez-Fernandez and Gonzalo-Sanz 1987) and, therefore, the effects of stimuli that activate the HPA axis. Because activation of the HPA axis produces a potent anti-inflammatory effect, an enhanced activity of the HPA axis after removal of the vagal afferent activity would be expected to potentiate the anti-inflammatory effect of intrathecal nicotine, noxious visceral stimuli, or noxious cutaneous stimuli in reducing synovial plasma extravasation. An interesting corollary of the present study is that spinal visceral afferents and vagal visceral afferents have functionally opposite reflex effects on the neurogenic inflammatory process via the HPA axis.

Recently it was shown in experiments in monkeys and rats that vagal afferents are involved in control of nociception and pain. In rats, cervical vagotomy reduces stress-induced analgesia generated by intermittent foot shocks (Maixner and Randich 1984; Maixner et al. 1982). Furthermore, stimulation of volume receptors from the right atrium produces inhibition of tail flick reflex to noxious radiant heat (Maixner and Randich 1984). In monkeys, electrical stimulation of cervical vagal afferents suppresses transmission of impulse activity in spinothalamic relay neurons. Electrical stimulation of subdiaphragmatic vagal afferents has no effect on the spinothalamic relay neurons in this species. These afferents may belong to the so-called "silent afferents", which are only activated under special extreme conditions (Michaelis et al. 1996). They are not visceral in the true sense but deep somatic afferents (see Lewis 1942). Finally, intraperitoneal capsaicin may stimulate vagal afferents that project to the nucleus of the solitary tract (Ritter and Dinh 1988). The functional types of vagal afferents excited in this way are unknown.

Capsaicin injected into the urinary bladder excites sacral as well as lumbar visceral afferents (vagal visceral afferents should not be involved because there is no vagal innervation to the urinary bladder) (Jänig 1996; Jänig and Morrison 1986). Both sets of afferents are involved in visceral nociception of the urinary bladder (Jänig and Koltenburg 1993); both also may be involved in inhibitory control of BK-induced PE. The magnitude of the vagotomy-induced leftward shift for the dose-response curve and the maximal depression of BK-induced PE generated by the three stimulus paradigms were similar in degree (Table 1).

The hypothesis of vagal afferent modulation of inflammatory responses via the HPA axis is in agreement with reports that indicate that activity in the vagus nerve inhibits this axis (Bueno et al. 1989; Gonzalez-Fernandez and Gonzalo-Sanz 1987) and, therefore, the effects of stimuli that activate the HPA axis. Because activation of the HPA axis produces a potent anti-inflammatory effect, an enhanced activity of the HPA axis after removal of the vagal afferent activity would be expected to potentiate the anti-inflammatory effect of intrathecal nicotine, noxious visceral stimuli, or noxious cutaneous stimuli in reducing synovial plasma extravasation. An interesting corollary of the present study is that spinal visceral afferents and vagal visceral afferents have functionally opposite reflex effects on the neurogenic inflammatory process via the HPA axis.

Recently it was shown in experiments in monkeys and rats that vagal afferents are involved in control of nociception and pain. In rats, cervical vagotomy reduces stress-induced analgesia generated by intermittent foot shocks (Maixner and Randich 1984; Maixner et al. 1982). Furthermore, stimulation of volume receptors from the right atrium produces inhibition of tail flick reflex to noxious radiant heat (Maixner and Randich 1984). In monkeys, electrical stimulation of cervical vagal afferents suppresses transmission of impulse activity in spinothalamic relay neurons. Electrical stimulation of subdiaphragmatic vagal afferents has no effect on the spinothalamic relay neurons in this species. These afferents may belong to the so-called "silent afferents", which are only activated under special extreme conditions (Michaelis et al. 1996). They are not visceral in the true sense but deep somatic afferents (see Lewis 1942). Finally, intraperitoneal capsaicin may stimulate vagal afferents that project to the nucleus of the solitary tract (Ritter and Dinh 1988). The functional types of vagal afferents excited in this way are unknown.

Capsaicin injected into the urinary bladder excites sacral as well as lumbar visceral afferents (vagal visceral afferents should not be involved because there is no vagal innervation to the urinary bladder) (Jänig 1996; Jänig and Morrison 1986). Both sets of afferents are involved in visceral nociception of the urinary bladder (Jänig and Koltenburg 1993); both also may be involved in inhibitory control of BK-induced PE. The magnitude of the vagotomy-induced leftward shift for the dose-response curve and the maximal depression of BK-induced PE generated by the three stimulus paradigms were similar in degree (Table 1).

The hypothesis of vagal afferent modulation of inflammatory responses via the HPA axis is in agreement with reports that indicate that activity in the vagus nerve inhibits this axis (Bueno et al. 1989; Gonzalez-Fernandez and Gonzalo-Sanz 1987) and, therefore, the effects of stimuli that activate the HPA axis. Because activation of the HPA axis produces a potent anti-inflammatory effect, an enhanced activity of the HPA axis after removal of the vagal afferent activity would be expected to potentiate the anti-inflammatory effect of intrathecal nicotine, noxious visceral stimuli, or noxious cutaneous stimuli in reducing synovial plasma extravasation. An interesting corollary of the present study is that spinal visceral afferents and vagal visceral afferents have functionally opposite reflex effects on the neurogenic inflammatory process via the HPA axis.

Recently it was shown in experiments in monkeys and rats that vagal afferents are involved in control of nociception and pain. In rats, cervical vagotomy reduces stress-induced analgesia generated by intermittent foot shocks (Maixner and Randich 1984; Maixner et al. 1982). Furthermore, stimulation of volume receptors from the right atrium produces inhibition of tail flick reflex to noxious radiant heat (Maixner and Randich 1984). In monkeys, electrical stimulation of cervical vagal afferents suppresses transmission of impulse activity in spinothalamic relay neurons. Electrical stimulation of subdiaphragmatic vagal afferents has no effect on the spinothalamic relay neurons in this species. These afferents may belong to the so-called "silent afferents", which are only activated under special extreme conditions (Michaelis et al. 1996). They are not visceral in the true sense but deep somatic afferents (see Lewis 1942). Finally, intraperitoneal capsaicin may stimulate vagal afferents that project to the nucleus of the solitary tract (Ritter and Dinh 1988). The functional types of vagal afferents excited in this way are unknown.
observations are in favor of the notion that particularly cardio-pulmonary afferents are involved in this inhibitory control. The central pathways that mediate this effect are neurons in the subcerebellar-parabrachial complex (noradrenergic) and neurons in the nucleus raphe magnus of the rostroventral medulla (serotonergic) that project to the dorsal horn (for review, see Foreman 1989). Similar results were obtained in the rat by Gebhart and coworkers. Here transmission of nociceptive impulses from skin and colon in the dorsal horn and the tail-flick-reflex elicited by noxious heat stimulation of the tail were enhanced by electrical stimulation of myelinated vagal afferents and depressed by electrical stimulation of unmyelinated vagal afferents. The subdiaphragmatic vagal afferents were particularly powerful in eliciting these modulatory effects. As in the monkey, the inhibitory effects were generated via descending systems from the subcerebellar-parabrachial complex and from the rostroventral medulla. The facilitatory effect was mediated by suprapontine pathways (see Gebhart and Randich 1992; Randich and Gebhart 1992).

The present study, together with our previous reports (Green et al. 1995; Miao et al. 1994, 1996c), has demonstrated a novel nociceptive-neuroendocrine negative feedback mechanism that regulates microvascular permeability in the knee joint of the rat. It is hypothesized that excitation of the spinal ascending neurons, generated by intrathelial nicotine, cutaneous, or visceral noxious stimuli, decreases synovial plasma extravasation via activating the HPA axis and that activity of vagal afferents from abdominal visceral organs modulates this negative-feedback circuit, leading to its attenuation when the level of activity in vagal afferents increases and to its potentiation when the level of vagal activity decreases. Vagal afferents from the abdominal organs project organotopically to the NTS (Ritter et al. 1992). The second-order neurons in the nucleus of the solitary tract interact with neurons of the ascending system to the hypothalamus; the hypothalamic neurons are activated by the nociceptive visceral and cutaneous inputs. It is unclear at which site this interaction occurs, but central pathways mediating these inhibitory vagal effects may be the same as those that are involved in inhibitory control of nociceptive and pain from the visceral domain (Foreman 1989; Gebhart and Randich 1992; Randich and Gebhart 1992) (Fig. 6). This feedback system may play an important role in modulating somatic inflammatory responses under physiological (e.g., by changes of motility and chemical content of the duodenum and small intestine after a meal) and pathophysiological conditions (e.g., by intoxication and inflammation of the small intestine).

The functional type(s) of the vagal afferents involved in this modulation of the negative feedback neuroendocrine mechanism that controls BK-induced PE are unknown. The subdiaphragmatic vagus nerves in the rat are composed of five major branches projecting to the stomach, to the liver, and, via the coeliac ganglion, particularly to the small intestine (Precht and Powlcy 1985; Ritter et al. 1992). Recent studies in our laboratory suggests that afferents in the coeliac and accessory coeliac branches are important in this inhibitory modulation but not afferents in the hepatic and gastric branches (Miao et al. 1997b).

In summary, noxious stimulation of skin and viscera produces depression of BK-induced PE, and this depression is potentiated after subdiaphragmatic vagotomy as is the suppression of BK-induced PE by intrathecal nicotine. The results imply that intrathecal nicotine may excite spinal nociceptive neurons and/or axons. Further elucidation of the underlying mechanisms should provide details on important intrinsic neural pathways for modulation of the inflammatory response.

This work was supported by National Institute of Neurological Disorders and Stroke Grant NS-21647.

Address for reprint requests: J. D. Levine, Department of Medicine, School of Medicine, Box 0452, University of California at San Francisco, San Francisco, CA 94143-0452.

Received 21 February 1997; accepted in final form 3 June 1997.

REFERENCES

JÄNIG, W. AND HÄHLER, H. J. Visceral-autonomic integration. In: Visceral

