Impact of Rearing Conditions and Short-Term Light Exposure on Signaling Performance in Drosophila Photoreceptors

Verena Wolfram and Mikko Juusola

Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom

Submitted 2 March 2004; accepted in final form 12 May 2004

Wolfram, Verena and Mikko Juusola. Impact of rearing conditions and short-term light exposure on signaling performance in Drosophila photoreceptors. J Neurophysiol 92: 1918–1927, 2004. First published May 19, 2004; 10.1152/jn.00201.2004. The amount of visual information an animal can extract from its environment is ultimately limited by the signaling performance of its photoreceptors. To maximize their performance, photoreceptors must be able to accommodate large changes in input caused by the dynamic properties of the visual environment and the animal’s own behavior. This is likely to require a range of adaptation mechanisms operating over multiple time scales. Using intracellular recordings, we investigated the effects of developmental light rearing conditions and the effects of 2 h light or dark exposure prior the experiment on the signaling performance of adult Drosophila melanogaster photoreceptors. We show that light-rearing amplifies photoreceptors’ voltage responses to light contrast changes by ≥20% and accelerates them by 3 ms. We argue that these differences mostly reflect changes in the timing of the early phototransduction reactions, some of which are persistent. However, being born and nurtured in certain lighting conditions does not set an ultimate limit for the signaling performance of Drosophila photoreceptors. Two-hour light exposure prior to the experiment can improve the information capacity of dark-reared photoreceptors close to the values of light-reared photoreceptors by reducing voltage noise. This effect may originate from plastic changes in the utilization of phototransduction proteins and ion channels.

INTRODUCTION

Neural activity, itself influenced by environmental and genetic variation, is a prerequisite for the correct maturation and refinement of neural circuitry (Desai et al. 2002; Goodman and Shatz 1993; Katz and Shatz 1996; Suster and Bate 2002). Environmental influences throughout adult life cause the structure and function of the nervous system to be adjusted in an experience-dependent manner (Bavelier and Neville 2002; Crair et al. 1998; Knudsen and Brainard 1991; Mooney 1999; Palleroni and Hauser 2003). Although the detailed mechanisms underlying such experience-dependent plasticity remain unclear, they include alterations in strength of synaptic connections between cells by Hebbian (Bear and Malenka 1994) or homeostatic (Davis and Goodman 1998a,b; Turrigiano 1999) mechanisms and reshaping of neural circuits (Bavelier and Neville 2002; Brainard and Doupe 2002).

Experience-dependent neural plasticity has been extensively studied in vertebrate cortical circuits (Bavelier and Neville 2002; Brainard and Doupe 2002; Mooney 1999; Turrigiano 1999), including the visual cortex (Katz and Shatz 1996), where the development of ocular dominance columns is influenced by sensory experience (Hubel and Wiesel 1970; Hubel et al. 1977). Invertebrate visual centers also undergo experience-dependent plasticity (Deimel and Kral 1992; Hertel 1982, 1983; Kral and Meiertheisen 1989; Meiertheisen 1989; Mimura 1986). For example, Barth (1997) and Barth et al. (1997) showed an effect of environmental conditions on structure in the visual processing centers of an insect brain: changing the duration of light exposure during development altered the size and shape of the lamina, mushroom bodies, and central complex.

Most studies of experience-dependent plasticity have focused on synaptic connections between interneurons downstream of sensory receptors, but experience-dependent changes may also happen within sensory receptors. In recent years, Drosophila photoreceptor cells have become one of the best-studied model systems for receptor-mediated Ca$^{2+}$ entry and G-protein signaling (Hardie 1991b; Hardie and Raghu 2001). Drosophila photoreceptors can respond to light changes with great rapidity within an intensity range that spans over seven orders of magnitude (Juusola and Hardie 2001a). Occurring at different stages of optical, chemical, and electrical signal processing and at different time scales, adaptation both prevents photoreceptors’ responses from saturating and improves their temporal resolution (Hardie and Raghu 2001; Juusola and Hardie 2001a).

Early electrophysiological studies of insect photoreceptors describe rapid adaptation mechanisms (Laughlin and Hardie 1978) by which sensitivity decreases and response speed increases in bright light (Laughlin 1989). These changes are reversible and are observed at the level of the “bump,” the discrete fluctuation of light current [i.e., the current flowing through the light-dependent ion channels, transient receptor potential (TRP), and like transient receptor potential (TRPL)] triggered by a single photon (cf. Hardie and Raghu 2001; Henderson et al. 2000; Juusola et al. 1994; Wong et al. 1980). The responses are further shaped by the activation of voltage-dependent K$^+$-channels (Weckström and Laughlin 1995; Weckström et al. 1991). More recently, reversible light-regulated translocation of signaling molecules to and from rhabdomere, the light sensitive part of the photoreceptor, has been proposed to contribute to light adaptation. Within 2 h of light exposure, Gqo and TRPL cation channels are shuttled out of the rhabdomere, while arrestin (Arr2) gets enriched in the rhabdomere (Bähner et al. 2002; Kiselev et al. 2000; Kosloff et al. 2003; Lee et al. 2003). In addition, complementary molecular dynamics in phototransduction cascade, membrane filter-
ing, or adaptation are likely to occur. However, without electrophysiological data, one cannot bind these plastic, or long-term reversible, changes to the changes in the photoreceptors’ signaling performance. Using intracellular recordings from adult Drosophila photoreceptors, we now show that 12:12 h light:dark rearing amplifies and accelerates their responses to light contrast changes and decreases their membrane resistance in comparison to dark-rearing. Unlike the previous findings, these changes are persistent since a 2 h dark exposure is not sufficient to reverse the effects. Nevertheless, after 2 h of light exposure, photoreceptors show additional plastic changes in their signaling that improve their information capacity.

METHODS

Fly stocks and rearing scheme

Drosophila melanogaster flies of the red-eyed wild-type stock Oregon Red were used in all experiments. Flies were reared for several generations on standard Drosophila medium in a 19°C incubator. Flies lived in light-proofed boxes (12.5 × 12.5 × 9 cm) under two light conditions: in a 12 h light/12 h dark cycle and in constant darkness, referred to as light-reared (LR) and dark-reared (DR), respectively. The light-rearing box was painted white inside to enhance light reflection and was equipped with an array of six white LEDs (SMD, 320 mcd with viewing angle 105°, Marl Optosource) run by a 12 V battery to generate the light-dark cycle. The maximum light scatter inside the box was 100 cd/m². Food for DR flies was changed under dim red light to minimize the probability of photon capture by rhodopsin.

All experiments were carried out in the hours of late morning and early afternoon. In the morning, 2 h prior to each experiment, specimens from each LR and DR population were exposed to either darkness (DE) or light (LE), thereby generating four different fly regimens: LRLE, LRDE, DRLE, and DRDE, all having ancestry in the same initial population.

Preparation and electrophysiology

Flies (2–10 days old) were mounted in a conical holder made from copper and ceramic. To prevent visual artifacts caused by head or body movements, we applied beeswax to the thorax, proboscis, and one eye (Juusola and Hardie 2001a). A small window, size of few ommatidia, was cut in the dorsal cornea for entry of a recording microelectrode and sealed with Vaseline. LRDE and DRDE flies were prepared under red light. A blunt reference electrode filled with fly Ringer solution, containing (in mM) 120 NaCl, 5 KCl, 10 TES, 1.5 CaCl₂, and 4 MgCl₂, was placed in the head capsule close to the ocelli. The temperature of the flies was maintained at 25°C by a feedback-regulated Peltier-element placed beneath the holder (Juusola and Hardie 2001a).

Intracellular recordings were carried out from green-sensitive R1-6 photoreceptor cells with sharp quartz microelectrodes (Sutter Instrument) filled with 3 M KCl and with resistances between 100 and 220 MΩ. The voltage and current signals were amplified by a switch-clamp amplifier (SEC-10L, NPI Electronic) using switching frequencies of ~15 kHz and low-pass filtered at 500 Hz (elliptic) in current-clamp mode. The photoreceptors were selected for analysis only if their resting potential in darkness was less than ~50 mV and the magnitude of the responses to a saturating light step was ~40 mV. To accomplish the required recordings, the experiments from a single photoreceptor lasted typically 30 min.

Light stimulation and data analysis

Photoreceptors were stimulated with light from a small field (5° as seen by the fly) generated by a high-intensity green LED with a peak wavelength of 525 nm (Marl Optosource) that was driven by a custom-built driver. Background intensity was attenuated by combinations of seven neutral density filters, each reducing the light intensity by one-half a log-unit, placed between the light source and the eye.

Two types of light stimulus were used throughout the experiment: band-limited Gaussian white noise contrast (WNC; with cut-off at 300 Hz) lasting 10 s and a 700 ms saturating light pulse. The Gaussian white noise stimulus was superimposed on a constant light background (BG), and its intensity values were converted to contrast values, c(t) = ΔI/I, where ΔI is the intensity change, and I is the mean intensity over time. The characteristic contrast of WNC was 0.32, defined by dividing the SD of the contrast values by the unit mean (Juusola et al. 1994). Prior to recording, photoreceptors were adapted for 30 s to a chosen light BG. This time was considered sufficient for the photoreceptors to adapt to a steady-state potential that remained virtually unchanged during the actual WNC stimulation. The light BGs covered 3.5 log units with minimum intensity of ~950 photons/s (BG-3.5) and maximum intensity, I₀, of ~3 × 10⁶ photons/s (BG0). Details of calibration procedure are given in Juusola and Hardie (2001a).

In a typical experiment, the photoreceptor was first studied at BG-3.5 before systematically proceeding to brighter BGs. At each BG, the stimulation lasted 10 × (10 + 1s) = 110 s (repetitions × [stimulus duration + delay]). Light stimuli were delivered at 1 kHz, and voltage responses were sampled at 1 kHz. Stimulus generation, data acquisition, and signal analysis were performed by a MATLAB interface, BIOSYST (copyright M. Juusola 1997–2002) with a custom-written control for National Instrument boards (copyright MATLAB, H.P.C. Robinson 1997–2001).

WNC was delivered to the photoreceptor 10 times, each presentation evoking slightly different voltage responses, r(t). Averaging these responses gave the noise-reduced photoreceptor voltage signal, s(t) (Juusola et al. 1994; Kovalainen et al. 1994). To obtain the noise, n(t), of each individual response, the signal, s(t), was subtracted from each response, r(t). As the stimulation was given after a photoreceptor had reached a steady-state potential, the noise traces did not show any obvious adaptation trends.

To avoid a possible bias of the noise estimates by the low number of samples, the noise was also calculated using a method that did not allow signal and noise to be correlated (Juusola and French 1997). In brief, when an experiment consisted of 10 trials, 9 of the trials were used to compute s(t) and the other to compute n(t). Repeating this for each possible set of nine responses gave 10 uncorrelated noise traces. In accordance with Juusola and Hardie (2001a), these two methods gave similar noise estimates with very low variance. As stated earlier by Kovalainen et al. (1994), errors due to residual noise in s(t) are small and proportional to (noise power)/sqrt(n), where n is 10. s(t) and n(t) were segmented into 50% overlapping stretches (each 1,024 points long) and windowed with a Blackman-Harris four-term window before their corresponding spectra, S(f) and N(f), were calculated with a fast fourier transform (FFT) algorithm, yielding 18 and 180 samples, respectively. Signal and noise power spectra, S(f)² and N(f)², respectively, were calculated as real-valued functions, where || denotes the absolute value and (·) denotes the average over the different stretches of the signal and noise data (cf. Juusola and Hardie 2001a). In the same way, the stimulus presentations c(t) yielded the power spectra C(f)c² used for calculating the impulse response (see following paragraph). The large number of spectral samples made the error in the mean power spectral estimate small (Bendat and Piersol 1986). Our tests where random noise was added on a band-passed signal waveform indicated that, for data of equal size (10 traces lasting 10 s or 10,000 points), the mean square error in the power spectral estimate is ~15% over frequencies from 1 to 200 Hz. This estimate was extrapolated after calculating the power spectra from 10 and 1,000 traces (see also Juusola and de Polavieja 2003).
The signal-to-noise ratio in the frequency domain, $\text{SNR}(f)$ was obtained by dividing the signal power spectrum, $|S(f)|^2$, by the corresponding noise power spectrum, $|N(f)|^2$ (Kouvalainen et al. 1994). After 30 s of adaptation to the given light BG, photoreceptors produce approximately linear responses to the WNC (Juusola and Hardie 2001a). This is judged by their coherence functions (for analysis, see Bendat and Pierson 1986) that typically approach unity (values >0.9) over frequencies from 1 to 50 Hz (data not shown; cf. Juusola and Hardie 2001a). The high degree of linearity, together with approximately Gaussian signal and noise distributions, justifies the calculation of information capacity, C, from $\text{SNR}(f)$ by Shannon’s formula (Shannon 1948)

$$C = \int \log(\text{SNR}(f) + 1)df$$

The information capacity is a measure of the number of states a signaling system can transmit per unit time. The dimension of the information capacity is bits/s. Owing to the unreliability of the signal at frequencies >200 Hz, this set was to be the upper limit of the integral instead of ∞ (Juusola and Hardie 2001a). Since $s(t)$ and $n(t)$, are not always purely Gaussian, but sometimes slightly skewed (cf. Juusola and Hardie 2001a), the information capacity estimates determined here can only be considered as approximations of the true information capacity (Juusola and French 1997; Shannon 1948). The information capacity estimates are further influenced by the fact that the photoreceptor noise power includes the electrode noise. This causes a slight underestimation of the true information capacity values. Additionally, any systematic trends in the thermal membrane noise (as imbedded in the measure of voltage noise) between different photoreceptors could potentially bias the differences in the information capacity estimates between the rearing groups (Juusola and Hardie 2001b). However, this is considered unlikely since the eye temperature (25°C) varied $<1^\circ$C during each experiment (cf. Juusola and Hardie 2001a), and the membrane capacitance, as a measure of the membrane area that contributes to such noise, was similar for the photoreceptors of different rearing groups (cf. Fig. 3C).

The final estimates of $|S(f)|^2$ and $|N(f)|^2$ and C for each test regimen we present in Figs. 4 and 5, respectively, are the means of the corresponding functions from all the successful experiments with the data coming from different flies. Any errors in these unbiased estimates, brought by the errors in power spectra of individual recordings ($\sim15\%$), diminished progressively as the number of photoreceptors increased (being \geq5).

The linear filter properties of the photoreceptor are defined in the time domain by the impulse response, $k_i(t)$, calculated from the spectral estimates of the input (WNC) and output (signal) (French et al. 1972; Marmarelis and Marmarelis 1978; for details, see Juusola and Hardie 2001a). Impulse responses were fitted with the log-normal function (Payne and Howard 1981)

$$k_i(t) = A \times \exp\left(\frac{-\log(\text{tr}_{sh}^2)}{2\sigma^2}\right)$$

where A is the amplitude of the impulse response, t is time after flash delivery, tr_{sh} is the time-to-peak of the impulse response, and σ is the width factor that determines the ratio between impulse response duration and time-to-peak. A, tr_{sh}, and the times of half-maximal amplitude t_1 and t_2 were analyzed. The half-width, h_w, thus corresponds to the difference between t_2 and t_1, half-rise time corresponds to $t_r - t_1$, and half-decay time corresponds to $t_2 - t_r$ (Fig. 1A).

Voltage responses to the 700 ms light step were analyzed with respect to the peak, trough, and plateau phase (Fig. 7), as well as the occurrence of oscillations. To analyze the oscillations, the voltage response was segmented into half-overlapping windows of 128 data points (corresponding to 128 ms), allowing detection of frequencies as low as 8 Hz. For each window, a power spectrum was calculated using an FFT. The major frequency components of each window were plotted against time to obtain a dynamic spectrum.

Current stimulation

Depolarizing and hyperpolarizing current steps of maximum amplitude ± 0.2 nA were injected into photoreceptors in darkness in current-clamp mode. The smallest current step (-0.02 nA) was used to calculate the membrane resistance, R_{mem}, and the effective capacitance, C_{eff}. To calculate the effective capacitance, we adapted a method originally used in voltage-clamped striated muscles (Adrian and Almers 1974; Schneider and Chandler 1976). This method is robust against voltage noise, not biased by curve fitting, and well suited for cells that have additional membrane foldings (such as rhabdomere).

An injection of a small negative step current, I_{cap}, into a Drosophila photoreceptor in darkness causes an exponential voltage change that reaches a steady-state value, V_{max}, before the end of the step (Fig. 3A), characteristic of a passive membrane. This voltage waveform, $V = I_{\text{cap}}R_{\text{mem}}[1 - \exp(-itR_{\text{mem}}C_{\text{eff}})]$, allows us to determine the effective capacitance, C_{eff}. Dividing V by the measured resistance, R_{mem}, $V_{\text{max}}/R_{\text{mem}}$ gives us the current flowing through the purely resistive pathways: $I_{\text{mem}} = I_{\text{cap}}[1 - \exp(-itR_{\text{mem}}C_{\text{eff}})]$. The transient capacitive current is: $I_{\text{cap}} = I_{\text{mem}}[1 - \exp(-itR_{\text{mem}}C_{\text{eff}})] = I_{\text{cap}}\exp(-itR_{\text{mem}}C_{\text{eff}})$. Integrating over I_{cap}, gives the charge, Q, stored in the membrane, C_{eff} is then Q/V_{max}.

![FIG. 1. Time course of photoreceptor impulse responses is affected by rearing conditions. A: impulse responses, calculated from the responses to white noise contrast stimuli, were fitted with lognormal functions; indicated are the time-to-peak (t_p), amplitude (A), and times at which one-half the amplitude is reached ($t_{1/2}$ and $t_{2/3}$). The half-width (h_w) is the difference between t_p and $t_{1/2}$, half-rise time is the difference between $t_{1/2}$ and $t_{2/3}$, and half-decay time is the difference between $t_{2/3}$ and t_p. B: impulse responses of light-reared light-exposed (LRLE; $n = 15$), light-reared dark-exposed (LRDE; $n = 6$), dark-reared light-exposed (DRLE; $n = 11$), and dark-reared dark-exposed (DRDE; $n = 5$) photoreceptors at background (BG)-0.5. Impulse responses are calculated per unit contrast. Means and SE are plotted.](http://jn.physiology.org/

Statistical analysis

Results of each test regimen are expressed as means ± SE. Statistical differences between means were analyzed using two-way ANOVA. Both rearing and exposure were kept as fixed factors. We tested for similarities of the mean at the rearing level and the exposure level by taking interaction into account. The ANOVA was performed at seven background light intensities (BG-3 to BG0). We postexamined the results using the Bonferroni test. All statistics were performed in Microcal Origin 7SR2.

RESULTS

Drosophila photoreceptors are complex dynamic systems whose voltage responses to light show different degrees of nonlinearities depending on the visual stimulus. We used band-limited Gaussian WNC stimulation to have an adequate control over their response dynamics and to minimize the nonlinear components of the voltage output (Juusola et al. 1994; Juusola and Hardie 2001a; Spekreijse and Oostings 1970; Spekreijse and van der Tweel 1965). WNC covers the majority of stimulus frequencies that may be encountered by flies in vivo (note that spectra of natural images experienced by moving animals tend to approximate 1/f, with f as stimulus frequency; cf. Juusola and de Polavieja 2003; van Hateren 1992), thus justifying our approach to quantify the photoreceptor’s ability to encode dynamic light changes. As the variance of WNC is constant at different mean adapting BGs, we can make fair comparisons about the effects of rearing light conditions and light/dark exposure on photoreceptor signaling performance and adaptability.

Impulse responses

Impulse responses, k_v, calculated from the photoreceptor responses to WNC not only define the filtering in time domain (Fig. 1A) but also closely resemble the actual voltage responses of light-adapted photoreceptors to a light flash (Juusola 1993; Juusola et al. 1994). The amplification and speed of the impulse responses were characterized by their peak amplitude (A) and kinetic (or time-dependent) parameters: time-to-peak (t_p), half-width ($h = t_2 - t_1$), half-rise time ($t_{r/2} = t_p - t_1$), and half-decay time ($t_{d/2} = t_p - t_1$; Fig. 1A), respectively. Figures 1B and 2 show that rearing conditions exerted major effects on these parameters, whereas the exposure conditions contribute relatively little. Figure 1B depicts impulse responses for the four test regimens at BG-0.5. Here the impulse responses of LR flies (LRLE, n = 15 and LRDE, n = 6) are 26% larger (A; $P \sim 0.004$, for rearing; Table 1) and 20% faster ($t_p; P < 0.001$, for rearing) than those of DR flies (DRLE, n = 11 and DRDE, n = 5). Figure 2, on the other hand, shows the general statistics of the maximum amplitudes and kinetic parameters at different BGs for the four test regimens.

AMPLIFICATION. The amplitude of the linear impulse responses (Fig. 2A) gives a practical measure of the photoreceptor sensitivity to light contrast changes, often called contrast gain. All four regimens show an increase in the contrast gain with brightening BG, the degree of which is influenced by the rearing conditions. The impulse response amplitudes of LR photoreceptors are generally larger than those of DR photoreceptors (~25%) except at the very dim BGs, where they are indistinguishable (Fig. 2A; Table 1). The exposure conditions, on the other hand, did not produce significant differences on the contrast gain (Fig. 2A).

SPEED. LR accelerates the overall time course of the responses: time-to-peak of LR photoreceptors is reached 3 ms earlier and half-width is 3 ms less than those of DR photoreceptors at all BGs (Fig. 2, B and C). In all test regimens, time-to-peak and half-width first decrease with brightening light until BG-1.5 and thereafter increase at the brighter BGs (Fig. 2, B and C; cf. also Juusola 1993), owing to saturation. However, exposure conditions (LRLE, DRLE vs. LRDE, DRDE) introduce slight variations in these U-shaped trends (Fig. 2, B and C). For example, at bright BGs, impulse responses of DE photoreceptors peak later (Fig. 2B) and are broader than those of LE photoreceptors (Fig. 2C). A general feature of impulse responses is their abrupt rising and slightly slower decaying phase (Fig. 1A). Because there are a number of ways for the phototransduction reactions involved in the timing and shaping of the elementary responses, or bumps, to influence these dynamics separately (Henderson et
indistinguishable (Fig. 3B). Photoreceptors within the four test regimens were statistically
and inactivation processes of Shaker channels, selectively amplified
slow depolarizing signals (Juusola et al. 2003; Niven et al. 2003). In contrast, the responses to hyperpolarizing pulses were much slower, showing characteristic resistor-capacitor charging. We determined membrane resistance, R_m, and effective capacitance, C_{eff}, from the response to the smallest hyperpolarizing pulse (± 0.2 nA) using a step transient integration method (Adrian and Almers 1974) (see METHODS). Although effective capacitances of photoreceptors within the four test regimens were statistically indistinguishable (Fig. 3B), LR photoreceptors had smaller membrane resistances (Fig. 3B) and time constants (Table 2) than DR photoreceptors. Juusola and Hardie (2001a,b) showed that, although the cell membrane provided faster signaling with brightening BGs and was never limiting the speed of the phototransduction cascade, the membranes that low-passed most in darkness frequently also had the lowest cut-off in bright BGs. Thus membranes of LR photoreceptors are likely to provide a broader channel bandwidth with higher cut-off frequencies during light adaptation than membranes of DR photoreceptors (Table 2).

Signal and noise dynamics and information capacity

Figure 4 compares the mean signal (left) and noise (right) power spectra of photoreceptors from the four regimens at four different light BGs (BG0, BG-1, BG-2, and BG-3). In all cases, brightening the BG increased the signal power and broadened the frequency range until saturation at BG-1 (Fig. 4; left; cf. Juusola and Hardie 2001a). Consistent with their faster impulse responses and membrane properties, signals of LR photoreceptors had significantly more power at high frequencies, ≥ 50 Hz, than DR photoreceptors (Fig. 4; left). Light exposure, on the other hand, had a limited effect on the signal bandwidth, yet it appeared to give some protection against the collapse of the signal power at the brightest BG (Fig. 4; left; cf. BG-1 to BG0).

The noise power fell with increasing BG (Fig. 4; right; cf. Juusola and Hardie 2001a) for all regimens. Together with the simultaneously increasing signal power, this improved the signal-to-noise ratio, SNR, leading to higher information capacities (Fig. 5B). Light exposure has a major impact by decreasing the noisiness of the voltage responses at all BGs. Since LE photoreceptors were less noisy than DE photoreceptors but had similar signals, LE photoreceptors had a higher signal-to-noise ratio and information over the response bandwidth than DE photoreceptors (Fig. 5A). Consequently, light exposure increased the information capacity by 20–30% at brighter BGs (Fig. 5B; cf. LRLE to LRDE and DRLE to DRDE).

Photoreceptors appeared to utilize two different coding strategies that complement the adjusted filtering properties of the

Table 1. Statistics of photoreceptor impulse response amplitudes for the test regimens

<table>
<thead>
<tr>
<th>BG</th>
<th>P value two-way ANOVA for rearing</th>
<th>P value two-way ANOVA for exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.803</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>0.069</td>
<td>0.171</td>
</tr>
<tr>
<td></td>
<td>0.018</td>
<td>0.074</td>
</tr>
<tr>
<td></td>
<td>0.031</td>
<td>0.749</td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td>0.339</td>
</tr>
<tr>
<td></td>
<td>0.004</td>
<td>0.837</td>
</tr>
<tr>
<td></td>
<td>0.067</td>
<td>0.334</td>
</tr>
</tbody>
</table>

Significant at 0.05 level Bonferroni test for rearing: No, No, Yes, No, Yes, Yes, Yes
Significant at 0.05 level Bonferroni test for exposure: No, No, Yes, Yes, Yes, Yes, No

FIG. 3. Rearing conditions influence photoreceptor voltage responses to injected current steps by changing the membrane resistance. A: typical current step responses of LRLE and DRLE photoreceptors. Photoreceptors are stimulated with hyper- and depolarizing current steps of maximum amplitude of 0.2 nA. The smallest hyperpolarizing current step was used to calculate the membrane resistance, R_m (B) and the effective capacitance, C_{eff} (C). B: membrane resistance of LR photoreceptors is significantly less than membrane resistance of DR photoreceptors (2-way ANOVA for rearing: $**P < 0.03$). C: effective capacitance for the photoreceptors of the 4 test regimens.
photoreceptor membrane (cf. Fig. 3A). Where LRLE photoreceptors could transmit faster signals than DRLE photoreceptors, DRLE photoreceptors compensated for this loss by having more reliable signaling \([\text{higher SNR} (f)]\) over their narrower bandwidth (cf. Fig. 5, A and B). The outcome was a relatively similar information capacity for both regimens. Accordingly, the lower voltage noise of DRDE photoreceptors helped them to approach the information capacities of LRDE photoreceptors (cf. Fig. 5, A and B).

Steady-state membrane potential

Prior to contrast stimulation, photoreceptors were adapted to given light BGs, whereby their depolarization gradually approached a steady-state potential, on which the contrast-induced responses were superimposed. In all test regimens, the steady-state depolarization shows a sigmoidal dependency on the adapting BG intensity and was fitted with the self-shunting model \([V = V_{\text{max}}P/(P + P_0)];\) cf. Laughlin 1989; Fig. 6. Thus the steady-state potential represents a static nonlinearity in phototransduction. Photoreceptors of both DR regimens (DRLE and DRDE) as well as the LRDE ones had similar steady-state potentials at all BGs, whereas photoreceptors of the LRLE regimen showed a noticeable reduction in their steady-state potential following light exposure.

Voltage responses to bright pulses

We next analyzed the behavior of the photoreceptor responses during the rapid nonlinear adaptation phase leading to the steady-state potential. All photoreceptors from the four test regimens responded to a long bright pulse with waveforms

TABLE 2. Effective photoreceptor capacitance and membrane resistance for the test regimens

<table>
<thead>
<tr>
<th></th>
<th>LRLE</th>
<th>LRDE</th>
<th>DRLE</th>
<th>DRDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of cells</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>(C_m) (pF)</td>
<td>101 ± 33</td>
<td>81 ± 47</td>
<td>105 ± 3</td>
<td>69 ± 13</td>
</tr>
<tr>
<td>(R_m) (MΩ)</td>
<td>164 ± 37</td>
<td>228 ± 54</td>
<td>302 ± 37</td>
<td>318 ± 55</td>
</tr>
<tr>
<td>(\tau_m) (ms)</td>
<td>13.2 ± 2.7</td>
<td>14.8 ± 5.7</td>
<td>31.8 ± 4.2</td>
<td>20.6 ± 0.9</td>
</tr>
</tbody>
</table>

Values are means ± SD.
Drosophila in the presence of surrounding cellular structures. Our results the phototransduction reactions and the membrane properties intracellular recordings from in vivo photoreceptors, giving an

We employed an approach that allowed long-lasting stable nation with 2 h light or dark exposure prior the experiments.

This, we used both dark and light rearing conditions in combi-

stimulus (WNC) at different light intensity levels (BGs). For

a time-dependent manner. This is highlighted in Fig. 7,

Consisting of three successive stages: the peak, a trough, and a plateau component (Fig. 7, A and B).

In all four test regimens, individual photoreceptor responses to bright light pulses often showed oscillations on their plateau phase (Table 3; Fig. 7, A and B), with frequencies changing in a time-dependent manner. This is highlighted in Fig. 7, C and D, which show the dynamic spectra of LRLE and DRLE photoreceptors, while Table 3 summarizes details of the oscil-

lations for the regimens.

The characteristics and incidence of oscillations depended mainly on rearing conditions. Oscillations occurred more often in photoreceptors of DR flies as opposed to LR flies. In both regimens, the oscillations had similar initial frequencies (90–100 Hz) before slowing down and decaying. Since the oscil-

lations lasted longer in the DR photoreceptors (often until the light was switched off), their final frequencies (50 Hz) were less than those of LR photoreceptors that decayed at about 80 Hz (Fig. 7C; Table 3). Higher order harmonics could be detected in the voltage responses of both LR and DR photo-

receptors that were exposed to light (LRLE, DRLE), but not in the voltage responses of photoreceptors that were exposed to darkness. However, DRLE photoreceptors exhibited harmonics more frequently (5/7) than LRLE photoreceptors (2/6; Table 3; Fig. 7D).

Discussion

We investigated how light history affected the ability of *Drosophila* photoreceptors to respond to dynamic contrast stimulus (WNC) at different light intensity levels (BGs). For this, we used both dark and light rearing conditions in combi-

nation with 2 h light or dark exposure prior the experiments. We employed an approach that allowed long-lasting stable intracellular recordings from in vivo photoreceptors, giving an accurate and general electrophysiological description of both the phototransduction reactions and the membrane properties in the presence of surrounding cellular structures. Our results show that the signaling performance of *Drosophila* photore-

ceptrons is tuned on different time scales. 1) Rearing conditions adjust the slow processes that set the amplification and speed of photoreceptor voltage responses. 2) The light or dark exposure can modulate the fast processes that regulate the sensitivity, and thus the precision of the responses, at different BGs. 3) Voltage responses also display fast oscillations during continuous light. We will now discuss the possible molecular mechanisms and coding strategies behind these findings and compare the photoreceptor plasticity to plasticity in higher-order visual centers.

How do photoreceptor cells adjust to rearing light conditions?

The simplest hypothesis would allow light-rearing to alter either the phototransduction cascade’s or membrane’s filtering function alone. Neither our data (Figs. 3 and 4) nor the data processing inequality (cf. Cover and Thomas 1991) supports this hypothesis. Adjustments of phototransduction gain or membrane filtering alone cannot improve the information capacity of a photoreceptor, as either would, at best, affect signal and noise equally. Instead, the higher information capacity of LRLE photoreceptors (Fig. 5B) must reflect increased information capture, requiring improvements in their processing speed, efficiency, or structure over the other photoreceptors. LRLE photoreceptors could have i) faster or more precisely timed single photon responses, or bumps, 2) less variable bumps (owing to any physical change that reduces photoreceptors’ voltage noise; cf. Shannon 1948), or 3) more light-capturing phototransduction units, possibly microvilli (Ham-

dorf 1979; Howard et al. 1987; Juusola and Hardie 2001a). The
latter is true in blowfly (Calliphora vicina) photoreceptors, whose photosensitive part, the rhabdomere, contain three times more microvilli, ~90,000, than Drosophila (Hardie 1985) and have about three to five times greater information capacity (Juusola and de Polavieja 2003; Juusola and Hardie 2001a).

While the larger rhabdomere improves photon capture (Howard and Snyder 1983), other signal processing must complement this (van Hateren 1992). Accordingly, blowfly photoreceptors also have faster phototransduction reactions and membrane time constants (Weekström et al. 1991) than Drosophila photoreceptors (Juusola and Hardie 2001a) to prevent their responses from saturation.

Could LRLE photoreceptors have more phototransduction units than the other photoreceptors of this study? An increase in phototransduction units would increase the membrane area of photoreceptors and their effective capacitance. However, all the photoreceptors had similar membrane capacitances (Fig. 3, B and C), making it unlikely that LRLE photoreceptors would have more, larger, or denser microvilli. Although the voltage responses in LRLE photoreceptors are not faster than in LRDE photoreceptors (Fig. 2A), their speed surpasses that of DR photoreceptors. We therefore suggest that the higher information capacities of the LR photoreceptors over their DR counterparts stem from faster phototransduction reactions (cf. the broader signal bandwidths; Fig. 4), suitably matched with membrane properties (Fig. 3, B and C).

Studies of DR Drosophila (Juusola and Hardie 2001a,b) and hypomorphic Drosophila mutations of phospholipase C (PLC) and G protein (Pak et al. 1976; Scott and Zuker 1998; Scott et al. 1995) have attributed the bump timing (or latency distribution; cf. Wong et al. 1980) and waveform dynamics to two independent stages in the phototransduction cascade, whose convolution defines the photoreceptor response. The events determining the timing of the response are believed to occur largely at, or upstream of, PLC, whereas events determining the bump shape and amplitude are generated downstream of PLC and mediated by intracellular calcium. Because the bump latency distribution is generally much broader (i.e., the average timing lasts longer) than the average bump waveform (Juusola and Hardie 2001a), it both sets the speed limit for photoreceptor voltage responses and is a major factor in contrast gain (Juusola and Hardie 2001a,b). We therefore further suggest that light-rearing affects more of the early enzymatic reactions at, or upstream of, PLC than the later diffusion-bound membrane processes. Since the responses of LR photoreceptors were always faster than those of DR photoreceptors, some of the rearing-induced changes in the early phototransduction reactions are likely to be persistent. If true, this implies that the initial assembly of the phototransduction units during development would set the upper bound for future molecular permutations within these structures.
Another practical way to study adaptation to sustained light levels is to use shorter light pulses. Photoreceptors of our four test regimes responded to a 700-ms bright light pulse with the characteristic peak-to-plateau transitions of WT photoreceptors (Juusola and Hardie 2001a). Differences in trough amplitude, trough timing, and plateau depolarization could not be linked clearly to either rearing or exposure conditions (data not shown). However, the light pulse evoked oscillations in the plateau phase of responses. Although this is a novel finding in WT photoreceptors, it has been associated previously with mutant phenotypes (Burg et al. 1996; Leung et al. 2000). Interestingly in WT photoreceptors, the incidence and the features of oscillations depended on rearing conditions.

Oscillations can have intracellular or interneural origins. They may result from a feedback in calcium-mediated phototransduction reactions (Leung et al. 2000), a feedback from postsynaptic large monopolar cells (LMCs) to photoreceptor axons (Meintzschgen and O’Neill 1991), or lateral interactions either between photoreceptor axons (van Hateren 1986) or neurons in the same neuro-ommatidia (Strausfeld 1976). However, whatever may be their cause, the oscillations could function to enhance synaptic signal transfer to LMCs. It has been shown in Calliphora that the voltage responses of large monopolar cells to light pulses often show detailed oscillations (van Hateren 1987). If the oscillations in LMCs are triggered and synchronized by transient stimulus patterns, the synaptic information transfer increases (Uusitalo et al. 1995). Therefore it is not implausible that, particularly in slow photoreceptors of DR flies, which showed oscillations most frequently, some homeostatic mechanism could be activated in the synapse to improve the transmission of fast signals.

Plasticity in higher-order visual centers

Our arguments about how parallel plastic changes may help to optimize the flow of information within photoreceptors can also be applied to the networks of visual neurons. Indeed, the preservation of constant neural images of objects in changing environments may require that the form and function of the whole visual system are tuned in line. Although different protocols used in different studies make it difficult to draw any clear conclusion about a common time-course behind the experience-dependent changes in Drosophila visual system, it is still worth to consider the wide range of findings reported so far. Modifications of visual behavior owing to experience-dependent plasticity in the visual system include associative changes in visual pattern and color preferences (Menne and Spatz 1977; Wolf and Heisenberg 1991). Rearing in different light conditions was also shown to affect visual orientation behavior (Hirsch et al. 1990) and locomotor activity (Martin et al. 1999). Furthermore, anatomical studies have indicated that light rearing increases the size of several parts of the visual processing pathways of Drosophila, including the lamina, mushroom bodies, and central complex (Barth 1997; Barth et al. 1997; Kral and Meintzschgen 1989; Meintzschgen 1989). Barth et al. (1997) argued that the growth in the lamina is most likely triggered by the light-evoked response of the photoreceptors. Finally, Hirsch and Tompkins (1994) and Hirsch et al. (1995) presented evidence that light conditions during rearing can affect the courtship behavior. These authors showed that females copulate faster with males that are reared in the same light conditions, underlining the evolutionary significance of experience-dependent behavioral modifications (Barth et al. 1997).

Acknowledgments

We thank G. Garcia de Polavieja, A. French, C. Huang, and H. Robinson for critical comments and J. Niven for help during the early stages of this study.

Grants

M. Juusola is supported by grants from the Royal Society, Biotechnology and Biological Sciences Research Council, and the Wellcome Trust. V. Wolfram is an Avrich Ph.D. Fellow.

References

