Properties and Role of I_h in the Pacing of Subthreshold Oscillations in Entorhinal Cortex Layer II Neurons

CLAYTON T. DICKSON, JACOPO MAGISTRETTI, MARK H. SHALINSKY, ERIK FRANSÉN, MICHAEL E. HASSELMO, AND ANGEL ALONSO

1Department of Neurology and Neurosurgery, Montreal Neurological Institute and McGill University, Montreal, Quebec H3A 2B4, Canada; 2Department of Experimental Neurophysiology, Istituto Nazionale Neurologico C. Besta, Milan 510, 20133 Italy; 3Department of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44 Stockholm, Sweden; and 4Department of Psychology, Boston University, Boston, Massachusetts 02215

INTRODUCTION

The hyperpolarization-activated inward current (I_h; usually referred to as I_h in heart) has been implicated in the pacemaking of both single-cell and network rhythmicity (for recent reviews, see DiFrancesco 1993; Lüthi and McCormick 1998; Pape 1996). Typically, this current acts to promote depolarization after a hyperpolarizing event. This, in combination with Ca$^{2+}$ currents, functions to induce low-threshold rhythmic discharge in a number of neurons and thus contributes to brain rhythm generation (Llinás and Jahnsen 1982; Lüthi et al. 1998; McCormick and Pape 1990; Steriade and Llinás 1988; Steriade et al. 1993). In contrast to Ca$^{2+}$-dependent oscillations, numerous studies have shown that some, mainly cortical, neuronal populations can generate Na$^+$-dependent subthreshold membrane potential oscillations that are thought also to be implicated in the genesis of cortical rhythms (Alonso and Llinás 1989; reviewed by Connors and Amitai 1997). The role of near-threshold conductances, including I_h, in the generation of these Na$^+$-dependent subthreshold oscillatory events is less clear.

A prominent case of Na$^+$-dependent subthreshold oscillatory activity is observed in the principal neurons from entorhinal cortex (EC) layer II (Alonso and Klink 1993; Alonso and Llinás 1989). These glutamatergic neurons, named by Cajal as the stellate cells (SCs) (Ramón y Cajal 1902), funnel most of the neocortical input to the hippocampal formation via the perforant pathway (for review, see Dolorfo and Amaral 1998) and appear to be generators of limbic theta rhythm (Alonso and García-Austi 1987a,b; Buzsáki 1996; Dickson et al. 1995). In vitro current-clamp studies have shown that the current-voltage relationship of EC layer II SCs is extremely nonlinear, displaying robust inward rectification in both the depolarizing and hyperpolarizing direction. Inward rectification in the depolarizing direction is generated by a persistent subthreshold Na$^+$ current (I_{NaP}) (Magistretti and Alonso 1999; Magistretti et al. 1999) (for a recent review on I_{NaP}, see also Crill 1996) that has been shown to be necessary for the development of the robust theta frequency subthreshold oscillations that the SCs display (Alonso and Klink 1993; Alonso and Llinás 1989). On the other hand, the time-dependent inward rectification in the hyperpolarizing direction is affected by extracellular Cs$^+$ because it was resistant to extracellular Ba$^{2+}$, and carried by both Na$^+$ and K$^+$ ions. I_h in the SCs had an activation threshold and reversal potential at approximately −45 and −20 mV, respectively. Its half-activation voltage was −77 mV. Importantly, bath perfusion with ZD7288, but not Ba$^{2+}$, gradually and completely abolished the subthreshold oscillations, thus directly implicating I_h in their generation. Using experimentally derived biophysical parameters for I_h and the low-threshold persistent Na$^+$ current (I_{NaP}) present in the SCs, a simplified model of these neurons was constructed and their subthreshold electroresponsiveness simulated. This indicated that the interplay between I_{NaP} and I_h can sustain persistent subthreshold oscillations in SCs. I_{NaP} and I_h operate in a "push-pull" fashion where the delay in the activation/deactivation of I_h gives rise to the oscillatory process.

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
preparation, the aim of the present study was to characterize the specific properties of I_h in the SCs and to examine the role of this current in the generation of subthreshold membrane potential oscillations in these cells. In addition, a simplified biophysical simulation based on the voltage- and current-clamp data was used to study the interactions between I_h and I_{NaP} in the generation of such oscillations. Our results indicate that the dynamic interplay between the gating and kinetic properties of I_h and I_{NaP} is essential for the generation of rhythmic subthreshold oscillations by the SCs. Given the key position of the SCs in the temporal lobe memory system, modulation of I_h in the SCs may have major implications for the control of population dynamics in the entorhinal network and in the memory processes it carries out. Some of these results have been presented previously in abstract form (Dickson and Alonso 1996, 1998; Fransen et al. 1998).

METHODS

General

Brain slices were prepared from male Long-Evans rats (100–250 g, i.e., 30–60 days of age) as previously described (Alonso and Klink 1993). Briefly, animals were decapitated quickly, and the brain was removed rapidly from the cranium, blocked, and placed in a cold (4°C) Ringer solution (pH 7.4 by saturation with 95% O$_2$-5% CO$_2$) containing (in mM) 124 NaCl, 5 KCl, 1.25 NaH$_2$PO$_4$, 2 CaCl$_2$, 2 MgSO$_4$, 26 NaHCO$_3$, and 10 glucose. Horizontal slices of the retrohippocampal region were cut at 350–400 μm on a vibratome (Pelco Series 1000, Redding, CA) and were transferred to an incubation chamber in which they were kept submerged for \pm1 h at room temperature (24°C). Slices were transferred, one at a time, to a recording chamber and were superfused with Ringer solution, also at room temperature. The chamber was located on the stage of an upright, fixed-stage microscope (Axioskop, Zeiss) equipped with a water immersion objective (×40–63: long-working distance), Nomarski optics, and a near-infrared charge-coupled device (CCD) camera (Sony XC-75). With this equipment, stellate and pyramidal-like cells could be distinguished based on their shape, size, and position within layer II of the medial entorhinal cortex (Fig. 1A) (Klink and Alonso 1997). Stellate cells (SCs) were selected for whole cell recording.

Recording

Patch pipettes (4–7 MΩ) were filled with (in mM) 140–130 gluconic acid (potassium salt: K-gluconate), 5 NaCl, 2 MgCl$_2$, 10 N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES), 0.5 ethylene glycolbis(β-aminoethyl ether)-N,N,N',N'—tetraacetic acid (EGTA), 2 ATP (ATP Tris salt), and 0.4 GTP (GTP Tris salt), pH 7.25 with KOH. In additional experiments performed to assess the contribution of chloride ions to I_h, a modified intracellular solution was made containing (in mM) 120 K-gluconate, 10 KCl, 2 MgCl$_2$, 10 HEPES, 0.5 EGTA, 2 ATP-Tris, and 0.4 GTP-Tris, pH 7.25 with KOH. The liquid junction potential was estimated following the technique of Neher (1992). In brief, the offset was zeroed while recording the potential across the patch pipette and a commercial salt-bridge ground electrode (MERE 2, WPI, Sarasota, FL) when the chamber was filled with the same intracellular solution as used in the pipette. After zeroing, the chamber solution was...

FIG. 1. Basic electrophysiological profile of entorhinal cortex (EC) layer II stellate cells (SCs) under whole cell current-clamp recording conditions. A: digitized photomicrograph demonstrating the visualization of a patched SC. - - - , approximate border between layers I and II. B: V-I relationship of the SC in A demonstrating robust time-dependent inward rectification in the hyperpolarizing direction. C: action potential from (D2) (*) at an expanded time and voltage scale. Note the fast-afterhyperpolarization/depolarizing afterpotential/medium afterhyperpolarization (fast-AHP/DAP/medium-AHP) sequence characteristic of these cells. D: subthreshold membrane potential oscillations (1 and 2) and spike clustering (3) develop at increasingly depolarized membrane potential levels positive to about −55 mV. Autocorrelation function (inset in I) demonstrates the rhythmicity of the subthreshold oscillations.
replaced with the extracellular recording solution, and the potential recorded was used as an estimate of the liquid junction potential. Using this method, we recorded a value between 2 and 3 mV. Membrane potential values reported herein do not contain this correction.

Tight seals (>1 GΩ) were formed on cell bodies of selected EC layer II SCs, and whole cell recordings were made by rupturing the cell membrane with negative pressure. Both current- and voltage-clamp recordings were made with an Axopatch 1D patch-clamp amplifier (Axon Instruments, Foster City, CA). For current-clamp recordings, the low-pass filter (~3 dB) was set at 10 kHz, whereas for voltage clamp, it was set at 2 kHz. All current- and some voltage-clamp experiments were stored by PCL coding on VHS tape (Neurocoder, New York), and all voltage-clamp experiments were stored on computer by digital sampling at 4 kHz, using pClamp software (V6.0, Axon Instruments). Data stored on VHS tape was digitized and plotted off-line by sampling at 20 kHz using Axoscope software (V1.1, Axon Instruments).

The identification of neurons as SCs was confirmed by current-clamp recordings demonstrating the presence of robust inward rectification with hyperpolarizing current pulses in addition to the presence of subthreshold membrane potential oscillations at depolarized levels (Fig. 1, B and C) (Alonso and Klink 1993). SCs fulfilling the following criteria were considered acceptable for further analysis: stable membrane potential less than ~50 mV, input resistance >75 MΩ, overshooting spike, and a balanced series resistance <20 MΩ compensated between 60 and 80%.

Solutions

Various salts and drugs were added directly to the perfusate from concentrated stock solutions during experiments. Divalent cations such as BaCl\(_2\), CuSO\(_4\), or CdCl\(_2\) were added to a modified Ringer solution without phosphates or sulfates. To isolate \(I_h\) to compute activation curves using the tail current method (see RESULTS), the following solution was used (in mM): 80 NaCl, 40 tetraethylammonium chloride (TEA-Cl), 5 KCl, 4 4-aminopyridine (4-AP), 2 MgCl\(_2\), 2 BaCl\(_2\), 2 CoCl\(_2\), 1 CaCl\(_2\), 0.2 CdCl\(_2\), 26 NaH\(_2\)CO\(_3\), and 10 glucose and 1 μM tetrodotoxin (TTX). Lowering the extracellular concentration of sodium ions (NaCl) was achieved using equimolar \(N\)-methyl-D-glucamine substitution in a no phosphate/sulfate Ringer solution. Alterations in the concentration of potassium ions (KCl) was achieved in the same way in a no phosphate/sulfate Ringer solution with a consistent concentration (119 mM) of NaCl. To prevent the influence of synaptic transmission on the subthreshold membrane behavior in current-clamp recordings, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 μM), DL-2-amino-5-phosphonopentanoic acid (AP-5: 50 μM), bicuculline methiodide (BMI: 10 μM), and 2-hydroxyxsaclofen (2-OH-saclofen:100 μM) were added to the Ringer solution. to block \(I_h\). CsCl (1-6 mM) or ZD7288 (100 μM) was added directly to the Ringer solution. All salts were purchased from BDH (Toronto, CA), whereas TEA-Cl, 4-AP, TTX, and BMI were purchased from Sigma (St. Louis, MO). CNQX, AP-5, 2-OH-saclofen, and ZD7288 were purchased from Tocris Cookson (UK).

Analysis

Traces were plotted and measurements made with the use of pClamp (Clampfit) and Origin (Microcal, Northampton, MA) software packages. Curve fitting of subtracted traces was conducted with pClamp software. The fittings were made from a time point 15 ms after the application of the hyperpolarizing voltage step so as to minimize any capacitive or membrane charging transients. All curve-fitting procedures were optimized using the least sum of squares method. The standard deviation between the fit and the data were used to estimate the goodness of the fit. Autocorrelational analysis was conducted with Matlab (Mathworks, Natick, MA). Spectral (Fourier) analysis was conducted using both Origin and Matlab.

Biophysical simulation

A simple Hodgkin-Huxley model was assumed for describing \(I_h\) activation and deactivation. We applied the basic relationship

\[
I_h(V) = G_{NaP}(V) \cdot (V - V_N)
\]

where

\[
G_{NaP}(V) = G_{NaP,\max} \cdot m(V)
\]

and \(m\) is the probability of the activating particle to be in the permissive position. Because \(I_h\) activation and deactivation could be properly fitted with double-exponential functions, Eq. 2 was applied separately to each exponential component, whereas Eq. 1 was extended to

\[
I_h(V, t) = [G_{NaP}(V) + G_{NaP}(V)] \cdot (V - V_N)
\]

Conductance values were derived from amplitude coefficient (\(A_i\)) values by applying the relationship: \(G_{NaP}(V_i) = A_i(V_i)/(V - V_N)\), where the index \(i\) is either 1 or 2. The functions describing \(m_{Na}(V)\) were derived directly from \(G_{NaP}(V)\) activation curves. The transitions of the activating particle, \(m_i\), were schematized as the following first-order kinetic reaction:

\[
1 - m_i = m_i \times V_i
\]

from which it follows

\[
m_i(V, t) = m_{Na}(V) - [m_{Na}(V) - m_{Na}(V)] \cdot \exp(-t/\tau_i)
\]

where

\[
\tau_i(V) = 1/[\alpha_i(V) + \beta_i(V)]
\]

\[
m_{Na}(V) = \alpha_i(V)/[\alpha_i(V) + \beta_i(V)]
\]

Numerical values for the rate constants, \(\alpha_i\) and \(\beta_i\), were derived from the experimental values of time constants of activation and deactivation (\(\tau_i\)) and from the \(m_{Na}\) curves by applying Eqs. 4 and 5. Rate-constant plots were best fitted with the empiric function

\[
\alpha_i(V) = \alpha_i(V) + \beta_i(V)/[\alpha_i(V) + \beta_i(V)]
\]

After obtaining the analytic functions appropriately describing the voltage dependence of rate constants, the changes in \(I_h\) during various simulated current-clamp protocols were numerically reconstructed on the basis of the Eqs. 1 and 2 and Eq. 3 in its differential form.

The basic equations used for describing \(I_{NaP}\) were the same as used for \(I_h\) (see preceding text, Eqs. 1 and 2). \(G_{NaP}(V)\) was modeled according to the voltage-dependence data reported by Magistretti and Alonso (1999). \(I_{NaP}\) activation was assumed to be instantaneous.

KinetiC and voltage-dependence parameters concerning \(I_h\) and \(I_{NaP}\) were used in a simplified model of an EC SC aimed at reproducing the subthreshold oscillatory behavior of membrane potential in these same neurons. In this model, the neuron was considered as monocompartmental, and its membrane conductance consisted of \(G_{NaP}\) and linear leakage conductance (\(G_{L}\)) which current reversed at the equilibrium potential for \(K^+\). The parameters of the equations describing conductance kinetics and voltage dependence were given the same numerical values as returned by the analysis of the relevant experimental data (see RESULTS). Na\(^+\) and K\(^+\) reversal potentials had the theoretical (Nernst) values calculated for the ionic conditions employed in our current-clamp experiments (\(V_{Na} = +87\) mV, \(V_{K} = -83\) mV). The reversal potential for \(I_h\) (\(V_h = -20\) mV) and the amplitude ratio between the fast and slow kinetic components of \(G_{NaP}\) (\(G_{NaP,\max}/G_{NaP,\max} = 1.85\)) also matched exactly the experimentally observed average values. Only the absolute values of maximal conductances (\(G_{NaP,\max}\)) were adjusted until a good concordance between simulations and experimental observations was achieved. In the simulations here illustrated, \(G_{NaP,\max}, G_{NaP,\max}, G_{NaP,\max}\) equaled 98.0,
17.4, and 78.0 pS/pF, respectively. These values compared reasonably, namely within a factor of 2, with the experimentally measured values.

Numeric solution of the differential equations was achieved by the use of a one-step Euler integration method. The integration step size was 0.25 ms. Preliminary tests on the adequacy of this integration method were carried out by reducing the step size by ± 25 times, which revealed an optimal convergence. The simulation programs were compiled using QuickBASIC 4.5 (Microsoft). Data were analyzed using Origin.

RESULTS

The results presented in this study were based on a database of 131 EC layer II SCs intracellularly recorded under whole cell patch conditions and met the criteria specified in METHODS. The studied neurons were identified as SCs by their gross morphological characteristics (Klink and Alonso 1993) as afforded by direct visualization of their somata and proximal dendrites (Fig. 1A) but mainly by their characteristic electrophysiological properties (Alonso and Klink 1993; Alonso and Llinás 1989) (Fig. 1, B–D). Indeed, as illustrated in Fig. 1, patched SCs demonstrated robust time-dependent inward rectification in the hyperpolarizing direction. As shown in Fig. 1B, the membrane voltage responses to hyperpolarizing current pulses did not monotonically reach a steady value but displayed, after a certain delay, large amplitude “sags” back to more depolarized values. Second, the action potential of the patched SCs also demonstrated the characteristic fast after hyperpolarization (arrowhead Fig. 1C) followed by a depolarizing afterpotential and a medium after hyperpolarization. Finally, and most importantly, patched SCs also developed rhythmic subthreshold membrane potential oscillations and demonstrated cluster discharge when depolarized with DC current in the membrane potential range between -55 and -50 mV (Fig. 1D, 1–3). At an average membrane potential of -52 ± 1 mV, the peak frequency of these membrane potential oscillations as determined by Fourier analysis averaged 3.1 ± 0.7 Hz ($n = 12$). The SCs had an average resting membrane potential of -55 ± 3 mV and an input resistance of 113 ± 40 MΩ.

Although not further treated, in some instances, neurons other than SCs were recorded from. Pyramidal-like cells of EC layer II ($n = 10$), could be distinguished from SCs based on their pyramidal shape and their limited expression of time-dependent inward rectification (Klink and Alonso 1993). Layer III pyramidal cells ($n = 3$) were distinguishable based on their qualitatively smaller size, their high-input resistance (217 ± 67 MΩ) and the absence of time-dependent inward rectification (Dickson et al. 1997).

Hyperpolarization-activated, time-dependent inward rectification in SCs corresponded to a slow, noninactivating inward current

As illustrated for a typical SC in Fig. 2, the depolarizing sags that developed on membrane hyperpolarization in current-clamp conditions (A, –) were paralleled by the development of a slow, noninactivating inward current I_h. As illustrated for a typical SC in Fig. 2, the depolarizing sags that developed on membrane hyperpolarization in current-clamp conditions (A, –) were paralleled by the development of a slow, noninactivating inward current I_h. As illustrated for a typical SC in Fig. 2, the depolarizing sags that developed on membrane hyperpolarization in current-clamp conditions (A, –) were paralleled by the development of a slow, noninactivating inward current I_h.
of a slow inward current on step hyperpolarization under voltage-clamp conditions (B, →). Note that the time course and amplitude of this inward relaxation was overtly voltage-dependent (see following text). In all cases, analysis of the subthreshold input-output relations under current-clamp revealed that the steady-state voltage-current (V-I) curve (Fig. 2C; ●) showed a marked upward bending over the entire voltage range (−60 to −120). Similarly, analysis of input-output relations under voltage-clamp revealed that the steady-state current-voltage curve (ssI-V; Fig. 2D, ○) showed a robust inward shift, as compared with the instantaneous current-voltage curve (Fig. 2D, □), that grew steadily with membrane hyperpolarization. The slow inward current relaxations were associated with a membrane-conductance increase because the instantaneous current flowing at the break of the hyperpolarizing commands was larger than that recorded on first jumping to the command potential (see Fig. 4A). Thus SCs do possess a robust time-dependent hyperpolarization activated conductance (G _h_).

Pharmacological block of inward rectification

In addition to a time-dependent inward rectifier such as I _h_, many neurons also possess a fast inward rectifier K^+ current (I _Kr_) (reviewed by Hille 1992). It has been shown that in many old input-output relations under current-clamp revealed that the instantaneous current-voltage curve (Fig. 2F; E) showed a robust inward shift, as compared with that recorded on first jumping to the command potential (mean = 138 ± 52 pA, n = 5), indicating that G _K_ is active at the resting membrane potential (see following text). Significantly, ZD7288 did not abolish the small inward shift of the instantaneous I-V relation below −80 mV (Fig. 3G) and thus whereas ZD7288 fully blocked I _h_, it did not affect I _Kr_. Although small, the remaining fast inward rectification, however, could be blocked fully by the further addition of Ba^{2+} that also

![Image 3](http://jn.physiology.org/Downloadedfrom)
caused a decrease in slope conductance due to its blocking action on leak currents \((n = 3; \text{Fig. } 3, \text{ F and } H)\).

Activation of \(I_h\)

We estimated the activation curve of the membrane conductance underlying \(I_h\) \((G_h)\) by applying two different protocols (Fig. 4). In the first protocol, a modified Ringer solution (as specified in Methods) was used. The activation curve of \(G_h\) was estimated from the peak amplitude of the tail currents recorded at about \(-40\) mV \((n = 8)\) or at about \(-60\) mV \((n = 5)\) after a series of hyperpolarizing voltage-clamp steps from a holding potential in the range of \(-45\) to \(-30\) mV (Fig. 4, A–C). When stepping back to \(-60\) mV, the zero current level was the tail current amplitude after the most depolarized voltage step (at least \(-40\) mV). Tail current amplitudes were normalized to the maximal value \((I_{\text{max}})\) and plotted as a function of the membrane potential during the hyperpolarizing prepulse. In all cases \((n = 13)\), the data were well fitted with a Boltzmann equation of the form

\[
\frac{I}{I_{\text{max}}} = \left(1 + e^{\left(V_m - V_{1/2}\right)/k}\right)^{-1}
\]

where \(V_m\) is the membrane potential of the prepulse, \(V_{1/2}\) the membrane potential at which \(G_h\) is half activated, \(k\) a slope factor, and \(I\) is the amplitude of the tail current recorded after the prepulse. The tail current analysis yielded an activation range of \(G_h\) between \(-45\) and \(-115\) mV, a mean value for \(V_{1/2}\) of \(-77 \pm 5\) mV and a slope factor \((k)\) of 11.2 \(\pm 1.8\) (Fig. 4C).

For comparison, in four cells we applied slow (<10 mV/s) 100 mV hyperpolarizing voltage ramps from a holding potential of \(-30\) mV in control and after block of \(I_h\) with ZD7288 (Fig. 4D). In these experiments, 1 \(\mu\text{M TTX}, 2\) mM Co\(^{2+}\), and 2 mM Ba\(^{2+}\) were added to the control Ringer. Subtraction of the ZD7288 \(I-V\) curve from the control curve yielded the steady-state \(I_h\) \(I-V\) relationship from which we estimated \(G_h\) according to the formula \(G_h = I_h/(V_m - V_h)\) where \(V_h\) is the reversal potential for \(I_h\) estimated to be \(-21\) mV (see following text, Fig. 6). The resulting values were normalized to the maximal conductance \((G_{\text{max}})\); 10.4 \(\pm 2.3\) nS and plotted against \(V_m\). In all cases the curves were well fitted with a Boltzmann equation as in the preceding text. This ramp analysis yielded a \(V_{1/2}\) of \(-76 \pm 4\) mV and a slope factor of 12.1 \(\pm 2\), which were not significantly different to those obtained by tail current analysis by two-tailed \(t\)-tests \([t(15) = 0.36, P > 0.05; t(15) = -0.85, P > 0.05]\).

FIG. 4. Activation curve for the conductance \(G_h\). A: incremental hyperpolarizing voltage-clamp steps increase the amount of \(I_h\) that is activated as well as the amplitude of the tail currents that follow (inset). B: tail currents from A shown at an expanded time and current scale. Tail current amplitude measurements were taken at the time indicated by the empty circle and broken line. C: plot of the activation curve of \(G_h\). Filled circles, averaged activation curve for 13 SCs. Individual experiments first were fitted with Boltzmann functions and the interpolated values for the steps at each 10-mV increment were used to compute the average value. Small open circles, data derived from cell in A. Line, best Boltzmann fit to the average (see RESULTS) where the half activation voltage and slope factor were found to be \(-77 \pm 5\) mV and 11.2 \(\pm 1.8\), respectively. D: \(G_h\) activation curves also were estimated in four cells from \(I-V\) relations where \(G_h\) was isolated by subtracting ZD7288 \(I-V\) curves from control \(I-V\) curves obtained through slow ramp protocols (inset, see RESULTS for details). As can be seen, the \(G_h\) activation curve obtained in this manner (noisy line) and its Boltzmann fit (dotted line) largely overlap the activation curve obtained from tail current analysis (continuous line; same as in C). Tail current protocols were conducted using the specialized solution described in METHODS, and ramp protocols were conducted in solution containing 1 \(\mu\text{M TTX}, 2\) mM Co\(^{2+}\), and 2 mM Ba\(^{2+}\).
Time course of activation and deactivation

As stated previously, the rate of activation of I_h increased sharply with hyperpolarization (e.g., Fig. 2B). This qualitative observation was further explored in a more quantitative manner. To maximize the accuracy of our kinetic analysis, we isolated I_h by subtracting from control current traces evoked by hyperpolarizing voltage-clamp steps, the current traces evoked to the same potentials in the presence of the selective I_h blocker ZD7288 ($n = 5$; Fig. 5A). Over the whole voltage range tested, the I_h current relaxations were best fitted with a double exponential function of the form

$$I_h(t) = A_1 e^{-t/\tau_1} + A_2 e^{-t/\tau_2} + C$$

where $I_h(t)$ is the amplitude of the current at time t, C is a constant, and A_1 and A_2 reflect the amplitude coefficients of the fast (τ_1) and slow (τ_2) time constants, respectively. Attempts to fit the subtracted traces with a single exponential function were judged to be unsuccessful based on visual inspection and by comparison of the standard deviations of the fits using single or double exponential functions (not shown). Both the first and second time constants were found to be voltage dependent, as shown in Fig. 5, C and D, becoming faster with increased hyperpolarization. The first time constant ranged between 78 ± 12 and 39 ± 6 ms for voltage steps to −70 and −110 mV, respectively. The second time constant ranged between 372 ± 39 and 164 ± 45 ms for the same voltage steps. The ratio of the amplitude coefficients for the first (A_1) and second (A_2) time constants increased from 1 at −70 mV to just over 2 at −110 mV.

An equivalent method as the one described in the preceding text was conducted to study the rate of deactivation of I_h isolated with the use of ZD7288 (Fig. 5B). Isolated I_h current traces evoked by depolarizing voltage steps from a holding potential of −60 mV were also well fitted by a double-exponential function. As for the time constants of activation, both the first and second time constants of deactivation were found to be voltage dependent, becoming faster with increasing depolarization (Fig. 5, C and D). The first time constant of deactivation ranged from 23 ± 9 to 58 ± 13 ms for voltage steps to −40 and −50 mV, respectively. The second time constant of deactivation ranged between 241 ± 38 and 326 ± 58 ms for the same voltage steps. The amplitude of the fast time constant was roughly 1.25 that of the slower, and this ratio remained constant over the voltage range tested.

Reversal of I_h

Estimation of the reversal potential of I_h was achieved by two different methods, which took advantage of the fact that at −80 mV, G_h was strongly activated and did not show time-dependent inactivation (Fig. 6, A and B). In all experiments, the superfusing Ringer solution contained 1 μM TTX, 2 mM CoCl$_2$, and 2 mM BaCl$_2$. Thus in the first method, we estimated the reversal potential of I_h (V_{rev}) from the intersection of the instantaneous (chord) current-voltage relationships recorded at holding potentials of −80 and −40 mV (i.e., in the presence and absence of I_h; Fig. 6C) (Mayer and Westbrook 1983). In 17 neurons examined, this method provided an average value for V_{rev} of −21 ± 5 mV.

To support the preceding estimation, we used a second method in which we took advantage of the fact that I_h is selectively and fully blocked by ZD7288 (see preceding text). Chord conductance measurements were made from voltage steps from a holding potential of −80 mV before and after block of I_h using ZD7288 and the instantaneous I/V relationships in both conditions were constructed (Fig. 6, D–F). In eight neurons examined, the average voltage at which the linear fits for both plots intersected, i.e., the reversal potential for I_h, was −22 ± 6 mV, a value that was not significantly different from that found with the tail current analysis method above [$\tau(23) = 0.44$, $P > 0.05$].
Ionic basis of \(I_h \)

The fact that in the SCs \(I_h \) reverses at about \(-20 \) mV suggests that, as in other neurons (Crepel and Penit-Soria 1986; Halliwell and Adams 1982; Mayer and Westbrook 1983; McCormick and Pape 1990; Spain et al. 1987; Takahashi 1990), this hyperpolarization-activated inward current might be carried by a mixture of both \(\text{Na}^+ \) and \(\text{K}^+ \) ions. Indeed, increasing the extracellular concentration of \(\text{K}^+ ([\text{K}^+]_o) \) (Fig. 7) produced an increase in \(I_h \) (with no change in the \(G_h \) activation curve; not shown) as well as an increase in instantaneous conductance. As expected for \(\text{K}^+ \) being an important carrier for \(I_h \), an increase in \([\text{K}^+]_o\) from 1 to 10 mM produced an average positive shift in \(V_e \) of 10 ± 4 mV (\(n = 4 \), Fig. 7D).

On the other hand, reductions in the concentration of extracellular \(\text{Na}^+ \) from control levels (151 mM) to 26 mM reversibly reduced the amplitude of \(I_h \) (Fig. 8) without changing the activation properties of the conductance underlying this current (not shown). Concomitant with this reduction, \(V_h \) shifted in the hyperpolarizing direction by an average of 21 ± 5 mV (\(n = 5 \)). These results indicate that \(\text{Na}^+ \) ions also largely contribute to \(I_h \).

Finally, a number of neurons (5) were recorded using a modified intracellular solution containing an additional 10 mM \(\text{Cl}^- \) in the pipette solution (see METHODS). Although in these cases, the chloride reversal potential was theoretically shifted by \(-20 \) mV in a positive direction, no significant difference was observed in either the average reversal potential \([-23 ± 6 \text{ mV}; t(20) = -1.48, P > 0.05\]) or the activation properties of \(I_h \) (not shown). Thus using the Goldman-Hodgkin-Katz equation and an estimated \(V_h \) of \(-21.5 \) mV, we calculated a permeability (conductance) ratio for \(\text{Na}^+ \) and \(\text{K}^+ \) \((p_{\text{Na}^+/p_{\text{K}^+}})\) of \(-0.4\) for \(I_h \) in the SCs.

Role of \(I_h \) in membrane potential oscillations

Given the overlap between the activation range of \(G_h \) (threshold at about \(-45 \) mV), and the voltage range at which subthreshold membrane potential oscillations occur in SCs (\(-60 \) to \(-50 \) mV), we sought to define the involvement of \(I_h \) in these oscillations by exploring the effects on them of \(\text{Cs}^+ \), ZD7288 and \(\text{Ba}^{2+} \). Because these agents, particularly \(\text{Cs}^+ \) and \(\text{Ba}^{2+} \), greatly enhance spontaneous synaptic events, we carried out this analysis during synaptic transmission block with CNQX (10 \(\mu \)M), AP5 (50 \(\mu \)M), bicuculline (10 \(\mu \)M), and 2-OH-saclofen (100 \(\mu \)M). In line with a role of \(I_h \) in the generation of the rhythmic subthreshold oscillations, we observed that the addition of \(\text{Cs}^+ \) (1–2 mM; \(n = 4 \)) to the superfuse resulted in a progressive disruption (and slowdown) of the oscillations. However, as previously reported (Klink and Alonso 1993), some trains of subthreshold oscillatory activity could consistently be observed in the presence of \(\text{Cs}^+ \). This result might be interpreted as suggestive that, in addition to \(I_h \), another conductance operating in the subthreshold range, such as the \(M \) current, may play a major role in the generation of the rhythmic subthreshold oscillations by the SCs. Alternatively, it also might be that the expression of subthreshold oscillatory activity by the SCs is rather insensitive to the level of \(I_h \) expression and that a major decrease in \(I_h \) is necessary to abolish the oscillations. To explore these possibilities, we first tested the effects of the more potent \(I_h \) blocker ZD7288. In all cells, application of 50–100 \(\mu \)M ZD7288 always resulted in membrane hyperpolarization (9 ± 4 mV; \(n = 8 \)) concomitant with the block of the typical depolarizing voltage sag evoked by hyperpolarizing current pulses. Similarly to \(\text{Cs}^+ \), ZD7288 always produced a progressive disruption of the oscillations, though, in contrast to what was ob-

FIG. 6. Reversal potential of \(I_h \). Extrapolated reversal potential of \(I_h \) (\(V_e \)) was estimated by 2 different approaches. A–C: SCs were held at \(-40 \) and \(-80 \) mV (A and B, respectively) and the instantaneous \(I-V \) relations constructed. \(V_e \) was estimated from the intersection of the extrapolated \(I-V \) relations derived from both holding potentials (C). D and E: SCs were held at \(-80 \) mV, and the instantaneous \(I-V \) relation was constructed in control conditions (D) and during \(I_h \) block with ZD7288 (E). \(V_e \) was estimated from the intersection of the extrapolated \(I-V \) relations derived in both conditions (F). All recordings were conducted in a solution containing 1 \(\mu \)M TTX, 2 mM \(\text{Cs}^{2+} \), and 2 mM \(\text{Ba}^{2+} \).
served with Cs⁺, this disruption always proceeded to a complete block (Fig. 9, A–C). Although these data suggest that, indeed, a major block of Ih is necessary to completely abolish the oscillations, it could be argued that the blocking effect of ZD7288 might have been due to a nonselective action of the drug on another conductance operating in the oscillatory range. To exclude this possibility, we performed a series of voltage-clamp experiments in which we examined the effects of ZD7288 on the outward current relaxations evoked by a series of depolarizing voltage-clamp steps from −60 mV (about resting level) to the voltage range where subthreshold oscillations develop (−55 to −50 mV; Fig. 10A) and up to the Gₜ activation threshold (−45 mV). These experiments were conducted in the presence of 1 μM TTX and 2 mM Co²⁺. As shown in Fig. 10, B–D, ZD7288 (100 μM) always caused a robust outward shift in the holding current and a complete and selective block of both the outward current relaxations in response to membrane depolarization as well as the associated tail currents on return to the holding potential (n = 4). In contrast, there was a nearly perfect overlap between the traces at −45 mV, the threshold for activation of Ih, before and after ZD7288. This indicates that, in the voltage range from −60 to −45 (which includes the voltage range at which the membrane potential oscillations occur) the action of ZD7288 was specific for Ih. Thus the block of the oscillations by ZD7288 cannot be attributed to a nonspecific effect of the drug.

Finally, it also might be argued that the disappearance of sustained subthreshold oscillations with ZD7288 resulted from the membrane conductance decrease due to the Ih block and not by the Ih block per se. This possibility was tested with the use of Ba²⁺ (1–2 mM; n = 7), which, in contrast to ZD7288, does not affect Ih (cf. Fig. 3) but which, similarly to ZD7288, also produces a major decrease in membrane conductance. Importantly, and in sharp contrast to the ZD7288 results, bath superfusion with Ba²⁺ resulted in both a significant increase in the amplitude [1.2 ± 0.5 mV; t(4) = 2.7; P < 0.05] and a significant decrease in the frequency [−1.3 ± 0.1 Hz; t(6) = 8.8; P < 0.01] of the subthreshold oscillations (Fig. 9, D–F). In consequence, the above indicates that Ih plays an essential role in the generation of rhythmic subthreshold oscillations by the SCs and that leak conductances can modulate their amplitude and frequency through their effects on passive membrane properties.

Role of Ih and INaP in the generation of subthreshold oscillations

Although the preceding experimental data indicate that Ih is necessary for the genesis of subthreshold oscillations by the
SCs, previous studies have shown that these oscillations are also dependent on the activation of a subthreshold persistent Na\(^+\) current (\(I_{\text{NaP}}\)) (Alonso and Llinás 1989). To generate an oscillatory phenomenon, a process is needed the action of which feeds-back to slow down the rate of the process itself and, most critically, a delay in the execution of the feedback. In SCs, the slow kinetics of activation and deactivation of \(I_h\) potentially can implement such a feedback process. To further clarify the role of \(I_h\) in the generation of subthreshold oscillations by the SCs and to complement the preceding experimental data, we next implemented a simplified biophysical simulation of the subthreshold membrane voltage behavior of these neurons.

Using classical Hodgkin-Huxley formalism, a theoretical reconstruction of the biophysical properties of \(I_h\) first was carried out. To be consistent with our experimental data indicating both a fast and a slow kinetic component of \(I_h\) (see preceding text; Fig. 5), we constructed activation plots of the corresponding fast and slow conductance components (\(G_{h1}\) and \(G_{h2}\), respectively; Fig. 11A, 1 and 2) from which the \(m_{\text{aq}}\) curves were derived directly by using a standard Boltzmann fitting (see METHODS and legend of Fig. 11). The voltage dependence of the fast and slow rate constants (\(\alpha\) and \(\beta\); Fig. 11C, 1 and 2) was estimated from the corresponding time constants of activation and deactivation (\(\tau_a\); Fig. 11B, 1 and 2) and the \(m_{\text{aq}}\) curves, as explained in detail in METHODS.

The derived parameters for the kinetics and voltage dependence of \(I_h\) and those for \(I_{\text{NaP}}\) as described previously (Magistretti and Alonso 1999) then were incorporated in a single compartment model of the SC (see METHODS). The model then was explored to test whether it could reproduce characteristic current-clamp phenomena such as the sag in membrane potential during hyperpolarizing current steps and the generation of subthreshold membrane potential oscillations.

Voltage responses to hyperpolarizing current steps in the model SC are illustrated in Fig. 12A. Note that the model cell did display the typical delayed large-amplitude depolarizing sags in response to membrane hyperpolarization as well as robust rebound potentials at the break of the hyperpolarizing current pulses. More importantly, as shown in Fig. 12B, the model SC also developed sustained rhythmic membrane potential oscillations in response to DC membrane depolarization from its resting level to about \(-53\) mV. The combined experimental and model work thus demonstrates that in the SCs the interplay between \(I_h\) and \(I_{\text{NaP}}\) is essential for the generation of sustained rhythmic subthreshold membrane potential oscillations.

As illustrated in Fig. 12C, the use of the model SC also
allowed us to understand the dynamics of the interplay between I_{NaP} and I_h (as well as G_{NaP} and G_h) during the oscillatory cycle. Note that at the trough of an oscillation (1st vertical dashed line) I_{NaP} and G_{NaP} are at a minimum, whereas I_h and G_h are approaching, but not yet at, their respective maxima. This occurs after a certain delay (G_h maximum lags G_{NaP} and V_m minimum by 21 ms at 3 Hz), and thus the attainment of a maximum level by I_h coincides with the initiation of a depolarizing phase. As depolarization proceeds, I_{NaP} rapidly increases because G_{NaP} becomes progressively activated. In turn, the depolarization boosted by I_{NaP} leads to G_h deactivation and thus a decrease in I_h, which slows down and eventually stops the depolarization. Note that at the peak of the oscillation (2nd dashed line) I_h and G_h (similarly to what reciprocally occurs at the trough) are approaching, but they are still not at, a minimum. This occurs after the peak. Thus the deactivation of G_h is now responsible for initiating the repolarizing phase of the oscillation. Membrane hyperpolarization leads to a rapid decrease in I_{NaP} that boosts further hyperpolarization. Eventually membrane hyperpolarization leads to the new activation of I_h and a new oscillatory cycle is initiated.

It can be observed from the traces in Fig. 12C that I_{NaP} essentially changes instantaneously with changes in V_m, whereas changes in I_h follow with a certain delay (caused by its time-dependent properties). This differential behavior may be better understood by plotting I_{NaP} and I_h as a function of V_m, as illustrated in Fig. 13. Note that although the I_h curve demonstrates substantial hysteresis, the I_{NaP} curve demonstrates very little to none. The increase and decrease in I_{NaP} during the depolarizing and hyperpolarizing phase of an oscillation maintains an almost perfect linear relationship with changes in V_m. In contrast, the trajectory followed by I_h during the depolarizing phase of the oscillation is substantially different from that followed during the hyperpolarizing phase. I_h decreases slowly during the initial part of the depolarizing phase but this rate of decrease accelerates as the membrane potential approaches its peak value. Similarly, during the hyperpolarizing phase of the oscillation I_h increases slowly during the initial portion, and this rate of increase accelerates as the membrane potential approaches its minimal value. Basically, the hysteresis introduced by the kinetic properties of I_h implement a delayed feedback mechanism to the voltage changes led by I_{NaP} that allows sustained oscillatory activity to occur.

Discussion

The present results demonstrate that the robust hyperpolarization-activated time-dependent inward rectification displayed by the stellate cells from EC layer II is due to an inward current that we identified as I_h on the basis of its pharmacological and biophysical profile as described in other excitable cells (see recent revisions by Clapham 1998; Pape 1996). Importantly, our study also points out that some of the specific biophysical properties of I_h in the stellate cells determine that this current plays a major “pacemaker” role in the generation of the theta-like subthreshold oscillations typical of these neurons (Alonso...
and Llinás 1989). Indeed, the combined experimental and modeling analysis we carried out indicate that the kinetic properties of both the activation and deactivation of \(I_h \) implement a delayed feed-back mechanism to the voltage changes led by a subthreshold \(Na^+ \) current that allows persistent subthreshold oscillatory activity to occur. Although \(h \) currents have been shown to contribute to rebound activity in many neuronal types (Crepel and Penit-Soria 1986; Mayer and Westbrook 1983; Spain et al. 1987) and to interact with low-threshold \(Ca^{2+} \) currents (at rather negative levels; about –70 mV) to generate oscillatory activity (Bal and McCormick 1997; Brown and DiFrancesco 1980; McCormick and Pape 1990), to our knowledge, the SCs are the first case in which an \(h \) current has been shown to generate persistent oscillatory activity by interacting with a sustained \(Na^+ \) current in the subthreshold voltage range (about –55 mV). Intrinsically oscillatory activity in the subthreshold voltage range may be of fundamental importance in defining the integrative properties of the participating neurons (cf. Hopfield 1995; Lampl and Yarom 1993; Llinás 1988).

A characteristic pharmacological feature of \(I_h \) in all other cell types studied is its blockade by \(Cs^+ \) but not \(Ba^{2+} \). Consistent with this, \(I_h \) in the SCs was largely reduced, though not completely blocked, by \(Cs^+ \) (1–6 mM) and not significantly affected by \(Ba^{2+} \) (1–2 mM). The incomplete block of \(I_h \) by \(Cs^+ \), which also has been observed in other cells (Champigny and Lenfant 1986; Ishii et al. 1999), prompted us to use the recently described bradycardic agent ZD7288 (BoSmith et al. 1993). As found in other neurons (Gasparini and DiFrancesco 1997; Harris and Constanti 1995; Lüthi et al. 1998; Maccarferri and McBain 1996), ZD7288 fully and selectively (in the voltage range explored: –45 to –120 mV) blocked \(I_h \) in the SCs.

In general terms, the biophysical properties of \(I_h \) as recorded in the SCs were similar to those reported for other brain neurons though some differences in activation threshold and reversal potential were apparent, and these appear to be functionally significant. \(I_h \) in the SCs appeared as a noninactivating inward current that turned on (activated) relatively slowly with hyperpolarization and also turned off (deactivated) slowly with depolarization. As with other voltage-dependent currents, the conductance that gives rise to \(I_h \) showed a sigmoidal activation curve with a threshold at around –45 mV, a half-activation point at –77 mV, and a slope factor of 12.1. A half-activation point in the range of –70 to –80 mV is typical of other neurons; however, the \(I_h \) activation threshold that we observed in the SCs was ~10–15 mV more positive than that reported for other subcortical or cortical neurons (Bayliss et al. 1994; Crepel and Penit-Soria 1986; Halliwell and Adams 1982; Kamondi and Reiner 1991; Mayer and Westbrook 1983; McCormick and Pape 1990; Mercuri et al. 1995; Spain et al. 1987). An activation threshold at about –45 mV is, however, comparable with that found in cardiac sinoatrial cells and Purkinje fibers (DiFrancesco 1981; DiFrancesco et al. 1986; Yanagihara and Irisawa 1980) and to recent findings for hippocampal and brain stem neurons (Maccarferri and McBain 1996; Maccarferri et al. 1993; Travaglì and Gillis 1994). In addition, the estimated reversal potential for \(I_h \) in the SCs (about –20 mV) was 10–30 mV more positive than that reported for other subcortical or cortical neurons (Bayliss et al. 1994; Crepel and Penit-Soria 1986; Halliwell and Adams 1982; Kamondi and Reiner

![FIG. 10. Blocking effect of ZD7288 on the subthreshold membrane potential oscillations can be attributed to the blocking action of this drug on \(I_h \). A: subthreshold oscillations in the SCs develop on DC depolarization to the voltage range between about –55 to –50 mV. B: voltage-clamp experiment in the same cell showing outward current relaxations (corresponding to \(I_h \) deactivation) during depolarizing voltage steps through the oscillatory voltage level (–55, –50, and –45 mV), as well as inward current relaxations (corresponding to \(I_h \) activation) on return to the holding potential (–60 mV). C: addition of 100 \(\mu \)M ZD7288 eliminated \(I_h \) and thus caused a robust outward shift in the holding current and the concomitant disappearance of the outward current relaxations on depolarization as well as the inward current relaxations on return to the holding potential. D: superimposition of traces in B and C. Note that control and ZD7288 current traces to –45 mV overlap perfectly at steady-state, thus indicating that in the voltage range examined the actions of ZD7288 were selective for \(I_h \). Voltage-clamp recordings were performed in the presence of 1 \(\mu \)M TTX and 2 mM Co²⁺.](http://jn.physiology.org/DownloadedFrom/)
Alterations in Cl \(_2\) dependency—becoming faster with increasing depolarization. A dual exponential nature of the \(I_h\) deactivation time course also was confirmed, with fast and slow time constants that also showed voltage dependency—becoming faster with increasing depolarization. Although many of the studies on \(I_h\) report a time course of activation that appears to be well fitted by a mono-exponential function (Crepel and Penit-Soria 1986; DiFrancesco et al. 1986; Halliwell and Adams 1982; McCormick and Pape 1990), some also have shown that a biexponential fitting best represented the time course of \(I_h\) in the corresponding cells (Mayer and Westbrook 1983; Solomon and Nerbonne 1993; Spain et al. 1987). The fact that the activation time constants reported in different neurons (measured at similar temperatures) range from tens of milliseconds (Crepel and Penit-Soria 1986), through hundreds of milliseconds (Kamondi and Reiner 1991) and even seconds (McCormick and Pape 1990; Soltesz et al. 1991), might be interpreted as indicative of multiple \(I_h\) channel subtypes with different gating properties. Thus cells expressing more than one \(I_h\) channel subtype would show multiple kinetic components during both the activation and deactivation processes. Strong evidence for this comes from a zebrafish mutant (slow mo), which exhibits a slower than normal heart rate. A voltage-clamp analysis in isolated cardiac myocytes from the mutant demonstrated that \(I_h\) was selectively decreased in the mutant. Importantly, this decrease appeared to result from the selective diminution of the fast kinetic component of the current (Baker et al. 1997). Finally, very recently, three different groups have cloned various genes responsible for \(I_h\) clearly demonstrating the existence of a
family of hyperpolarization-activated cation channels with different activation kinetics (Gauss et al. 1998; Ludwig et al. 1998, 1999; Santoro et al. 1998).

Function of \(I_h \) in the stellate cells

In the stellate cells, the rather positive values that we found for \(I_h \) activation (−45 mV) and reversal potential (−20 mV) indicate that in these neurons \(I_h \) must be a major contributor to the resting membrane potential (around −60 mV) (Alonso and Klink 1993). Indeed, full block of \(I_h \) with ZD7288 induced a robust hyperpolarization of the resting membrane potential in current-clamp conditions and a large outward shift in the holding current at −60 mV in voltage-clamp conditions. In addition, in the stellate cells, \(I_h \) also efficiently modulates membrane hyperpolarization, as observed by the pronounced depolarizing sags in response to membrane hyperpolarization and the robust rebound potentials that follow. In this respect, the stellate cells are densely innervated (Finch et al. 1988; Jones 1994; Jones and Buhl 1993; Kohler 1988; Kohler et al. 1993). Indeed, full block of \(I_h \) with ZD7288 induced a robust hyperpolarization of the resting membrane potential in current-clamp conditions and a large outward shift in the holding current at −60 mV in voltage-clamp conditions. In addition, in the stellate cells, \(I_h \) also efficiently modulates membrane hyperpolarization, as observed by the pronounced depolarizing sags in response to membrane hyperpolarization and the robust rebound potentials that follow. In this respect, the stellate cells are densely innervated (Finch et al. 1988; Jones 1994; Jones and Buhl 1993; Kohler 1988; Kohler et al. 1993).

FIG. 12. Modeling of the current-clamp behavior of SCs. A: current-clamp V-I simulation in a simplified model of a SC. In this simulation, 600-ms hyperpolarizing current pulses of −0.49, −0.98, and −1.46 pA/pF were injected into the cell from the resting membrane potential level (−56.7 mV). Simulation parameters were: \(G_{h_{\text{Max}}} = 98.0 \) pS/pF, \(G_{h_{\text{Max}}}/G_{\text{NaP_{Max}}} = 1.85, G_{\text{NaP_{Max}}} = 17.4 \) pS/pF, \(V_{\text{h}} = −87 \) mV, \(V_{\text{Na}} = −83 \) mV, \(V_{\text{l}} = −20 \) mV, \(V_{\text{h_{\text{Max}}}} = +87 \) mV. B: simulations of \(I_h \) and \(I_{\text{NaP}} \)-dependent subthreshold membrane-voltage (\(V_m \)) oscillations. Oscillations were elicited by injection of steady depolarizing current of variable amplitude (from bottom to top: 0.00, +0.19, and +0.21 pA/pF). Note the absence of oscillations at rest (−56.7 mV) and the gradual increase in the amplitude of the oscillations with increasing current amplitude. Simulation parameters were the same as described for A. C: expanded view of the simulated membrane potential oscillations evoked by the injection of +0.21 pA/pF and of the behavior of the underlying currents (\(I_h, I_{\text{NaP}} \)) and conductances (\(G_h, G_{\text{NaP}} \)). Vertical, dashed lines help in the appraisal of the phase relationships between the membrane potential, the currents, and their conductances. Note the almost perfect phase correspondence between \(V_m \) and \(I_{\text{NaP}} \), although there appears to be a phase lag between \(V_m \) and \(I_h \).

FIG. 13. Phase plane plot of the simulated membrane potential vs. the amplitude of \(I_{\text{NaP}} \) and \(I_h \). For the simulation shown in Fig. 12C, the amplitude of both \(I_{\text{NaP}} \) and \(I_h \) were plotted with respect to the membrane potential. Plot corresponding to \(I_{\text{NaP}} \) travels a straight line with negative slope showing essentially no hysteresis. Therefore during both the upswing and downswing of the oscillation there is a relatively “instantaneous” increase and decrease, respectively, in the amplitude of \(I_{\text{NaP}} \). On the other hand, the plot corresponding to \(I_h \) demonstrates a large degree of hysteresis. Therefore oppositely to \(I_{\text{NaP}} \), during the upswing and downswing of the oscillation there is a delayed decrease and increase, respectively, in the amplitude of \(I_h \). Because of this delay, the maxima and minima of the amplitude of \(I_h \) tend to occur just after the membrane potential has achieved its most hyperpolarized and depolarized values, respectively (i.e., just after the commencement of the upswing and downswing of the oscillation, respectively).
1985; Wouterlood et al. 1995) by GABAergic inputs, and we have observed that \(I_h \) efficiently limits the inhibitory postsynaptic potentials that these inputs trigger. Indeed \(I_h \) activation in response to an inhibitory postsynaptic potential implements a “resetting” mechanism for the intrinsic oscillations (Alonso and Dickson, unpublished observations).

As directly demonstrated in this study, a major role of \(I_h \) in the stellate cells is that of a “pacemaker” current. This role is not, however, one of providing a “background” depolarizing current that sustains rhythmic discharge but of contributing to the generation of persistent subthreshold oscillatory activity. We confirmed that the bradycardic agent ZD7288 selectively abolished \(I_h \) in the range of potentials corresponding to the oscillatory range and found that it progressively and completely abolished the rhythmic subthreshold oscillations. This evidence directly implicates \(I_h \) in their generation.

In the present study, we found no evidence of a slow outward \(K^+ \) conductance, such as the M current, being necessary for the generation of the subthreshold oscillations by the stellate cells. Indeed \(\text{Ba}^{2+} \), which blocks the M-current as well as leak \(K^+ \) conductances and \(I_{\text{Kf}} \), increased the amplitude of the oscillations, which also became more regular and lower in frequency. This result is in contrast to our previous study using sharp electrodes (Alonso and Klink 1993) in which we reported an apparent block of the oscillations with \(\text{Ba}^{2+} \). However, in that study \(\text{Ba}^{2+} \) was applied in the absence of glutamatergic and GABAergic neurotransmission and thus the apparent block may have been due to the increased synaptic background activity that is caused by \(\text{Ba}^{2+} \). In addition, because \(\text{Ba}^{2+} \) also prolonged the action potential, allowing for an increased \(Ca^{2+} \) influx and an enhancement of the slow afterhyperpolarization (see Fig. 10 in Klink and Alonso 1993), it could have been that the apparent block of the oscillations also was related to a membrane shunting effect by a \(Ca^{2+} \)-dependent conductance. To test these possibilities, we performed additional sharp electrodes recordings from stellate cells in a similar manner as previously described (Alonso and Klink 1993) in which \(\text{Ba}^{2+} \) application (1 mM) was conducted in the presence of glutamatergic and GABAergic antagonists and/or the \(Ca^{2+} \) channel blocker \(\text{Co}^{2+} \) (2 mM) \((n = 6; \text{not shown})\). In these experiments, in agreement with the above interpretations, the application of \(\text{Ba}^{2+} \) during synaptic and \(Ca^{2+} \)-conductance block with \(\text{Co}^{2+} \) did not abolish the oscillations, which, however, did become slower in frequency (as in our present whole cell patch study). In addition, a similar result was observed when we repeated the preceding experiment using perforated patch recordings (Horn and Marty 1988) \((n = 2; \text{not shown})\). We did, however, observe that, using either sharp electrodes or the perforated patch technique, block of \(Ca^{2+} \) conductances with \(\text{Co}^{2+} \) was required to best reproduce our present results using conventional whole cell patch recording. This suggests that a break-down of \(Ca^{2+} \) conductances occurred during the conventional whole cell technique that allowed for a better expression of the oscillations in the presence of \(\text{Ba}^{2+} \) (as seen in Fig. 9).

The modeling analysis that was carried out on the basis of the biophysical properties of \(I_h \) and \(I_{\text{NaP}} \), as experimentally derived from the stellate cells, indicated that the interplay between these two currents appears sufficient for the generation of persistent subthreshold oscillations in these neurons. First, in the SCs, the \(G_{I_h} \) activation curve has a rather positive threshold for activation (at about \(-45 \text{ mV}\)) and overlaps substantially with the \(G_{\text{NaP}} \) activation curve (threshold at about \(-65 \text{ mV}\)) (Magistretti and Alonso 1999), thus setting the stage for their potential interplay because these conductances activate with voltage changes in opposite directions. Second, and most importantly, the slow activation and deactivation kinetics of \(I_h \) implement a delayed feed-back mechanism to the voltage changes led by the “instantaneous” changes in \(I_{\text{NaP}} \), thus causing the emergence of sustained oscillatory activity (given the passive membrane properties of the cells). Alonso and Llinás (1989) initially had postulated an interaction between \(I_h \) and \(I_{\text{NaP}} \) as the basis for the generation of subthreshold oscillations by the SCs. Using a bifurcation analysis, White et al. (1995) also had implicated \(I_h \) (in addition to an as-yet undetermined slow outward rectifier) in the generation of these oscillations. More recently, an interaction between \(I_h \) and \(I_{\text{NaP}} \) also has been proposed as the basis for subthreshold membrane potential resonance in response to oscillatory intracellular current injection in sensorimotor cortex neurons (Hutchison et al. 1996a,b).

During the last 10 years, \(Na^+ \)-dependent subthreshold oscillations similar to those expressed by the SCs also have been observed in other brain neurons (Alonso et al. 1996; Amitai 1994; Gutfrreund et al. 1995; Leung and Yim 1991; Llinás et al. 1991; Pape et al. 1998), and they have been considered typically to emerge from the interplay between \(I_{\text{NaP}} \) and an outward \(K^+ \) current, such as an M-type current (Gutfreund et al. 1995; Llinás et al. 1991; Pape et al. 1998; White et al. 1995, 1998) or an A-type current (Wang 1993). As in other situations, distinct ionic mechanisms may be responsible for a similar electrophysiological event in different neurons according to their specific integrative needs.

Interestingly, we found that complete abolition of the rhythmic subthreshold oscillations required a very substantial reduction of \(I_h \), \(Ca^{2+} \), which we found to reduce \(I_h \) by \(<65\%) \), did not completely abolish the oscillations, thus suggesting that the oscillatory process per se is very robust and rather insensitive to variations in the level of \(I_h \) expression. Indeed our simplified model maintained sustained oscillatory activity even when \(I_h \) was decreased by 50\% (not shown). Further reductions caused a very rapidly damping oscillation. However, in an elaborated SC model that we have constructed (Fransén et al. 1998) when the impact of channel noise (White et al. 1998) is considered, the SC model behaved much more closely to the “real” cell in that \(I_h \) reductions of up to \(<70\%) \) were required to completely abolish subthreshold rhythmicity. The critical importance of stochastic noise in sculpturing the membrane voltage behavior of the SCs has been treated in detail by White et al. (1998).

Functional role of the subthreshold oscillations

The potential functional role of subthreshold oscillatory activity in neocortical neurons was reviewed recently by Connors (Connors and Amitai 1997) and also has been treated in detail by others (Engel et al. 1992; Gray 1994; Laurent 1996; Singer 1993). We will discuss briefly here the potential functional implications that the presence of rhythmic subthreshold oscillatory activity in the stellate cells may have with regard to temporal lobe function. A well-established role of the entorhinal network is that of memory function. Indeed the stellate cells from EC layer II occupy a privileged position in the neocortico-hippocampo-neocortical circuit. They are the targets of convergent information from polysensory association
areas that they funnel to the dentate gyrus of the hippocampal formation via the perforant path. Thus a potential role of the intrinsic oscillatory activity of the stellate cells could be that of implementing a synchronizing mechanism by which convergent sensory information is coordinated temporally for its transfer to the hippocampal processing machinery and the formation of a memory event (Buzsáki 1989, 1996; Lopes da Silva et al. 1985; Rudell et al. 1980;). Although still far from directly testing such a hypothesis given the complex nature of the information processed by the EC, we do know that EC layer II neurons are powerful generators of theta rhythmicity “in vivo” (Alonso and García-Austt 1987a,b; Dickson et al. 1995; Mitchell and Ranck 1980), and the theta rhythm has been implicated in memory processes (Greenstein et al. 1988; Holischer et al. 1997; Huerta and Lisman 1993; Larson et al. 1986; Lisman and Idiart 1995; Pavlides et al. 1988; Winson 1978).

Importantly, analysis of inhibitory synaptic input on EC layer II neurons show that inhibitory postsynaptic potentials, which EC stellates are likely to receive during theta (cf. Fox 1989; Leung and Yim 1986; Soltész and Deschénes 1993; Ylinen et al. 1995) can very efficiently reset the intrinsic oscillations (Alonso and Dickson, unpublished observations; see also Cobb et al. 1995). In addition, theoretical, experimental and modeling studies also indicate that the intrinsic subthreshold oscillations of individual cells can engender synchronized population activity (Engel et al. 1992; Fransén et al. 1999; Jefferys et al. 1995) can very efficiently reset the intrinsic oscillations in rat hypoglossal motoneurons in vitro. J. Neurophysiol. 71: 119–128, 1994.

