BK Channels in Human Glioma Cells

CHRISTOPHER B. RANSOM AND HARALD SONTHEIMER
Department of Neurobiology, University of Alabama School of Medicine, Birmingham, Alabama 35294

Received 19 June 2000; accepted in final form 13 October 2000

Ransom, Christopher B. and Harald Sontheimer. BK channels in human glioma cells. J Neurophysiol 85: 790–803, 2001. Ion channels in inexcitable cells are involved in proliferation and volume regulation. Glioma cells robustly proliferate and undergo shape and volume changes during invasive migration. We investigated ion channel expression in two human glioma cell lines (D54MG and STTG-1). With low [Ca\(^{2+}\)]\(_i\), both cell types displayed voltage-dependent currents that activated at positive voltages (more than +50 mV). Current density was sensitive to intracellular cation replacement with the following rank order: K\(^+\) > Cs\(^+\) > Li\(^+\) > Na\(^+\). Currents were >80% inhibited by iberiotoxin (33 nM), charybdotoxin (50 nM), quinine (1 mM), tetraadine (30 μM), and tetraethylammonium ion (TEA; 1 mM). Extracellular phloretin (100 μM), an activator of BK(Ca\(^{2+}\)) channels, and elevated intracellular Ca\(^{2+}\) negatively shifted the I-V curve of whole cell currents. With 0, 0.1, and 1 μM [Ca\(^{2+}\)], the half-maximal voltages, \(V_o\), for whole cell current activation were +150, +65, and +12 mV, respectively. Elevating [K\(^+\)]\(_o\), potentiated whole cell currents in a fashion proportional to the square-root of [K\(^+\)]\(_o\). Recording from cell-attached patches revealed large conductance channels (150–200 pS) with similar voltage dependence and activation kinetics as whole cell currents. These data indicate that human glioma cells express large-conductance, Ca\(^{2+}\)-activated K\(^+\) (BK) channels. In amphotericin-perforated patches bradykinin (1 μM) activated TEA-sensitive currents that were abolished by preincubation with bis-(o-aminophenoxy)-N,N',N''-tetraacetic acid-AM (BAPTA-AM). The BK channels described here may influence the responses of glioma cells to stimuli that increase [Ca\(^{2+}\)]\(_i\).

INTRODUCTION

The vast majority of primary brain tumors in adult humans arise from glial cells. These neoplasms carry a very poor prognosis due to their invasive migration that renders surgical treatment untenable ( Cotran et al. 1994 ). Ion channels may contribute to this invasive behavior by influencing salt and water movements between intracellular and extracellular compartments during shape and volume changes associated with migration through the tortuous extracellular space of brain tissue ( Soronceau et al. 1999 ). In addition, ion channels in glia and other inexcitable cell types have been shown by many laboratories to be functionally involved in proliferation ( Bringmann et al. 2000 ; Chin et al. 1997 ; DeCourcey et al. 1984 ; Dubois and Rouairie-Dubois 1992 ; Nilius and Wohlrab 1992 ; Pappas et al. 1994 ; Puro et al. 1989 ; Rouinaire-Dubois and Dubois 1990, 1998 ; Schlichter et al. 1996 ; Wiecha et al. 1998 ; Wilson and Chiu 1993 ). There is thus good reason to believe that ion channels in glioma cells could contribute to the malignant behavior of these cells (i.e., invasive migration and uncontrolled proliferation). Moreover, ion channels expressed by glioma cells may represent novel therapeutic targets in the treatment of this deadly disease.

Human glioma cells express a variety of ion channels. These include voltage-gated K\(^+\) currents (Chin et al. 1997 ), voltage-gated Na\(^+\) currents (Brismar and Collins 1989 ), Ca\(^{2+}\)-activated K\(^+\) currents (Brismar and Collins 1989 ; Pallotta et al. 1987 ), voltage-gated Cl\(^-\) currents (Ulrich and Sontheimer 1996 ), and volume-regulated Cl\(^-\) currents (Bakhramov et al. 1995 ) (for review, see Brismar 1995 ). The expression of large-conductance, Ca\(^{2+}\)-activated K\(^+\) channels (BK) by glioma cells is of particular interest because these channels are related to the degree of differentiation and proliferative state of retinal glial (Muller) cells (Bringmann et al. 2000 ). Specifically, Muller cells lose their BK channels during development and regain them when cells proliferate in response to injury or disease. These results suggest dedifferentiated/proliferating glial cells, glioma cells representing the most extreme case, revert to a developmental biophysical phenotype that includes BK channel expression ( Bordey and Sontheimer 1997 ; Bringmann et al. 2000 ; MacFarlane and Sontheimer 1997 ). We examined ion channel expression in two human glioma cell lines and found that both cell types highly express large-conductance, Ca\(^{2+}\)-activated K\(^+\) channels (BK channels). Our study confirms that BK channel expression is a common feature of human glioma cells (Brismar 1995 ). In addition, we provide additional descriptions of the pharmacology, Ca\(^{2+}\) dependence, and [K\(^+\)] dependence of these currents in glioma cells. This detailed biophysical thumbprint is necessary for critical evaluation of the functions of BK channels in human glioma cells.

METHODS

Cell culture

All experiments were performed on the glioma cell lines STTG-1 (anaplastic astrocytoma, WHO grade III) and D54-MG (glioblastoma multiforme, WHO grade IV). STTG-1 cells were obtained from American Type Tissue Collection (Rockville, MD), and D54-MG cells were a gift from Dr. D. Bigner (Duke University). We received D54MG cells at passage 515 and STTG1 cells at passage 14. Vials of cells arrived frozen and were thawed and resuspended in culture medium (see following text). These cells were plated on four large culture flasks (Becton Dickinson, Lincoln Park, NJ) and grown to confluence. Cells were detached from the flasks with a 1- to 2-min exposure to culture media supplemented with trypsin (1.5 mg/ml).

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Address for reprint requests: H. Sontheimer, Dept. of Neurobiology, University of Alabama, 1719 6th Ave. S. CIRC 545, Birmingham, AL 35294 (E-mail: hws@nrc.uab.edu).
This suspension was added to an equal volume of culture medium and spun at 1,200 g for 5 min in a centrifuge (Lab-Line Instruments Inc., Melrose Park, IL). We aspirated the supernatant and resuspended the pellet from three flasks in 90 ml of a freezing solution (culture medium with 5% DMSO). This suspension was divided into 180 0.5-ml aliquots and stored in liquid nitrogen for later use. Some cells were plated directly onto glass coverslips in 24-well plates (Becton Dickinson) for experiments and into a culture flask (Becton Dickinson) for future passage. Data in this paper were obtained from cells passed ≤100 times. However, no appreciable difference in membrane currents were observed in cells passed ≤300 times.

Our culture medium was Dulbecco’s modified essential medium (Life Technologies, Grand Island, NY) with 10% fetal calf serum (Hyclone, Logan, UT). Cells were kept in an incubator (Lab-Line Instruments) at 37°C in a 90% O2-10% CO2 humidified environment. This resulted in a pHc of 7.4.

Electrophysiology

Standard patch-clamp techniques were used to record whole cell and single-channel membrane currents (Hamill et al. 1981). Patch pipettes were pulled on an upright puller (PP-83, Narishige Instruments, Tokyo) from thin-walled, glass capillary tubing with filament (MTW150F-4, WPI, Sarasota, FL) and had resistances of 3–5 MΩ. For experiments with amphotericin B (Sigma, St. Louis, MO) perforated patches, we closely followed the procedures of Rae et al. (1991). Briefly, amphotericin was dissolved and thoroughly triturated in DMSO (final concentration of 0.3 μM). This stock was added to our standard pipette solution (final amphotericin concentration of 0.3 μM). Pipettes used for amphotericin perforated-patch recording were flame-polished on a microforge (MF-83, Narishige Instruments) and had resistances of 1–3 MΩ. Inclusion of Lucifer yellow (Sigma) in our pipette solutions for amphotericin-perforated patch recordings allowed us to distinguish perforated-patch recordings from whole cell recordings (fluorescence rapidly appeared in cells following breakthrough). We used an Axopatch 200B amplifier (Axon Instruments, Redwood City, CA) controlled by a PC-compatible microcomputer (Dell Computers, Dallas, TX) running Axon instruments software (pClamp7). Data were stored directly to disk using a Digidata 1200 A-D interface (Axon Instruments). Data were acquired at 10 kHz and filtered at 1 and 2 kHz for patch and whole cell recordings, respectively. Capacitance and series resistance, Rs, compensation was performed with the Axopatch amplifier. Rs was compensated ≤80%. No post hoc correction of Rs was performed; because the currents under study were quite large, we simply note that the voltage error associated with Rs will underestimate the steepness of the I-V curve. Experiments were not performed on cells with a Rs >10 MΩ (except with amphotericin-perforated patches). Cells were visualized with an inverted microscope (Nikon, Melville, NY). A three-axis micromanipulator (Newport, Irvine, CA; mounted onto a custom frame fitted to the microscope) held the preamplifier headstage and pipette holder. The recording chamber had a volume of 300 μl and was constantly superfused with control extracellular solution at a rate of 0.5 ml/min. A triple-barreled microperfusion device with a stepper motor (SF-77B perfusion fast-step, Warner Instruments, Hamden, CT) was used to apply test solutions directly to cells. Two barrels were fed by 2- to 1-manifolds, and one barrel was fed by a 4- to 1-manifold. Control solutions were continuously flowing in each barrel between applications of the five test solutions. The microperfusion flow pipes and stepper motor were mounted on a manual micromanipulator (MX-110, Soma Scientific Instruments, Irvine, CA) attached to our isolation table (Micro-g, Peabody, MA) with a magnetic base. Grounding the recording chamber via an agar salt bridge (4% agar, 1 M KCl) minimized liquid junction potentials produced by test solutions.

Solutions

Our standard bath solution contained the following (in mM): 5 KCl, 135 NaCl, 1.6 Na2HPO4, 0.4 NaH2PO4, 1 MgSO4, 10 glucose, and 32.5 HEPES (acid). pH was adjusted to 7.4 with NaOH. The osmolarity was 300 mOsm. In experiments with elevated [K+]o, KCl was substituted with an equimolar amount of NaCl. Drugs were added directly to this solution. Our standard pipette solution contained (in mM): 145 KCl, 1 MgCl2, 10 HEPES (acid), and 10 EGTA. pH was adjusted to 7.25 with Tris-base, and Ca2+ was added from a stock solution to achieve a target free Ca2+ concentration of 20 nM. We calculated the calcium to add to our pipette solution in experiments with elevated free calcium concentrations with a software program based on equations provided in Marks and Maxfield (1991). This program takes into account ionic strength and pH. We corrected for EGTA purity. For target free Ca2+ concentrations of 0.1 and 1 μM, we added 4.3 and 8.6 mM Ca2+, respectively. To inhibit rises of [Ca2+]i, we loaded cells with the acetoxyethyl ester form of 1,2-bis(2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid (BAPTA-AM; Molecular Probes, Eugene, OR). BAPTA-AM was dissolved in DMSO and added to our culture media at a final concentration of 100 μM. Cells were incubated for 20–30 min before recording. All chemicals were purchased from Sigma unless otherwise noted. Scorpion toxins (charybdotoxin andiberiotoxin) were purchased from Alomone Labs (Jerusalem, Israel).

Analysis

Data were analyzed off-line with the software package Origin (v5.0.5, MicroCal Software, Northampton, MA). All curve-fitting was performed using a least-squares curve-fitting routine provided by the software. Inhibition curves were fit with the following equation

\[ II_{\text{max}} = I/(1 + ([\text{drug}]/IC_{50})^g) \]

where \( II_{\text{max}} \) is the fractional remaining current, IC50 is the half-maximal inhibitory concentration, and \( g \) is the Hill slope. To quantify the voltage dependence of currents under different conditions, we fit normalized currents to a Boltzmann equation of the following form (Weiss and Magleby 1990)

\[ I = I_0/(1 + \exp(-q(V - V_n)/kT)) \]

where \( I_{\text{max}} \) is normalized current, \( q \) is the effective gating charge, \( V_{0.5} \) is the half-maximal voltage, \( k \) is the Boltzmann constant, and \( T \) is temperature in Kelvin. Under our conditions, the term \( kT \) was ≈25.6. We calculated conductance as follows

\[ g = I/(V_m - E_k) \]

\( V_m \) is membrane potential and \( E_k \) is the potassium equilibrium potential determined with the Nernst equation. Statistical analysis was performed with Excel (Microsoft, Bellevue, WA). We used a paired, one-tailed \( t \)-test to evaluate data for statistical significance with an alpha value of \( P < 0.05 \).

RESULTS

Whole cell recordings from glioma cells

Under typical whole cell recording conditions (i.e., low intracellular Ca2+), the human glioma cells studied (D54MG and STTG-1) had stereotypical I-V relationships. Voltage-dependent currents were seen that activated only at positive potentials (more than +50 mV; see Fig. 1). Due to the voltage dependence and rapid deactivation of this current (see Single-channel recordings), tail-current analysis of the reversal potential was not a feasible approach to determine the charge-carrying species. We therefore opted to examine the effect of
intracellular cation replacement on whole cell current density (pA/pF). Figure 1 shows whole cell currents in a representative STTG-1 cell that was serially patched with pipettes containing KCl- or CsCl-based pipette solutions. Current density (pA/pF) was reversibly reduced by intracellular cations other than K⁺ with the following rank order: K⁺ > Cs⁺ > Li⁺ > Na⁺ (see Fig. 1C). These data suggest the currents are largely carried by K⁺ ions. Data from singly and serially patched cells are included in Fig. 1C. These data were obtained from a single passage of STTG-1 cells. Unless otherwise stated, the voltage protocol we used to elicit currents was to step the membrane potential from −120 to +180 mV for 40–80 ms in 20-mV increments from a holding potential of −40 mV (see Fig. 1A, inset). With KCl-based pipette solutions, the average resting membrane potential (measured as the 0 current potential) of 16 STTG-1 astrocytoma cells was −43 ± 13 mV (mean ± SD for all subsequent values, range = −9 to −64 mV), much smaller than typically seen in “normal” rodent glia (Bordey and Sontheimer 1997).

Pharmacology of the voltage-dependent currents

The voltage-dependent currents in glioma cells were sensitive to several well-known K⁺ channel blockers. These included the organic compounds tetraethylammonium ion (TEA) and quinine and the scorpion venom peptides charybdotoxin and iberiotoxin. Because we wanted to quantitatively assess the effects of these drugs on the voltage-dependent currents, online leak-subtraction was performed for these experiments. Charybdotoxin was effective at 50 nM and inhibition was voltage-dependent; block was reduced as the membrane potential was made more positive (at 50 nM, \(I_{\text{drug}}/I_{\text{control}} = 0.05\) at +80 mV and \(\approx 0.5\) at +180 mV; data not shown). Iberiotoxin, a selective inhibitor of BK channels (Galvez et al. 1990), inhibited currents in a voltage-independent fashion with an apparent half-maximal concentration (IC₅₀) of \(\approx 10\) nM (see METHODS for details and Fig. 2). In a subset of experiments, we tested iberiotoxin at 10 nM and found it was effective at this concentration (\(I/I_{\text{control}} = 0.88\) at +140 mV). TEA inhibition of voltage-dependent currents had an IC₅₀ of \(\approx 250\) μM (see Fig. 3). In a subset of experiments, we tested 10 μM TEA on currents at +140 mV and found no effect.

Tetrandrine is an inhibitor of BK currents that has different effects on channels with and without auxiliary β subunits. At 3 μM, tetrandrine has negligible effects on channels composed of α subunits alone but causes >50% inhibition of channels associated with β subunits (Dworetzky et al. 1996). On average, the voltage-dependent currents in glioma cells were inhibited by 63 and 91% by 3 and 30 μM tetrandrine, respectively (n = 5, see Fig. 4). These results are consistent with the presence of a β subunit. The illustrated currents are “TEA-sensitive” currents obtained by subtracting the average current evoked with a voltage step to +120 mV in the presence of 10 mM TEA from each trace. No time-dependent current component remained in the presence of 10 mM TEA. The effects of all of these drugs were completely reversible.

The pharmacological profile [inhibition by low concentrations of TEA (IC₅₀ < 0.5 mM), charybdotoxin, and iberiotoxin] of the voltage-dependent currents is consistent with them representing the activity of BK channels. To pursue this further, we extracellularly applied phloretin, a plant molecule that activates BK channels (Gribkoff et al. 1997), during recordings to observe its effects on whole cell currents. Extracellular phloretin (0.1 mM) increased current amplitude and negatively shifted the activation potential (see Fig. 5). The apparent half-maximal voltages, \(V_{0.5}\), determined from Boltzmann fits, were around −180 mV.
mann fits to the mean currents elicited with ramp voltages (normalized to the peak value seen with phloretin), were +177 and +65 mV under control conditions and in the presence of phloretin, respectively ($n = 4$, Fig. 5B). Off-line leak subtraction was performed on the ramp currents comprising the data illustrated in Fig. 5B (using the linear portion of these data between −80 and −20 mV). Phlorizin-induced currents were reduced by >50% with low concentrations of TEA (0.5 mM) as would be predicted if they represent the activity of the same channel population underlying the voltage-dependent current (Fig. 5C).

The pharmacology of the voltage-dependent currents in glioma cells strongly suggests that they are mediated by BK channels.

$[Ca^{2+}]_i$ dependence

If the voltage-dependent currents in human glioma cells are mediated by BK channels, elevation of the intracellular $Ca^{2+}$ concentration, $[Ca^{2+}]_i$, would be predicted to shift the $I-V$ curve toward more negative potentials. To evaluate this, we made whole cell recordings from STTG-1 cells with pipette solutions with 10 EGTA/zero-added $Ca^{2+}$ and free $Ca^{2+}$ concentrations of 0.1 and 1 mM (see Fig. 6). Increasing $[Ca^{2+}]_i$ resulted in modest increases in current density at negative potentials (likely due to linear $Cl^-$ currents) but dramatically increased current densities across the range of 0 to +120 mV (see Fig. 6B). The half-maximal voltages, $V_{0.5}$, determined from Boltzmann fits to the summary data from these experiments were +150 mV (range = +141 to +166 mV, $n = 6$), +65 mV (range = +49 to +102 mV, $n = 8$), and +12 mV (range = −7 to +28 mV, $n = 6$), with approximate free $Ca^{2+}$ concentrations of 0, 0.1, and 1 mM, respectively. The effects of $Ca^{2+}$ were often maximal within 30 s following breakthrough but sometimes continued to develop over ~20 min. For consistency, all current measurements for the data in Fig. 6B were made 8–12 min after obtaining a whole cell recording. We
FIG. 5. Effects of extracellular phloretin (0.1 mM) on whole cell currents. A: whole cell currents in a STTG-1 cell evoked with voltage ramps under the indicated conditions. Voltage ramps were applied from $-60$ to $+180$ mV at a rate of 1 mV/ms.

B: summary of phloretin effects on ramp currents. Data points are means $\pm$ SD ($n = 4$) of ramp currents (normalized to the maximum value seen with phloretin). The apparent half-maximal voltage, $V_{0.5}$ (determined from Boltzmann fits to the summary data, ---), was $+177$ and $+165$ mV under control conditions and with phloretin, respectively.

C: inhibition of control and phloretin currents by 0.5 mM TEA as a function of voltage.

FIG. 4. Inhibition of voltage-dependent currents by tetrandrine. A: whole-cell currents evoked with voltage steps to $+120$ mV under the indicated conditions. Illustrated currents are TEA-sensitive currents (see text). B: time course of the experiment illustrated in A. C: means $\pm$ SD of fractional remaining current at $+120$ mV with 3 and 30 μM tetrandrine. Data are from 5 D54MG cells.
Single-channel recordings

To identify the ion channels underlying the Ca²⁺-activated K⁺ currents, we made cell-attached recordings from these cells. Of primary interest were the single-channel conductance, voltage dependence, and the activation kinetics of these channels in cell-attached patches. The latter two parameters could be compared with whole cell currents to identify channels as those underlying the whole cell currents.

The activation kinetics of large-conductance channels in cell-attached patches resembled those of whole cell currents. We constructed ensemble-average currents (average of 200–300 voltage steps to an activating test potential) and compared the kinetics of the ensemble average to whole cell currents at or near the same membrane potential (see Fig. 7). The accuracy of these comparisons was limited by our ability to measure the resting membrane potential of a cell after obtaining a whole cell recording because this value was used to determine the transmembrane potential during the cell-attached phase of the experiment. We measured the resting potential as the zero-transmembrane potential during the cell-attached phase of the experiment. We measured the resting potential as the zero-transmembrane potential during the cell-attached phase of the experiment. We measured the resting potential as the zero-transmembrane potential during the cell-attached phase of the experiment. We measured the resting potential as the zero-transmembrane potential during the cell-attached phase of the experiment.

The tail current following an activating voltage step (see Fig. 7A). The tail current in the ensemble average in Fig. 7B has completely deactivated in <2.0 ms. These last findings support our initial approach to study the ionic selectivity of these currents (intracellular cation replacement). Under conditions of low [Ca²⁺], the voltage dependence and rapid deactivation of these BK channels limits the ability to measure reversal potentials with a tail-current protocol.

Activation of channels in cell-attached patches required positive potentials, similar to whole cell currents with low [Ca²⁺]. Channels in the cell-attached patch illustrated in Fig. 7A were only seen at transmembrane potentials greater than +40 mV (see Fig. 7E). The unitary current of channels was determined from Gaussian fits of amplitude frequency histograms (see Fig. 7E, inset). With standard pipette solution (KCl-based), the slope of the unitary current-V plot for channels activating at positive potentials suggested an average single-channel conductance of ≈150 pS. However, a wide range of single-channel conductances was observed (range = 120–220 pS, n = 32), similar to previous studies on BK channels (Reinhart et al.

---

FIG. 6. Elevated intracellular Ca²⁺ negatively shifted the whole cell I-V curve. A: whole cell currents of three representative STTG-1 cells at 6 different voltages (−80 to +120 mV in 40-mV increments, see inset) with estimated [Ca²⁺] of 0, 0.1, and 1 μM. With 0 Ca²⁺, current activation required large, positive potentials (more than +80 mV) while substantial current activation was seen at 0 mV with 1 μM [Ca²⁺]. B: means ± SE of current density (pA/pF) in STTG-1 cells seen with estimated [Ca²⁺] of 0, 0.1, and 1 μM [Ca²⁺], respectively.

observed wide variability in $V_{0.5}$ (25–50 mV), even between cells on the same coverslip with the same Ca²⁺/EGTA-buffered pipette solutions. We suggest some of this variability is due to incomplete equilibration between pipette and cell and/or different biochemical states of the channels. Currents evoked with ramp voltages in experiments with elevated [Ca²⁺] were reduced by >50% with 0.5 mM TEA and 50 nM iberiotoxin (data not shown). The illustrated currents in Fig. 6 were leak-subtracted by subtracting the current remaining in 10 mM TEA from control currents (TEA-sensitive currents).
The unitary conductance for the channels illustrated in Fig. 7A was 194 pS (see Fig. 7E). Consistent with the high current density of whole cell currents (80 pA/pF at +120 mV), only 2/32 cell-attached patches did not display multi-channel activity. In light of this and the fact that \([\text{Ca}^{2+}]_i\) (an unknown value during cell-attached recordings) modulates the voltage dependence of the channel, we elected not to undertake a more detailed analysis of the voltage dependence of channels in cell-attached patches.

Channels in outside-out patches displayed all the properties of whole cell currents, including activation at positive potentials, block by low concentrations of TEA and iberiotoxin, and dependence on intracellular \(K^+\). It was difficult to measure unitary current in outside-out patches due to the large number of channels in our patches. In outside-out patches with sufficiently low numbers of channels to resolve single-channel currents over a range of potentials, the unitary-current slope conductance was 92 pS \((n = 4)\) in standard bath solution (low \(K^+\), high \(Na^+\)). The lower unitary conductance in outside-out patches compared with cell-attached patches is likely due to the higher \([K^+]_o\) experienced by channels during cell-attached recording (see following text, Fig. 9D). The unitary current-\(V\) curve of channels in outside-out patches developed a pronounced negative slope at potentials greater than +60 mV (20 nM \([\text{Ca}^{2+}]_i\)).

\([K^+]_o\)-dependence of whole cell currents

Our ability to measure the reversal potential of the voltage-dependent currents was previously limited by their high voltage dependence in the absence of intracellular \(Ca^{2+}\). With elevated \([Ca^{2+}]_i\) (1 \(\mu\)M), clear shifts in reversal potential were observed when \([K^+]_o\) was raised from 5 to 135 mM (see Fig. 8). With 135 mM \([K^+]_o\) currents reversed near \(E_K\) (−2 mV under these conditions). These experiments confirm the results of our intracellular cation replacements. Despite the 84 mV decrease in driving force for \(K^+\) ions, current amplitudes above +30 mV were potentiated by elevating \([K^+]_o\) to 135 mM. For the D54-MG cell illustrated in Fig. 8, this potentiation translated into a three- to six-fold increase in whole cell conductance across a range of potentials (see Fig. 8C). Elevated \([K^+]_o\) had insignificant effects on voltage dependence, using \(V_{0.5}\) as an index, in experiments with or without \([Ca^{2+}]_i\) (see Fig. 8C, inset).

The potentiation by \([K^+]_o\) allowed us to detect BK current activation by 1 \(\mu\)M \([Ca^{2+}]_i\), near typical resting membrane potentials.
potentials (−40 mV; see Fig. 8D). We made rapid applications of 135 mM [K\textsuperscript{+}]\textsubscript{o} to cells. High [K\textsuperscript{+}]\textsubscript{o} resulted in large inward currents at −240 mV in cells with elevated [Ca\textsuperscript{2+}]\textsubscript{i}. The TEA sensitivity of [K\textsuperscript{+}]\textsubscript{o}-induced currents was consistent with BK currents. The current remaining in 10 mM TEA is likely a K\textsuperscript{+}-dependent leak current (note the lack of increased noise in Fig. 8D). The latency from application of high [K\textsuperscript{+}]\textsubscript{o} solution to the response may reflect the speed of our stepper motor and the wash-on and -off times of the high [K\textsuperscript{+}]\textsubscript{o} solution.

Because glioma cells in the interior of a tumor mass are likely to experience elevated [K\textsuperscript{+}]\textsubscript{o}, especially near the necrotic center, we wished to determine the range of [K\textsuperscript{+}]\textsubscript{o} over which glioma BK currents are potentiated. In 6/6 cells tested, current amplitudes were increased by 25 mM [K\textsuperscript{+}]\textsubscript{o} (see Fig. 9, A and B). In Fig. 9C, the mean specific K\textsuperscript{+} conductance (nS/pF) of six cells was plotted as a function of [K\textsuperscript{+}]\textsubscript{o}. Conductance increased proportional to the √[K\textsuperscript{+}]\textsubscript{o} as has been described for [K\textsuperscript{+}]\textsubscript{o} potentiation of the conductance of inwardly rectifying K\textsuperscript{+} currents (Newman 1993; Ransom and Sontheimer 1995), with an ~5-fold increase in specific conductance going from 5 to 135 mM [K\textsuperscript{+}]\textsubscript{o}. Specific conductances were 0.44 ± 0.1, 0.86 ± 0.3, 1.71 ± 0.4, and 2.12 ± 0.7 nS/pF (n = 6) in 5, 25, 83, and 135 mM [K\textsuperscript{+}]\textsubscript{o}, respectively. Elevated [K\textsuperscript{+}]\textsubscript{o} slightly decreased the time constant of activation (at +120 mV, τ\textsubscript{m} = 4.8 ± 0.5 ms in control and τ\textsubscript{m} = 3.9 ± 0.4 ms in 135 mM K\textsuperscript{+}). The potentiation of currents by K\textsuperscript{+} was not due to reduction of [Na\textsuperscript{+}]\textsubscript{o} per se because Na\textsuperscript{+} substitution with choline\textsuperscript{+} or N-methyl-D-glucamine\textsuperscript{+} (NMDG, data not shown) did not increase glioma BK currents.

Consistent with previous studies (Hurley et al. 1999; Lerche et al. 1995; Wann and Richards 1994), the unitary current was increased by elevating [K\textsuperscript{+}]\textsubscript{o}. Figure 9D illustrates the effect of increasing [K\textsuperscript{+}]\textsubscript{o} on unitary current amplitude in a representative outside-out patch. At a constant voltage (+70 mV), the unitary current amplitude was increased from +6.7 pA in 5 mM [K\textsuperscript{+}]\textsubscript{o} to +13.6 pA in 135 mM [K\textsuperscript{+}]\textsubscript{o} (see Fig. 9E).

**Endogenous activation of BK channels**

Large-conductance channels in cell-attached patches were generally only observed at positive potentials. However, there were examples of patches in which we detected large-conduc-
tance channels at the resting potential (V_{pip} = 0 mV) during cell-attached recording (see Fig. 10). In Fig. 10A, the current response of a cell-attached patch to ramping the pipette potential from +100 to -100 mV from a holding potential of 0 mV is illustrated (STTG-1 cell). The currents show a strong voltage dependence. Single-channel currents could be resolved across a range of potentials and the unitary slope conductance illustrated in Fig. 10B was 226 pS (see Fig. 10C). The large conductance and voltage dependence is consistent with these channels being BK channels.

Bradykinin activation of glioma BK currents

The activation of glioma BK channels at negative potentials requires a rise in [Ca^{2+}]_i. Cellular signals increasing [Ca^{2+}]_i are expected to activate these currents. Bradykinin is one such mediator that increases [Ca^{2+}]_i in many cell types, including human glioma cells (T. Manning and H. Sontheimer, unpublished observations). We used amphotericin perforated-patch recordings to demonstrate activation of glioma BK currents by bradykinin (see Fig. 11). In our amphotericin-perforated patch experiments, we gained electrical access within 3 min after establishing a giga seal with series resistances of 12–35 MΩ (see Fig. 11A). Because we were interested in bradykinin effects on the voltage dependence of glioma BK currents, we applied voltage ramps from -120 to +120 mV from a holding potential of -40 mV every 5 s (rate of change was 1 mV/ms). In 9/11 D54MG cells and 5/5 STTG-1 cells, application of bradykinin (1 μM) resulted in a rapid (≤5 s) and transient activation of currents with a strong voltage dependence (see
This activation was manifested as both an increase in current amplitude and, most importantly, a negative shift in the activation potential. The data in Fig. 11B are displayed on an expanded scale in the inset to demonstrate that bradykinin resulted in current activation at negative potentials. This shift was much larger in some cells (down to $250 \text{ mV}$). The negative shift in current activation can also be appreciated with the time course of current change at $140 \text{ mV}$ illustrated in Fig. 11C. Because bradykinin effects were transient and we acquired data at 5-s intervals, it is possible that we missed the peak response to bradykinin (and therefore the maximum negative shift in activation). The bradykinin-induced currents were sensitive to 1 mM TEA as expected for BK currents, although these experiments were complicated by the transient nature of bradykinin effects and the fact that we could only elicit a single response in cells (even $\leq 15$ min after the initial application).

To evaluate whether the activation of currents by bradykinin was due to elevation of $[\text{Ca}^{2+}]_i$, we incubated cells with the membrane-permeant, fast calcium-chelator BAPTA-AM (100 $\mu$M) for 20 –30 min. No responses to bradykinin were seen in 4/4 D54MG cells and 2/2 STTG1 cells incubated with BAPTA-AM during perforated-patch recording (see Fig. 11, D and E). In addition, no response to bradykinin was seen during conventional whole cell recording. These data indicate that bradykinin elevates $[\text{Ca}^{2+}]_i$, of human glioma cells and leads to a transient activation of BK currents at typical resting potentials.

**DISCUSSION**

Our study demonstrates that two human glioma cell lines (STTG-1 and D54MG) express BK channels. We have obtained data from another glioma cell line frequently used by others (U373MG) and confirmed BK expression by these cells as well. The identification of these currents as BK currents is based on the $[\text{K}]_i$-dependence, pharmacological profile, Ca$^{2+}$ sensitivity of whole cell currents, and the similar voltage dependence and kinetics of large-conductance channels in cell-attached patches to whole cell currents. In addition to confirming that BK channel expression is a common feature of many human glioma cells (Brismar 1995), our study provides additional descriptions of the pharmacology, Ca$^{2+}$ sensitivity, $[\text{K}]_i$ dependence of the BK channels in these cells, and one example of an endogenous ligand (bradykinin) that activates them. The expression of BK channels by human gliomas is intriguing because, as pointed out by Tseng-Crank et al. (1994), the single gene for these channels is located on chromosome 10, which is affected in many tumors including 60% of glioblastomas (Kleihues et al. 1995). Our laboratory has recently PCR cloned a novel BK $\alpha$-subunit from glioma cells using specific primers for BK channels, confirming BK expression in these cells (X. Liu and H. Sontheimer, unpublished observations).

The glioma cells studied here expressed high levels of BK channels. We routinely recorded very large (>10 nA) currents from these cells. The mean current density of five STTG-1 cells at +60 mV with 0.1 $\mu$M $[\text{Ca}^{2+}]_i$ was $\approx 70$ pA/pF. Using
this value and a single-channel current of \( \approx 9 \) pA at \(+60\) mV (from 4 outside-out patches with normal bath solution, i.e., high Na\(^+\), low K\(^+\)), one can calculate a lower limit for channel density of seven to eight channels/\( \mu \)m\(^2\) [using a specific membrane capacitance value of 1 pF/\( \mu \)m\(^2\) (Hille 1992)]. Given this density, it is not surprising that our outside-out patches had large numbers of channels. Our channel density estimate is a lower limit because open probability is unlikely to be unity under these conditions and the single-channel conductance (determined with 0 [Ca\(^{2+}\)]) if anything would be reduced by elevations of [Ca\(^{2+}\)]\(_i\) (Marty 1981).

Previous studies on these cell lines showed that a substantial proportion of the voltage-gated outward currents were inhibited by [Cl\(^-\)]\(_o\) removal (Ullrich and Sontheimer 1996). However, under our experimental conditions we found that the majority of the voltage-dependent outward currents were sensitive to intracellular cation replacement and iberiotoxin. We suspect these differences may relate to the variations in the relative expression of K\(^+\) and Cl\(^-\) currents in these cells (unpublished observations).

In STTG-1 astrocytoma cells, we found a half-maximal voltage for whole cell current activation, \( V_{0.5} \), of \(+12\) mV with
1 μM [Ca\(^{2+}\)]. The \(V_{0.5}\) for BK channels in human smooth muscle was +35 mV with 1 μM [Ca\(^{2+}\)], (Hurley et al. 1998) and in human skeletal muscle the \(V_{0.5}\) was +50 mV with 0.5 μM [Ca\(^{2+}\)], (extrapolated \(V_{0.5}\) of +35 mV at 1 μM [Ca\(^{2+}\)]) (Lerche et al. 1995). Two BK channels cloned from human brain had \(V_{0.5}\) of +18 mV with 10 μM [Ca\(^{2+}\)], (hbr5) and +9 mV with 24 μM [Ca\(^{2+}\)], (hbr3) (Tseng-Crank et al. 1994). In native human macrophages, BK channels had a \(V_{0.5}\) of ≈ +22 mV with 3 μM [Ca\(^{2+}\)], (Gallin 1984). The Ca\(^{2+}\) sensitivity of BK channels in a leukemic human macrophage cell line was the closest to that reported here for BK channels in glioma cells; \(V_{0.5}\) was −7.5 mV with 3 μM Ca\(^{2+}\) (DeCoursey et al. 1996). Thus, glioma BK channels have an equal or greater Ca\(^{2+}\) sensitivity than those described in many other human preparations. An enhanced Ca\(^{2+}\) sensitivity would presumably allow BK channels in human glioma cells to gate in response to smaller [Ca\(^{2+}\)], rises than is required in other cells. Clear activation of channels was seen near typical resting potentials (−40 mV) with 1 μM [Ca\(^{2+}\)], (see Fig. 8D). The tetraneuridine sensitivity of glioma BK currents was consistent with the presence of a β subunit, and this would contribute to the Ca\(^{2+}\) sensitivity (Dwoirezky et al. 1996; McManus et al. 1995). The possibility exists that our data (obtained from whole cell recordings) may underestimate the true Ca\(^{2+}\) sensitivity of these channels. If [Ca\(^{2+}\)], regulatory mechanisms are still intact during whole cell recordings, the steady-state [Ca\(^{2+}\)], may not equal [Ca\(^{2+}\)]\(_{\text{pipette}}\), particularly at distal parts of cells (Mathias et al. 1990).

The high voltage dependence of BK currents in the absence of Ca\(^{2+}\) raises questions about their functional role. Gating at the resting potential is requisite for a meaningful role of BK channels in glioma biology. We were able to demonstrate endogenous activation of these channels in cell-attached patches and bradykinin stimulation of cells during amphotericin-perforated patch recording shifted activation of BK currents into the range of typical resting membrane potentials. We suggest that bradykinin is only one example of a mediator that could lead to BK activation via elevation of [Ca\(^{2+}\)].

The [K\(^-\)]\(_{\text{o}}\) dependence of the BK currents in glioma cells is a feature of these channels with functional implications. The square root relationship of conductance and [K\(^-\)]\(_{\text{o}}\) makes the relative modulation of BK channels by [K\(^-\)]\(_{\text{o}}\), the greatest in the physiologic range of [K\(^-\)]\(_{\text{o}}\). The potentiation of BK currents by [K\(^-\)]\(_{\text{o}}\) suggests that the functions of glioma BK channels would be augmented under conditions of elevated [K\(^-\)]\(_{\text{o}}\), such as may exist near the center of a rapidly-growing tumor. Inhibition of BK channels reduced Muller cell proliferation only in the presence of 20 mM [K\(^-\)]\(_{\text{o}}\) (Bringmann et al. 2000). This was suggested to be due to effects on membrane potential but could also relate to BK potentiation by [K\(^-\)]\(_{\text{o}}\). Our data suggest that the whole cell BK conductance would be increased approximately twofold under these conditions. BK current enhancement by elevated [K\(^-\)]\(_{\text{o}}\), is due in part to an increased single-channel conductance, in line with other studies (Hurley et al. 1999; Lerche et al. 1995; Wann and Richards 1994). This may be a result of allosteric actions of K\(^-\) ions themselves on the channel or altered permeation properties with high [K\(^-\)]\(_{\text{o}}\). Our data are suggestive of an allosteric action of K\(^-\) because the observed potentiation was opposite to that predicted by driving force considerations or single-file pore models of permeation. No potentiation was seen during Na\(^+\) substitution with choline\(^+\) or NMDG\(^+\), indicating that the potentiation was not due to Na\(^+\) removal per se. However, we cannot rule out complicated ion-ion interactions between Na\(^+\) and K\(^+\) within the pore of the channel as giving rise to the increased unitary currents in high [K\(^+\)]\(_{\text{o}}\).
response of these tumor cells, in contrast to data from Muller cells, endothelial cells, and fibroblasts. We have performed [H]-thymidine incorporation assays on our D54MG and STTG1 cells and found no effect of TEA on [H]-thymidine incorporation (unpublished observations), similar to the results in other astrocytoma cells and meningioma cells (Chin et al. 1997; Kraft et al. 2000). Alternatively, K(Ca) channels have been shown to participate in volume regulation and migration (Pasantes-Morales et al. 1994; Schwab et al. 1999). Potassium channels are postulated to participate in migration by affecting net salt fluxes, in conjunction with Cl- channels. These salt fluxes, with their accompanying water, result in volume/shape changes permissive to migration through narrow spaces and promote the movement of cytosol into the expanding leading edge. In human glioma cells, TEA (at concentrations that selectively inhibit BK channels, i.e., <1 mM) reduced migration by ~40% (Sorocenau et al. 1999). In contrast, other studies on human glioma cells have suggested that BK activation completely stops migration (Bordey et al. 2000). The precise role of BK channels in glioma cells remains to be determined.

In summary, we have shown that the human glioma cell lines we studied are well endowed with BK-type K+ channels. Taken together with the work of others, our study indicates that BK channels are a common feature of human glioma cells. The BK channels in glioma cells were active at typical resting potentials with [Ca2+] near 1 μM. The [K+]o dependence of BK channels in glioma cells is an attribute of these channels with functional implications for glioma biology. We propose that these channels will contribute to the response of glioma cells to stimuli that increase [Ca2+]o, such as bradykinin.

The authors appreciate the discussions and comments of Drs. Robin Lester, David Weiss, and Zucheng Ye.

This work was supported by National Institute of Neurological Disorders and Stroke Grant NS-6962 and American Cancer Society Grant RPG-97-083-01CDD to H. Sontheimer and by a Medical Scientist Training Program scholarship to C. B. Ransom.

REFERENCES


PEA TL AND RANE SG. The fibroblast intermediate conductance K(Ca) channel, PIK, as a prototype for the cell growth regulatory function of the IK channel family. J Membr Biol 172: 249–257, 1996.


