GABA_{B} Receptors Are the First Target of Released GABA at Lamina I Inhibitory Synapses in the Adult Rat Spinal Cord

NADÈGE CHÉRY AND YVES DE KONINCK
Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada

Received 9 March 2000; accepted in final form 25 May 2000

Chéry, Nadège and Yves De Koninck. GABA_{B} receptors are the first target of released GABA at lamina I inhibitory synapses in the adult rat spinal cord. J. Neurophysiol 84: 1006–1011, 2000. We have previously provided functional evidence that glycine and GABA are contained in the same synaptic vesicles and coreleased at the same synapses in lamina I of the rat spinal dorsal horn. However, whereas both glycine receptors (GlyRs) and GABA_{A} receptors (GABA_{A}Rs) are expressed on the postsynaptic target, under certain conditions inhibitory events appeared to be mediated by GlyRs only. We therefore wanted to test whether GABA_{B} receptors could be activated in conditions where GABA released was insufficient to activate GABA_{A}Rs. Focal stimulation in the vicinity of visually identified lamina I neurons elicited monosynaptic IPSCs in the presence of ionotropic glutamate receptor antagonists. Pairs of stimuli were given at different interstimulus intervals (ISIs), ranging from 25 ms to 1 s to study the depression of the second of evoked IPSCs (paired pulse depression; PPD). Maximal PPD of IPSCs was 60 ± 14% (SE) (of the conditioning pulse amplitude), at ISI between 150 and 200 ms. PPD was observed with IPSCs evoked at stimulus intensities where they had no GABA_{A}R component. PPD of small evoked IPSCs was not affected by the GABA_{A}R antagonist bicuculline but significantly attenuated by 10–30 μM CGP52432, a specific GABA_{B} receptor antagonist. These data indicate that, under conditions where GABA released is insufficient to activate postsynaptic GABA_{A}Rs at lamina I inhibitory synapses, significant activation of presynaptic GABA_{B} receptors can occur.

METHODS

Slicing procedure

Adult male Sprague–Dawley rats (weighing 150–250g) were anesthetized with pentobarbital sodium (30 mg/kg), and spinal cord slices were obtained as described previously (Chéry and De Koninck 1999a; Chéry et al. 2000). Briefly, rats were perfused with ice-cold sucrose artificial cerebrospinal fluid (ACSF; in which 126 mM NaCl was replaced with 252 mM sucrose; see below for a description of normal ACSF) and rapidly decapitated. The spinal cord was removed by hydraulic extrusion, and the cervical and lumbar segments (2 cm long) were isolated and glued, lateral side down, on a brass platform with cyanoacrylate cement, in a chamber filled with oxygenated ice-cold sucrose ACSF. Parasagittal 400-μm-thick slices were cut, incubated in sucrose-ACSF at room temperature (23–28°C) for 30 min, and transferred to normal ACSF for at least one hour prior to electrophysiological recordings. Next, the slices were transferred to a recording chamber under a Zeiss AxioScope equipped with infrared differential interference contrast (IR-DIC) and water immersion-objectives for visualization of neurons in thick live tissue. The slices were perfused at ~2 ml/min with oxygenated ACSF containing (in mM) 126 NaCl, 2.5 KCl, 2 CaCl_{2}, 2 MgCl_{2}, 10 glucose, 26 NaHCO_{3}, 1.25 NaHPO_{4} (pH 7.35; 300–310 mOsm), and the glutamate receptor antagonists 6-cyano-7-nitroquinoloxaline-2, 3-dione (CNQX, 10 μM; Tocris Cook-
son) and d-2-amino-5-phosphonovaleric acid (d-AP5, 40 μM; Tocris Cookson).

Drug application

Bicuculline methiodide (10–20 μM; RBI), strychnine hydrochloride (100 nM – 0.5 μM; RBI) and CGP52432 ([1-[3,4-dichlorophenyl)methyl] amino[3propyl] (diethoxymethyl) phosphinic acid; 10–30 μM; Ciba-Geigy) were used to block GABA_ARs, GlyRs, and GABA_BRs, respectively. The glutamate receptor antagonists CNQX and d-AP5 were used to isolate monosynaptic IPSCs. The action potential blocker tetrodotoxin (TTX, 1 μM; RBI) was used to record miniature IPSCs and the benzodiazepine flunitrazepam (1 μM; Sigma) was used to potentiate GABA_ARs and thus unmask the GABA_A R components of mIPSCs.

Whole cell recordings and data analysis

For whole cell voltage-clamp recordings of IPSCs, patch pipettes were pulled from borosilicate glass capillaries (with an inner filament, WPI) using a two-stage vertical puller (Narishige PP-83). To record mIPSCs and evoked IPSCs, the pipettes were filled with an intracellular solution composed of (in mM) 110 CsCl, 10 HEPES, 2 MgCl_2, 2 mM ATP (Sigma), 0.4 mM GTP (Sigma), 11 mM BAPTA (Sigma), 1 mM CaCl_2 and 0.5% Lucifer yellow (Sigma). The pH was adjusted to 7.2 with CsOH and the osmolarity ranged from 260 to 280 mOsm (pipette resistance 3 MΩ). For the paired pulse experiments, 110 mM CsCl was replaced with 110 mM Cs-glucuronate and 5 mM CsCl, and the membrane was held at 0 mV to avoid the confounding effect of action potential generation. Recordings were obtained by lowering the patch electrode onto the surface of visually identified neurons in lamina I. While monitoring current responses to 5 mV pulses, a brief suction was applied to form >10MΩ seals. An Axopatch 200B amplifier (Axon Instruments) with >80% series resistance compensation was used for the recording. The access resistance was monitored throughout each experiment. Only recordings with access resistance between 7–20 MΩ were considered acceptable for analysis of evoked IPSCs and only recordings with stable access throughout the entire administration of antagonists were used for further analysis. Monosynaptic IPSCs were evoked by focal electrical stimulation using a patch micropipette. Square-wave constant paired-pulses (200–300 μs duration) were applied at a frequency of ~0.3 Hz, at different interstimulus intervals, ranging from 25 ms to 1 s. The electrode was placed within ~20–50 μm of cell body of lamina I neurons. For analysis of the data, traces were low-pass filtered at 10 kHz and stored on a videotape, using a digital data recorder (VR-10B, Instrutech). Offline, the recordings were low-pass filtered at 2–3 kHz and sampled at 10–20 kHz on an Intel Pentium-based computer and analyzed using software designed by Y. De Koninck (Chéry and De Koninck 1999a; De Koninck and Mody 1994).

Statistical analysis

Student t-tests were used to analyze the differences between the kinetic and amplitude parameters of the IPSCs. The critical value for statistical significance was set at P < 0.05. All the data are expressed as mean ± SE, unless otherwise indicated.

RESULTS

Whole cell patch-clamp recordings from identified lamina I neurons were performed using a previously described parasag-
ittal spinal slice preparation, which provides optimal conditions for systematic identification of neurons in this layer (Chéry et al., 2000). With this approach, we have shown that lamina I neurons receive exclusively GlyR-mediated mIPSCs (Chéry and De Koninck 1999a) although GABA coexists with glycine in superficial dorsal horn neurons (Todd and Spike 1993). Failure to detect a GABA_AR-mediated component to mIPSCs in lamina I neurons was due to a subthreshold activation of GABA_BRs (Chéry and De Koninck 1999a). We confirmed that at these synapses both GlyRs and GABA_BRs can be activated during individual mIPSCs by adding flunitrazepam to enhance the sensitivity of GABA_BRs. Figure 1 illustrates that, while under normal conditions, all mIPSCs are antagonized by 100 mM strychnine, in the presence of flunitrazepam, an additional slowly rising and slowly decaying GABA_BR-mediated component appeared in the large majority of events. Following the application of flunitrazepam, >85% of the mIPSCs had a dual kinetic with a very prolonged second component (rise time, 4.1 ± 0.9 ms; decay, 52.8 ± 8.9 ms). Given that mIPSCs represent the activation of postsynaptic receptors by single vesicles of transmitter (Edwards et al. 1990), these results indicate corelease of GABA and glycine from the same synaptic vesicles and thus from the same terminals. This evidence is consistent with previous reports indicating that GABA and glycine are taken up by the same vesicular transporter (Burger et al. 1991; Chaudhry et al. 1998; Dumoulin et al. 1999) and with evidence at the motoneuron synapse that stimulation of single inhibitory interneurons produces mixed GlyRs and GABA_BR-mediated IPSCs (Jonas et al. 1998).

While under certain conditions, the GABA coreleased with glycine may be subthreshold to activation of GABA_BRs, it may still be sufficient to activate another receptor subtype, namely GABA_B receptors. GABA_B autoreceptors are found predominantly in laminae I–II of the dorsal horn (Bowery 1993) and may have a greater affinity for the inhibitory transmitter than GABA_ARs. To test this hypothesis, we sought to detect activation of GABA_B receptors under conditions where GABA_ARs are not activated (i.e., conditions in which inhibitory currents are mediated by GlyRs only). Figure 2 illustrates that IPSCs evoked by focal stimuli at low intensity (<100 µA for 200 µs) in the vicinity of identified lamina I neurons were completely blocked by strychnine (Fig. 2A; n = 12). In the presence of strychnine, GABA_BR-mediated evoked IPSCs were only obtained on increasing the stimulus intensity (Fig. 2B).

Using such stimuli that resulted in pure GlyR-mediated IPSCs, we studied the paired-pulse depression (PPD) of IPSCs evoked in lamina I neurons. Paired-pulse depression is typically associated with activation of presynaptic GABA_BRs (Davies et al. 1990). A conditioning current and a test current were applied focally at different interstimulus intervals (ISIs; see Fig. 3). The ISIs ranged from 25 ms to 1 s. When the ISI was shorter than the decay of the conditioning IPSCs, an overlap in time of the conditioning and test currents was observed. Thus a digital subtraction was used to obtain accurate values for the peak of the test IPSCs, as previously described (Otis et al. 1993). Figure 3 illustrates PPD of evoked IPSCs in a lamina I neuron. The maximal depression of the test IPSCs (60 ± 14% of the amplitude of the conditioning IPSC; P < 0.01) was observed at 150–200 ms ISIs (n = 6).

Up to 20 µM bicuculline failed to affect the amplitude of the conditioning pulse (Fig. 4B; nor the PPD ratio), indicating that IPSCs evoked by minimal stimuli do not involve activation of postsynaptic GABA_BRs. PPD of small evoked IPSCs was reversed following bath application of 10–30 µM CGP52432 (Fig. 4C), a specific GABA_B receptors antagonist. This suggests that GABA_B autoreceptors appear to be the first target of GABA released at inhibitory synapses in lamina I neurons. The evoked IPSCs were completely abolished by strychnine (Fig. 4B), confirming that they are selectively mediated by GlyRs.

DISCUSSION

Our findings indicate that, while GABA and glycine appear to be released from the same synaptic terminals in lamina I, the amount of GABA released on activation of a few synaptic terminals may be subliminal to the activation of postsynaptic GABA_A receptors, yet the released GABA may be sufficient to significantly activate presynaptic GABA_B receptors. The predominant localization of GABA_B receptors in superficial laminae of the spinal cord (Malcangio et al. 1993) and their preferential occurrence on synaptic terminals in many CNS regions (Bowery 1993) indicate that they may have an important role in the modulation of GABA release in the dorsal horn.

Given the evidence of both GABA and glycine are contained in the same terminals and most likely in the same synaptic vesicles (this study and Burger et al. 1991; Chaudhry et al. 1998; Chéry and De Koninck 1999a; Dumoulin et al. 1999;
Jonas et al. 1998) and that small evoked IPSCs were mediated exclusively by glycine provided an ideal setting to test whether activation of GABA_B receptors occurs in conditions where GABA_AR activation may not be detectable, because the release event could be measured independent of a GABA_AR component using the GlyR-mediated event. In this study we were able to show GABA_B-mediated PPD of GlyR IPSCs. Thus our results provide evidence that GABA_B autoreceptors are present on glycinerergic interneurons that also contain GABA (Todd and Spike 1993), where they modulate the release of both inhibitory transmitters from interneurons terminals. This evidence is consistent with the recent demonstration of presynaptic inhibition of both GABA and glycine release at spinal interneuron-motoneuron synapses by the GABA_BR agonist baclofen (Jonas et al. 1998).

The released GABA is likely originating from the same terminal as the released glycine because results from immunocytochemical studies indicate that virtually all of the glycinerergic neurons and terminals in the superficial dorsal horn also contain GABA (Mitchell et al. 1993; Todd and Sullivan 1990) and evidence indicate that in these terminals, glycine and GABA are packaged in the same synaptic vesicles (Burger et al. 1991; Che´ry and De Koninck 1999a; Dumoulin et al. 1999; Jonas et al. 1998). It remains however that some GABAergic neurons do not contain glycine. Thus it is possible that some of the GABA released may originate from separate terminals from those releasing the glycine. In such case, our results...
have observed a recruitment of GABAergic receptors to synaptic junctions of the pharmacology of GABAergic synapses. This is of particular interest in light of evidence that such synaptic arrangement can be altered under certain conditions. For example, we have observed a recruitment of GABAergic receptors to synaptic junctions at lamina I synapses following peripheral nerve injury (Chéry and De Koninck 1999b).

Thus GABAergic inhibition appears to be modulated in a selective manner in lamina I, whereby GABAergic receptors may be the first target of GABA released in this spinal area. Such regulation of GABA release may have important physiological implications, notably under conditions that favor hyperexcitability in the dorsal horn.

In summary, these data indicate that under conditions where GABA release is insufficient to significantly affect postsynaptic GABAergic receptors on lamina I neurons, it may rather serve to activate GABAergic receptors to regulate the release of both glycine and GABA.

We thank Hoffman-La Roche for the generous donation of flunitrazepam and A. Constantin for expert technical assistance.

This study was supported by National Institute of Neurological Disorders and Stroke Grant NS-34022 and by Canadian Medical Research Council (MRC) Grant MT 12942 to Y. De Koninck. Y. De Koninck is a scholar of the Canadian MRC. N. Chéry was the recipient of a Faculty of Medicine Graduate Award and an Eileen Peters McGill Major Fellowship.

REFERENCES

Dutar P and Nicoll RA. Pre- and postsynaptic GABA(B) receptors in the hippocampus have different pharmacological properties. Neuron 1: 585–591, 1988.

