Reward-Related Neuronal Activity During Go-Nogo Task Performance in Primate Orbitofrontal Cortex

LÉON TREMBLAY AND WOLFRAM SCHULTZ
Institute of Physiology and Program in Neuroscience, University of Fribourg, CH-1700 Fribourg, Switzerland

Tremblay, Léon and Wolfram Schultz. Reward-related neuronal activity during go-nogo task performance in primate orbitofrontal cortex. J. Neurophysiol. 83: 1864–1876, 2000. The orbitofrontal cortex appears to be involved in the control of voluntary, goal-directed behavior by motivational outcomes. This study investigated how orbitofrontal neurons process information about rewards in a task that depends on intact orbitofrontal functions. In a delayed go-nogo task, animals executed or withheld a reaching movement and obtained liquid or a conditioned sound as reinforcement. An initial instruction picture indicated the behavioral reaction to be performed (movement vs. nonmovement) and the reinforcer to be obtained (liquid vs. sound) after a subsequent trigger stimulus. We found task-related activations in 188 of 505 neurons in rostral orbitofrontal area 13, entire area 11, and lateral area 14. The principal task-related activations consisted of responses to instructions, activations preceding reinforcers, or responses to reinforcers. Most activations reflected the reinforcing event rather than other task components. Instruction responses occurred either in liquid- or sound-reinforced trials but rarely distinguished between movement and nonmovement reactions. These instruction responses reflected the predicted motivational outcome rather than the behavioral reaction necessary for obtaining that outcome. Activations preceding the reinforcer began slowly and terminated immediately after the reinforcer, even when the reinforcer occurred earlier or later than usually. These activations preceded usually the liquid reward but rarely the conditioned auditory reinforcer. The activations also preceded expected drops of liquid delivered outside the task, suggesting a primary appetitive rather than a task-reinforcing relationship that apparently was related to the expectation of reward. Responses after the reinforcer occurred in liquid- but rarely in sound-reinforced trials. Reward-preceding activations and reward responses were unrelated temporally to licking movements. Several neurons showed reward responses outside the task but instruction responses during the task, indicating a response transfer from primary reward to the reward-predicting instruction, possibly reflecting the temporal unpredictability of reward. In conclusion, orbitofrontal neurons report stimuli associated with reinforcers are concerned with the expectation of reward and detect reward delivery at trial end. These activities may contribute to the processing of reward information for the motivational control of goal-directed behavior.

INTRODUCTION

One of the least charted territories of the primate cortex appears to be the orbitofrontal part of the frontal lobe. Its functions are defined largely by anatomic connections to brain centers whose functions are better known and by the deficits after lesions in human patients and experimental animals which concern altered and reduced emotional reac-

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The present report describes how orbitofrontal neurons processed information about rewards while monkeys performed in the same delayed go-nogo task that previously was used for studying reward processing in the striatum (Hollerman et al. 1998). The task allowed us to differentiate between primary reward and secondary reinforcement and between movement and nonmovement reactions. The results were presented previously as abstract (Tremblay and Schultz 1995). The subsequent report describes how reward-related activity changed while animals learned to associate novel pictures with known reinforcers and behavioral reactions (Tremblay and Schultz 2000).

METHODS

Two Macaca fascicularis monkeys (A: male, 5.4 kg; B: female, 3.2 kg weight) served for the study. The activity of single neurons was recorded with moveable microelectrodes during performance of a behavioral task while monitoring arm and mouth muscle activity, licking movements, and eye movements. Electrode positions were reconstructed from small electrolytic lesions on 40-μm-thick, cresyl-violet-stained histological brain sections. Most methods were similar to those described in detail for the recordings in the striatum, and the present animal A had served also for the study of striatum in the same task (animal B of Hollerman et al. 1998).

Behavioral procedures

Animals were seated in a primate chair and contacted an immovable, touch-sensitive resting key. Visual stimuli of $13 \times 13^\circ$ were presented as instruction or trigger stimuli on a 13-in computer monitor. A small transparent response lever was positioned centrally in a transparent vertical wall in front of the monitor immediately below the position of the visual stimuli. A 1-kHz sound with ~68 dB intensity was presented as conditioned reinforcer. Small quantities of apple juice (0.15–0.20 ml) delivered by a solenoid valve served as rewards. A closed-circuit video system served to continuously supervise limb movements from above. Animals were fluid- and partly food-deprived (0.15–0.20 ml) delivered by a solenoid valve served as rewards. A 1-kHz sound with ~68 dB intensity was served as conditioned reinforcer. Small quantities of apple juice (0.15–0.20 ml) delivered by a solenoid valve served as rewards.

FIG. 1. Behavioral task. Monkey sat with its right hand immobile on the immovable resting key and faced a computer monitor positioned behind a transparent wall in which a nearly transparent lever was mounted centrally. Task consisted of 3 trial types alternating semirandomly. All trials began with a 2-s control period during which the monitor was blank, followed by a 1-s presentation of a fractal instruction picture at monitor center immediately above the lever. After a random delay of 2.5–3.5 s after instruction onset, the red square trigger stimulus appeared at the center of the monitor. In rewarded (top)- and unrewarded-movement trials (bottom), the trigger elicited the movement and disappeared when the animal touched the lever after release of the resting key or stayed on for 2.0 s in erroneous trials without key release or lever touch. In rewarded-movement trials, a small quantity of liquid reward, and in unrewarded-movement trials the reinforcing sound, were presented at 1.5 s after lever touch. In nonmovement trials (middle), the same trigger stimulus was presented for 2.0 s while the animal maintained its hand on the resting key, and liquid reward was delivered after a further 1.5 s.

In the computer-controlled delay go-nogo task, the animal kept its right hand relaxed on the resting key and a fractal picture appeared on the screen for 1 s (Fig. 1). It served as an instruction, indicating whether the animal should execute or withhold a movement in response to an upcoming trigger stimulus and whether it would receive a liquid reward or a conditioned auditory reinforcer. Three instruction pictures were used for three trial types, comprising rewarded movement, rewarded nonmovement, or unrewarded movement. Thus each instruction served as a preparatory signal that the animal could remember and use for preparing the upcoming reaction (what), whereas the trigger determined the time of the behavioral reaction (when) without providing additional information about the nature of the required reaction. The trigger stimulus consisted of the same red square in each trial type and appeared at a random 1.5–2.5 s after instruction offset. In rewarded-movement trials, the animal released the resting key, touched the lever and received the liquid reward 1.5 s later (Fig. 1, top). The trigger stimulus extinguished on lever touch in correctly performed trials or 1.5 s after onset if the animal failed to touch the lever. In rewarded-nonmovement trials, the animal kept its hand on the resting key for a fixed duration of 2.0 s to receive a liquid reward at 3.5 s after trigger onset (Fig. 1, middle). The trigger stimulus extinguished after 2.0 s on correctly performed trials or on key release with an erroneous movement. Unrewarded-movement trials required the same behavioral reaction as rewarded-movement trials, but the liquid drop was replaced by a sound of 100-ms duration (Fig. 1, bottom). The sound served as signal of correct task performance and, as compared with no sound, improved the animals’ correct task performance and daily cooperation considerably. Animals needed to perform this trial type correctly before advancing to a trial reinforced by liquid. To maintain the motivation of the animal, every correct unrewarded-movement trial was followed by one of the two rewarded trial types, thus predicting an upcoming reward. Thus the sound did not constitute an immediate reward but served as reinforcer and predicted a reward in the following trial, thus qualifying it as a secondary reinforcer.

The three trial types alternated semirandomly, with the consecutive occurrence of same trial types being restricted to three rewarded-movement trials, two nonmovement trials, and one unrewarded-movement trial. Thus a movement trial was followed by any trial type with a probability of 0.33, a nonmovement trial was followed by a movement trial type with a probability of 0.75, and an unrewarded-movement trial was followed by a rewarded trial type with a probability of 1.0, as long as trials were performed correctly. Trials lasted 11–13 s, intertrial intervals were 4–7 s. In free-liquid trials, animals received small quantities of liquid without performing in any behavioral task.
and in the absence of phasic stimuli. Intervals between drops were irregular and >11 s.

Data acquisition

After behavioral conditioning, animals were implanted under deep pentobarbital sodium anesthesia and aseptic conditions with two cylinders for head fixation and a stainless steel chamber permitting vertical access with microelectrodes to the left frontal lobe. The dura was left intact. Teflon-coated, multistranded, stainless steel wires were implanted into the right extensor digitorum communis and biceps brachii muscles for electromyographic (EMG) recordings. In animal A, Ag-AgCl electrodes were implanted into the outer, upper, and lower calyces of the orbits for the recording of electrooculograms (EOG). (In animal B, EOGs were recorded with an Iscan infrared oculometer.) The implant was fixed to the skull with stainless steel screws and several layers of dental cement.

Glass-insulated, platinum-plated tungsten microelectrodes stuck inside a metal guide cannula served to record extracellularly the activity of single neurons, using conventional electrophysiological techniques. Histological inspections revealed that the tips of all guide cannulas ended above the most dorsal parts of orbitofrontal cortex. Although guide cannulas damaged more tissue than solid microelectrodes, they permitted use of thin microelectrodes, causing very little damage to the areas investigated. Discharges from neuronal perikarya were converted into standard digital pulses by means of an adjustable Schmitt-trigger. EMGs and horizontal and vertical EOGs were collected during neuronal recordings. EMGs were converted into standard digital pulses by a Schmitt-trigger. Licking movements were recorded as a standard digital pulse when the tongue interrupted an infrared light beam at the liquid spout.

Pulses from neuronal discharges and EMGs were sampled together with digital signals from the behavioral task by a computer, together with analogue signals from EOGs. Only data from neurons sampled by the computer for ≥30 trials using all three trial types are reported. All data from neurons suspected to covary with some task component, and occasionally from unmodulated neurons, were stored uncondensed on computer disks.

Data analysis

Onset, duration, magnitude, and statistical significance of increases of neuronal activity were assessed with a specially implemented sliding window procedure based on the nonparametric one-tailed Wilcoxon signed-rank test (Apicella et al. 1992), using a 2-s control period immediately before the instruction, and a time window of 250 ms that was moved in steps of 25 ms through the period of a suspected change. For activations preceding the instruction, the control period was placed individually for each neuron toward trial end at a position without obvious neuronal changes. Magnitudes of activations were expressed as percentage above control period activity. Peak activity was determined from the 500-ms interval with maximum neuronal activity. Depressions of activity are not reported.

Latencies, durations, and magnitudes of neuronal activations were calculated for blocks of trials and compared among the three trial types using ANOVA with post hoc Fisher’s PLSD test (P < 0.05).

TABLE 1. Movement parameters in rewarded- and unrewarded-movement trials

<table>
<thead>
<tr>
<th>Monkey</th>
<th>Reaction Time</th>
<th>Movement Time</th>
<th>Return Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Rewarded movements</td>
<td>328 ± 2</td>
<td>295 ± 3</td>
<td>634 ± 4</td>
</tr>
<tr>
<td>Unrewarded movements</td>
<td>452 ± 8*</td>
<td>434 ± 8*</td>
<td>358 ± 5*</td>
</tr>
</tbody>
</table>

All values are given in means ± SE in milliseconds. Values were obtained from 688 trials in monkey A and from 1,060 trials in monkey B. These were measured during neuronal recordings in blocks of maximally 15 trials of the same type. *P < 0.001 against rewarded movements; Kolmogorov-Smirnov test.
response lever. In no cases were differences of neuronal activity between trial types clearly related to differences in eye movements.

Mouth movements were not a part of the task contingencies. Tongue contacts with the spout occurred over relatively long periods in each trial. They began sporadically before and after the instruction, were unrelated to instruction onset, became more frequent during the trigger-reward interval, were reproducible and maximal after reward delivery, and occurred occasionally during the intertrial interval (Figs. 7 and 9). They also occurred sporadically in unrewarded-movement trials.

Neuronal database

A total of 505 orbitofrontal neurons with mean spontaneous discharge rate of 6.3 imp/s (range 0.4–38.5 imp/s) was tested during task performance. Of these, 188 neurons (37%) exhibited 260 statistically significant task-related activations. Three major task relationships were found, namely responses to instructions, activations preceding reinforcers, and responses to reinforcers (Table 2). A few neurons showed activations preceding the instructions or after the trigger stimulus.

Responses to instructions

Instruction responses occurred in 99 of the 188 task-related neurons (54%) (Table 2). Many responses reflected the type of reinforcer. They occurred preferentially in both rewarded trials irrespective of the execution or withholding of movement but not in unrewarded-movement trials (Fig. 3A) or, conversely, only in unrewarded-movement trials (Fig. 3B). Ten neurons responded preferentially in nonmovement trials (Fig. 3C). Only three neurons responded in both movement trial types irrespective of the type of reinforcer. Although some responses lasted for >1 s, only four neurons showed statistically significant sustained activations lasting until trigger onset or beyond (Fig. 3D). Instruction responses in 35 of the 99 neurons occurred unselectively in all three trial types. Responses had mean latencies ranging from 155 to 179 ms and durations of 459–562 ms in the different trial types. Response magnitudes amounted to about fourfold increases of activity (mean magnitudes

![FIG. 2. Eye movements during performance in the 3 trial types. Each curve in the 2 top parts shows horizontal and vertical eye positions during a single trial, respectively. All recordings were obtained simultaneously with neuronal recordings. The polar plots (bottom) show superimposed eye positions during 4 s after instruction onset (10 trials). Top, upward; right, rightward.](http://jn.physiology.org/)

TABLE 2. Numbers of orbitofrontal neurons differentially influenced by the type of reinforcement

<table>
<thead>
<tr>
<th>Trial Type</th>
<th>Instruction Following</th>
<th>Trigger Following</th>
<th>Reinforcement Preceding</th>
<th>Reinforcement Following</th>
<th>Instruction Preceding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rewarded movement</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Nonmovement</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Unrewarded movement</td>
<td>22</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Reward (irrespective of movement)</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>41</td>
<td>62</td>
</tr>
<tr>
<td>Movement (irrespective of reinforcer)</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nonpreferential</td>
<td>36</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total (n = 188)</td>
<td>99 (53)</td>
<td>4 (2)</td>
<td>17 (9)</td>
<td>51 (27)</td>
<td>67 (36)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22 (12)</td>
</tr>
</tbody>
</table>

Total number of task-modulated neurons (n = 188) is inferior to the sum of table entries (n = 260) because of multiple-task relationships. Activations listed under Reward occurred in both rewarded-movement and nonmovement trials. Activations listed under Movement occurred in both rewarded- and unrewarded-movement trials. **Trial type with activations preceding instructions refers to the preceding, not the current, trial. Values in parentheses are percentages.**
of 286–320% above control activity). None of these parameters varied significantly among the three trial types (P > 0.05; ANOVA).

Activations preceding reinforcers

Of the 188 task-related neurons, 51 (27%) showed activations that began well before the liquid reward or the conditioned auditory reinforcer and terminated 0.5–1.0 s after these events (Table 2). Activations in 41 neurons occurred in both liquid-rewarded trial types but not in sound-reinforced trials (Fig. 4A), a few others being restricted to one rewarded trial type. Twenty-one of the 41 neurons responded also to reward delivery. Some, usually weak, activations preceded only the reinforcing sound (Fig. 4B).

Most activations began in the trigger-reinforcer interval, occasionally <1 s before reinforcement (3 neurons; Fig. 5A) but usually earlier (15 neurons; Fig. 5B). Other activations began before the trigger (17 neurons; Fig. 5C). Some activations had rather long time courses, showing sluggish onset times, lasting during major portions of the trial and returning shortly to baseline after reinforcement (6 neurons; Fig. 5D).

Activations remained present until the liquid or sound reinforcer was delivered and subsided immediately afterward, even when these events occurred before or after the usual time (Fig. 6A). Prereward activations occurred also when liquid was delivered at regular intervals in free-liquid trials outside the task, in all 10 neurons tested with task and free reward (Fig. 6B). Prereward activations in 10 neurons adapted rapidly to the last timing of reward relative to the trigger stimulus. The prereward activation in Fig. 6C began earlier after the trigger stimulus when reward had been delivered earlier in a preceding

FIG. 3. Different trial selectivities of responses to instruction stimuli of 4 orbitofrontal neurons. A: response in both rewarded trial types but absence of response in unrewarded-movement trials. B: response restricted to unrewarded-movement trials reinforced by a conditioned sound. C: response restricted to nonmovement trials. D: 1 of the rare examples of sustained activation during the instruction-trigger interval, occurring in rewarded-movement trials and, to a lesser extent, in nonmovement trials. Perievent time histograms are composed of neuronal impulses shown as dots below. Each dot denotes the time of a neuronal impulse, and distances to instruction onset correspond to real-time intervals. Each line of dots shows 1 trial. Trials alternated semirandomly during the experiment and are separated according to trial types and rearranged according to instruction-trigger intervals.

FIG. 4. Selective activations preceding reinforcers in three orbitofrontal neurons. A: activation preceding the delivery of liquid reward in the 2 rewarded trial types but not before the reinforcing sound in unrewarded-movement trials. B: weak activation preceding the reinforcing sound in unrewarded-movement trials. Trials are rank-ordered according to instruction-reinforcer intervals.
trial block (compare 4th with 2nd trial block after reward had been shifted to an earlier time in the 3rd compared with the 1st block).

Prereward activations occurred during and immediately after the trigger-reward interval during which licking movements were also frequent (Fig. 7). However, the activations were absent during other trial periods and in intertrial periods in which licking movements occurred occasionally. Activations also were absent in unrewarded-movement trials that showed considerable licking activity.

Responses to reinforcers

Of the 188 task-related neurons, 67 (36%) responded to the delivery of a reinforcer (Table 2). Responses in 62 neurons occurred in both liquid-rewarded trial types irrespective of the movement and not in unrewarded-movement trials (Fig. 8, A and B). Twenty-one of the 62 neurons also showed prereward activations. Very few neurons were further selective for rewarded-movement trials. A few responses occurred only after sound reinforcement in unrewarded-movement trials and not after liquid reward. Fourteen of the 67 neurons responded also to the instructions.

Latencies of reward responses in rewarded-movement and nonmovement trials ranged from 70 to 1,590 ms (<100 ms in 25 and 26 neurons, 100–300 ms in 13 and 17 neurons, >300 ms in 24 and 19 neurons in the 2 trial types, respectively; means of 298 and 322 ms). Durations of reward responses in these trials ranged from 120 to 2,320 ms (means of 633 and 651 ms). Response magnitudes amounted to about fivefold increases of activity (means of 381 and 418% above control activity). None of these parameters varied significantly among the two rewarded trial types (P > 0.05; ANOVA).

We delivered reward earlier or later than usually to further characterize the responses. Responses in all nine neurons tested followed the reward to the new time (Fig. 9A) and were increased in magnitude in four of them. Thus responses occurred to the reward and were not delayed trigger responses.

Reward responses were restricted to the period after reward
delivery, although licking movements also occurred before reward delivery and in unrewarded-movement trials (Fig. 9, B and C). Thus reward responses appeared to be unrelated to mouth movements.

The relationship of reward responses to the solenoid noise associated with reward delivery was tested in 14 responding neurons by blocking the liquid tube while maintaining the solenoid noise in free-liquid trials. Eight of these neurons failed to respond to the solenoid noise alone, suggesting a true reward response (Fig. 10), whereas the other six neurons also responded without the liquid.

Responses to free-liquid versus task reward

A total of 76 neurons responded to reward in the behavioral task, in free-liquid trials or in both situations. Of these, 46

Fig. 7. Timing of prereward activation in 1 orbitofrontal neuron compared with lick movements. This neuron is activated before reward in rewarded-movement trials (top) and rewarded-nonmovement trials (middle), but not in unrewarded-movement trials (bottom), whereas lick movements occurred irregularly throughout the trial in all trial types. Licks were recorded simultaneously with neuronal activity and are indicated by short horizontal lines in rasters (interruption of infrared photobeam by the animal’s tongue at the liquid-dispensing spout). Trials are rearranged according to instruction-reinforcer intervals.

Fig. 8. Responses to liquid reward in 2 orbitofrontal neurons. A: transient response. B: sustained response. Responses occurred in both rewarded trial types irrespective of movement but were absent in unrewarded-movement trials reinforced by the sound. Trials are rearranged according to instruction-reinforcer intervals.

Fig. 9. Control tests with reward responses. A: temporal variations of reward delivery leading to parallel displacement of reward response. Data from the usual reward time are shown in top trial block. Subsequent blocks show earlier or later reward delivery with the same neuron. Data are from nonmovement trials and were similar in rewarded-movement trials. Chronological sequence is shown from top to bottom. B: reward responses were unrelated to licking movements. Data are from rewarded-movement trials and were similar in rewarded-nonmovement trials. C: licking movements in unrewarded-movement trials not accompanied by neuronal responses (same neuron as in B). Horizontal lines in rasters in B and C indicate interruptions of infrared photobeam by the animal’s tongue at the liquid-dispensing spout. Trials are rearranged according to instruction-reinforcer intervals.
neurons responded to the liquid during task performance in both rewarded trial types and in free-liquid trials in the absence of any specific task (Fig. 11A). Three neurons responded to liquid in the task but not in free-liquid trials (Fig. 11B). By contrast, 27 neurons failed to respond to liquid in the task but were activated in free-liquid trials (Fig. 11C). Sixteen of them showed instruction responses in both rewarded trials (Fig. 11D).

Activations preceding instructions

Some neurons showed an interesting type of activation that was partly also related to reinforcement. Of the 188 task-related neurons, 22 (12%) showed activations which began slowly and at varying times after the reinforcer of the preceding trial, showed their peak <500 ms before the instruction and terminated abruptly afterward (Table 2). According to their sluggish onset, they appeared to precede the upcoming instruction rather than after the past reinforcer. Activations in 6 of the 22 neurons occurred preferentially after both rewarded trial types and not after unrewarded-movement trials, whereas in 2 neurons they occurred preferentially after unrewarded trials (Fig. 12).

Population activity of major reinforcement-related activations

The histograms of Fig. 13 display averaged activity from neurons showing responses to instructions (A), activations

![Figure 10](http://jn.physiology.org/)

FIG. 10. Influence of interruption of liquid reward flow on reward response in an orbitofrontal neuron. Response was lost in the absence of reward delivery, suggesting a true response to reward rather than to the associated noise of the solenoid liquid valve, which opened audibly when reward liquid was delivered (“liquid with solenoid noise”). For “solenoid noise only,” the tube between solenoid and animal’s mouth was closed, and the solenoid noise occurred alone without delivering liquid. Data are from free-liquid trials, ordered chronologically from top to bottom.

![Figure 11](http://jn.physiology.org/)

FIG. 11. Relationship of reward responses to task performance in 4 orbitofrontal neurons. A: reward response in both rewarded trial types in behavioral-task and free-liquid trials without any behavioral task. B: reward response in behavioral-task but not in free-liquid trials. C: reward response occurring in free-liquid trials but not in behavioral task. D: response to reward in free-liquid trials, and response to instruction but not to liquid in behavioral task. Baseline activity was increased in free-liquid trials in C and D. Task trials alternated semirandomly during the experiment and are separated according to trial types and rearranged according to instruction-trigger intervals. None of the neurons in A–D responded in unrewarded-movement trials. Free-liquid trials were run in separate blocks.
preceding liquid reward (B), and responses after liquid reward (C) in both rewarded trial types. Note that averaging of activity over long task periods reduces temporally dispersed activations peaks. Therefore population responses appear lower than averages of individual activations.

Positions of neurons

Histological reconstructions showed that rostral area 13, entire area 11, and lateral area 14 of orbitofrontal cortex were explored (Fig. 14). Neurons with instruction responses were distributed widely, being significantly more frequent in medial as compared with lateral parts of the explored region (P < 0.05). Neurons with prereward activations were found predominantly in rostral area 13, where they were significantly less frequent in its very anterior part (P < 0.001). Neurons responding to reinforcers were significantly more frequent in lateral than medial orbitofrontal cortex (P = 0.01).

DISCUSSION

These data show that neurons in orbitofrontal cortex process rewards in three principal forms in a delayed go-nogo task, as transient responses to reinforcer-predicting instructions, sustained activations preceding reward, and transient responses after reward. A few neurons were activated before the initial instruction signal in relation to the reward situation in the preceding or expected upcoming trial. In contrast to other prefrontal areas, few orbitofrontal neurons showed activations related to behavioral reactions in this task. These data support the notion that orbitofrontal cortex constitutes an important component of reward circuits in the brain.

Processing of reinforcement information

Processes tested by the behavioral task. Delayed response tasks typically assess the functions of prefrontal cortex in the temporal organization of goal-directed behavior, working memory, and preparation of responding (Bauer and Fuster 1976; Fuster 1973; Jacobsen and Nissen 1937; Kubota et al. 1974; Niki et al. 1972; Rosenkilde et al. 1981). Go-nogo tasks test the inhibition of overt behavioral responses and are deficient after orbitofrontal lesions (Iversen and Mishkin 1970). Performance in these tasks depends on reinforcement and thus makes them suitable for investigating the role of reinforcement in goal-directed behavior. To compare primary reward with conditioned reinforcement, we added a trial type to the standard delayed go-nogo task in which movement was reinforced with a conditioned tone instead of liquid. To differentiate movement preparation from reinforcer expectation, we introduced a second delay that separated the behavioral response from the reinforcer.

Responses to reward-predicting environmental stimuli

According to animal learning theory (Dickinson 1980), the instructions in our task were associated with specific reinforcers through a Pavlovian procedure and had an occasion-setting function determining the movement or nonmovement reaction. Most instruction responses differentiated between liquid and sound, but very few responses differentiated between the behavioral reactions irrespective of the type of reinforcer. Thus orbitofrontal neurons reported environmental stimuli more in...
association with reinforcement than behavioral reaction. These instruction responses occurred in orbitofrontal areas influenced by the medial temporal cortex (Morecraft et al. 1992).

Our approach was based on experiments in which neurons in dorsolateral prefrontal cortex discriminated between instruction stimuli predicting liquid reward versus no reinforcement in a less complex task (Watanabe 1990, 1992). Preceding work had shown that orbitofrontal neurons discriminate between appetitive and aversive visual stimuli (Thorpe et al. 1983).

The presently observed reward relationships in both rewarded trial types would argue against relationships to visual stimulus features of these instruction responses. In addition, the adjoining report demonstrates that reinforcement-related trial selectivities were maintained when novel visual instructions were learned despite considerable differences in visual features (Tremblay and Schultz 2000). Also, selectivities in orbitofrontal neurons remained related to rewards when multiple instruction sets were used in a spatial delayed response task (Tremblay and Schultz 1999). Thus the trial selectivities were more likely due to differences in reinforcement than visual features.

EXPECTATION OF REWARD. Sustained activations preceding reinforcement occurred mostly in trials rewarded with liquid irrespective of the behavioral reaction and were largely absent in trials reinforced by the sound. This suggests a relationship to reward and not to the end of trial message contained in the reinforcer s. The activations began typically around the time of the trigger stimulus as the last signal preceding reward and terminated immediately after reward was delivered, irrespective of its time of occurrence. They apparently reflected the expectation of reward by coding the occurrence of reward but not its precise moment. These prereward activations occurred in orbitofrontal areas influenced by the medial temporal cortex (Morecraft et al. 1992).

The expectation of reward evoked by a conditioned appetitive stimulus is a major component of the central motivational state underlying approach behavior (Bindra 1968; Dickinson 1980). Although the instruction stimuli in the present task are associated with reward and have occasion-setting properties in instrumental behavior, the trigger would have a better reward-predicting property because of temporal proximity. In line with this reasoning, most sustained activations followed the trigger rather than preceded it.

The present differential prereinforcement activations resembled activities discriminating between expected appetitive and aversive reinforcers in rat orbitofrontal cortex (Schoenbaum et al. 1998). They were somewhat more variable than reward expectation-related activations in primate striatum (Apicella et al. 1992; Hikosaka et al. 1989; Hollerman et al. 1998; Schultz et al. 1992; Shidara et al. 1998).

REWARD RESPONSES. Many orbitofrontal neurons detected the delivery of liquid reward in both rewarded trials irrespective of the behavioral reaction, whereas only few neurons responded to sound reinforcement. Most reward-driven neurons also responded to liquid outside the task, suggesting a relationship to the primary appetitive event and not to a particular reinforcing function or an end of trial signal. These reward responses occurred in orbitofrontal areas influenced by the amygdala (Morecraft et al. 1992). Earlier studies reported similar orbitofrontal responses to liquid reward (Niki et al. 1972; Rosenkilde et al. 1981), which discriminated against aversive liquids (Thorpe et al. 1983), whereas neurons in more caudal parts of area 13 responded to gustatory and olfactory stimuli (Rolls et al. 1990, 1996; Schoenbaum and Eichenbaum 1995; Thorpe et al. 1983). Reward responses also were found in dorsolateral prefrontal cortex (Watanabe 1989) and striatum (Apicella et al. 1991; Bowman et al. 1996; Hikosaka et al. 1989; Shidara et al. 1998).

Some orbitofrontal neurons only responded to liquid outside the task. This may be because of the fact that the liquid was not predicted by any phasic stimulus. More than half of these neurons responded to the instruction during task performance as also reported by others (Matsumoto et al. 1995). Apparently
the response was transferred to the earliest liquid-predicting stimulus as in midbrain dopamine neurons (Mirenowicz and Schultz 1994). The unpredictable occurrence of reinforcement is a necessary condition for acquiring new behavioral responses (Rescorla and Wagner 1972). By contrast, the detection of fully predicted reward is necessary to prevent extinction of established behavior. Thus the orbitofrontal responses to unpredicted reward may play a role in reward-directed learning, whereas the responses to predicted reward may function in maintaining established task performance.

EXPECTATION OF INSTRUCTION. Preinstruction activations reflected the expectation of instructions acquired from the experience in the task schedules. Previous studies reported preinstruction activations in striatal and cortical neurons that were unconditional on trial type (Apicella et al. 1992), changed with regularly alternating trial types (Hikosaka et al. 1989), or reflected the employed dimensions in discriminations (Sakagami and Niki 1994). The present preinstruction activations apparently were related to the possible type of upcoming trial. As correct unrewarded trials were invariably followed by a rewarded trial type, activations preferentially following unrewarded trials may reflect the expectation of a rewarded trial. By contrast, as rewarded trials could follow each other in our asymmetric trial schedule, it is less certain which kind of expectation was reflected by activations occurring preferentially after rewarded trials.

DELAY ACTIVITY. Sustained activations of dorsolateral prefrontal neurons during the instruction-trigger delay probably reflect working memory or movement preparation (Funahashi et al. 1993). Sustained activations in orbitofrontal neurons occurred rarely in the instruction-trigger delay in our task. This contrasted sharply with the frequent occurrence of sustained delay activity in the striatum in an identical conditional delayed go-nogo task (Hollerman et al. 1998) and in spatial delayed response tasks in dorsolateral prefrontal cortex (cf. Funahashi et al. 1993). Sustained activations were presently frequent in the second, trigger-reward delay, where they may reflect the expectation of reward. An earlier spatial delayed response task used only the initial instruction-trigger delay and reported sustained delay activity in 25% of tested orbitofrontal neurons (Rosenkilde et al. 1993). Sustained activations in orbitofrontal neurons reflect working memory or movement preparation (Funahashi et al. 1997) and thus have the formal characteristics of reinforcement signals for acquiring new behavioral reactions (Rescorla and Wagner 1972).

AMYGDALA. Neurons in different nuclei of amygdala respond selectively to primary foods and liquids and to conditioned stimuli associated with rewards (Nishijo et al. 1988). Amygdala neurons show sustained activations preceding behavioral reactions in a delayed response task (Nakamura et al. 1992). Without an interval between behavioral reaction and reward, some of these activations might reflect an expectation of reward, which was confirmed in rats (Schoenbaum et al. 1998).

DOPAMINE NEURONS. Dopamine neurons show entirely different forms of reward processing. They show phasic, but not sustained, activations after unpredicted rewards and conditioned, reward-predicting stimuli, and they are depressed when a predicted reward is omitted (Ljungberg et al. 1992; Mirenowicz and Schultz 1994; Romo and Schultz 1990; Schultz et al. 1993). Dopamine responses appear to report the discrepancy between an expected and an actually occurring reward (Schultz et al. 1997) and thus have the formal characteristics of reinforcement signals for acquiring new behavioral reactions (Rescorla and Wagner 1972).

We thank B. Aebischer, J. Corpataux, A. Gaillard, A. Pisani, A. Schwarz, and F. Tinguely for expert technical assistance.

The study was supported by Swiss National Science Foundation Grants 31-28591.90, 31.43331.95, and NFP38.4038-43097. L. Tremblay received a postdoctoral fellowship from the Fondation pour la Recherche Scientifique of Quebec.

Present address of L. Tremblay: INSERM Unit 289, Hôpital de la Salpetrière, 47 Boulevard de l’Hôpital, F-75651 Paris, France.

Address reprint requests to W. Schultz.

Received 18 February 1999; accepted in final form 29 November 1999.

REFERENCES

