














mediated neuronal responses and windup relative to the same
dose applied to the contralateral (noninflamed) paw (Fig. 5).
Example records show the effects of AM1241 and vehicle on
neuronal responses evoked by transcutaneous electrical stimu-
lation in spinal WDR neurons before and after concurrent
administration of carrageenan (Fig. 6).

Peripheral edema

Before administration of carrageenan, paw diameter did not
differ between groups (mean � SE: 5.22 � 0.03 mm and

5.11 � 0.03 mm in experiments 2 and 3, respectively; Fig. 7).
In both studies, intraplantar carrageenan increased hind paw
diameter measured about 2 h after the induction of inflamma-
tion (P � 0.0002). Hind paw diameter was greater in rats
receiving carrageenan relative to a control group receiving an
equivalent volume of intraplantar saline together with vehicle
(P � 0.0002 for all comparisons). Hind paw diameter was
lower in carrageenan-injected groups receiving AM1241 (33
�g/kg ipl or 330 �g/kg iv or ipl) concurrently with carrageenan
relative to groups receiving an equivalent volume of vehicle.

FIG. 5. Local administration of AM1241 (33 or 330 �g/kg ipsi, ipl) suppresses total C-fiber–mediated activity (A), early
C-fiber–mediated activity (B), and windup (D). This AM1241-induced suppression was absent when the low dose (33 �g/kg ipl)
was applied to the contralateral (noninflamed) paw. Local administration of AM1241 (33 or 330 �g/kg ipsi, ipl) did not reliably
suppress C-fiber–mediated afterdischarge (C), A�- (E), or A�-fiber–mediated responses (F). Data (means � SE) represent the mean
response observed in 3 successive stimulation trains delivered at 10-min intervals and are plotted at the midpoint. **P � 0.01, *P �
0.05 different from vehicle and AM1241 (33 �g/kg contra, ipl), xP � 0.05 different from AM1241 (33 �g/kg contra, ipl) by
ANOVA and Fisher’s PLSD post hoc test; n � 6 per group (1 cell/rat).
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AM1241 (330 �g/kg iv or ipl or 33 �g/kg ipl) reduced hind
paw diameter in the inflamed paw relative to control [F(15,87) �
239, P � 0.03 and F(9,60) � 32.73, P � 0.0001 in experiments
2 and 3, respectively; P � 0.03 for all comparisons] conditions
(Fig. 7). The antiinflammatory effects of intravenously admin-
istered AM1241 were blocked by the CB2 antagonist
SR144528 (P � 0.02) but not the CB1 antagonist SR141716A
(Fig. 7). No group differences in paw diameter were observed
in the noninflamed contralateral paw before or after carra-
geenan administration.

Experiment 4: effects of AM1241 on nonnociceptive neurons
during the development of carrageenan inflammation

Nonnociceptive neurons were sampled from the dorsal horn
and responded with increased frequency to nonnoxious brush
relative to noxious pinch (Table 1). Before carrageenan and
during the development of inflammation, levels of spontaneous
firing were low and did not differ between groups. Current
used to activate neurons ranged from 2.8 to 5.2 mA. Admin-
istration of AM1241 (330 �g/kg iv) failed to alter A�-fiber–

FIG. 6. Wide dynamic range (WDR) neurons encode stim-
ulus intensity as they respond with increased frequency to
noxious pinch vs. nonnoxious brush in rats subsequently re-
ceiving either (A) vehicle or (B) AM1241 (33 �g/kg ipl). C:
example electrophysiological record shows the responses of a
spinal WDR neuron to a single train of 16 electrical stimuli
presented transcutaneously to the cell’s receptive field. Neuron
exhibits an increase in firing rate with each subsequent electri-
cal stimulation (windup). D: raster plot corresponding to the
neuronal response profile in (C) depicts the windup phenome-
non. With each progressive electrical stimulation, or sweep, in
a given train there is an increase in the number of dots (action
potentials) occurring 300–800 ms poststimulation. Raster plots
show effects of (E) vehicle and (F) AM1241 (33 �g/kg ipl) in
spinal WDR neuronal responses to transcutaneous electrical
stimulation before and after concurrent local administration of
carrageenan.
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mediated responses in these purely nonnociceptive neurons
(Fig. 8)

D I S C U S S I O N

In the present work, transcutaneous electrical stimulation of
the peripheral receptive field was used to study the effects of
the CB2-selective cannabinoid agonist AM1241 on the excit-
ability of spinal WDR neurons. Spike shapes were monitored
throughout the recording interval and used to confirm that
action potentials from the original cells of interest were re-
corded. Thus group differences cannot be attributed to changes
in the cell population sampled after the induction of inflam-
mation or injection procedures. The state of anesthesia is
unlikely to complicate our findings because it failed to obscure
detection of antiinflammatory actions of AM1241 in the
present work.

Transcutaneous electrical stimulation directly depolarizes
primary afferent axons, which in turn excite WDR neurons in
the spinal dorsal horn. Action potentials thus generated bypass

normal transduction mechanisms initiated by activation of
nerve terminal receptors. Therefore transcutaneous electrical
stimulation can be used to specifically study central changes in
spinal dorsal horn neuronal excitability (Li et al. 1999). The
present work demonstrates that local or systemic AM1241
administration produces a CB2-mediated suppression of C-
fiber responses and windup in spinal WDR neurons; this
suppression was observed in both the absence and presence of
carrageenan inflammation. These findings are in agreement
with previous work showing that CB2-selective agonists are
antinociceptive in models of acute (Malan et al. 2001) and
chronic pain (Clayton et al. 2002; Hanus et al. 1999; Hohmann
et al. 2004; Ibrahim et al. 2003; Nackley et al. 2003a; Quartilho
et al. 2003).

In the absence of inflammation or prior stimulation, primary
afferent C-fibers lack spontaneous, ongoing discharges. How-
ever, noxious input can quickly enhance the sensitivity of
spinal neurons for further C-fiber inputs. Spinal neuronal
excitability may increase through several mechanisms includ-
ing: 1) a cumulative depolarization that lowers the threshold
for action potential initiation (induced by increased spontane-
ous or ongoing activity of primary afferents) (Sivliotti et al.
1993), 2) presynaptic facilitation (e.g., increased excitatory
amino acid or tachkinin release evoked by prior primary
afferent activation) (Gerber and Randic 1989; Urban and Ran-
dic 1984; Yoshimura and Jessell 1990), and 3) increased
efficacy of postsynaptic receptors induced by prior activation
of spinal neurons (e.g., because of facilitation of signal trans-
duction/second messenger coupling and/or receptor upregula-
tion) (Schmidt 1971; Sorkin and Puig 1996; Sorkin et al. 1998).
In the present study, increased WDR neuronal excitability
likely resulted from the summation of depolarizing postsynap-
tic potentials in WDR neurons and/or presynaptic facilitation
because these changes can occur within minutes, whereas an
increase in postsynaptic receptor number or efficacy takes
much longer.

The effects of AM1241 on WDR neurons in the absence
of inflammation

In noninflamed rats, spontaneous activity and C-fiber–me-
diated responses of WDR neurons were fairly stable across the
recording interval, suggesting that there was little ongoing
discharge in the primary afferents in the absence of inflamma-

FIG. 8. AM1241 (330 �g/kg iv) fails to alter evoked A�-fiber–mediated
responses in purely nonnociceptive neurons in the presence of inflammation;
n � 3 per group (1 cell/rat).

FIG. 7. Intraplantar carrageenan increases hind paw diameter measured 2 h
after the induction of inflammation. Administration of iv AM1241 (330 �g/kg)
(A) or ipl AM1241 (33 or 330 �g/kg) (B) concurrently with carrageenan
reduces inflammation-induced increases in hind paw diameter. Paw diameter in
rats receiving ipl saline together with vehicle was similar to precarrageenan
levels. Data represent paw diameter (means � SE) to the nearest 0.1 mm.
**P � 0.01, *P � 0.05 different from control conditions, XP � 0.05, different
from all control conditions except SR141716A, ##P � 0.01 different from all
animals receiving carrageenan by ANOVA and Fisher’s PLSD post hoc test;
n � 5–6 per group.
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tion. Nonetheless, AM1241 suppressed C-fiber–mediated re-
sponses and windup. This suppression likely involves a CB2-
mediated attenuation of presynaptic facilitation, rather than a
change in ongoing primary afferent discharge. It is possible
that repeated electrical stimulation, cutaneous pinch applica-
tion, and/or intraplantar injection itself induced local inflam-
matory processes in the absence of carrageenan that led to
increased neurotransmitter release by the same number of
action potentials. This explanation requires that low levels of
receptive field stimulation are sufficient to induce rapid, long-
term changes by the above mechanisms. However, the rela-
tively short time course for the observed changes likely pre-
cludes a role for modifications in postsynaptic receptor number
or efficacy.

The effects of AM1241 on WDR neurons in the presence
of inflammation

Peripheral carrageenan produces local C-fiber sensitization
and subsequent spinal WDR neuronal hyperexcitability (Hedo
et al. 1998; Woolf et al. 1994). In the presence of carrageenan
inflammation, increases in WDR neuronal activity may involve
increased ongoing discharge as well as presynaptic facilitation.
This dual mechanism may account for the increase in sponta-
neous activity, C-fiber responsiveness, and windup observed
during the development of inflammation as well as the more
pronounced suppressive effect of AM1241 in the presence
versus the absence of inflammation. These observations sug-
gest a preferential effect of peripheral CB2 activation in sup-
pressing inflammation-evoked sensitization of C-fiber–medi-
ated responses of WDR neurons (Svendsen et al. 1999; Zhang
et al. 2001).

Peripheral edema

AM1241 also produced a CB2-mediated antiinflammatory
effect, consistent with previous findings (Nackley et al. 2003a;
Quartilho et al. 2003). Systemic or local administration of
AM1241 likely prevented the release of inflammatory media-
tors, thereby reducing inflammation-evoked ongoing discharge
and presynaptic facilitation, mechanisms contributing to the
enhanced spinal neuronal excitability we observed during the
development of inflammation.

Effects of AM1241 on nonnociceptive neurons during the
development of inflammation

AM1241 does not act as a local anesthetic. Local anesthetics
typically reduce neuronal responses by blocking Na� channels,
resulting in a suppression of electrically evoked A� activity in
nonnociceptive cells as well as C-fiber–mediated activity in
WDR neurons (Chapman et al. 1997). In our study, low-
threshold, purely nonnociceptive spinal neurons did not show
sensitization during the development of inflammation and were
not altered by AM1241 actions in the periphery. By contrast,
high-threshold neurons in the spinal dorsal horn do relay
nociceptive information to supraspinal sites and undergo sen-
sitization (Woolf et al. 1994). Future studies should assess the
effects of CB2 activation on high-threshold cells to fully
elucidate the consequences of CB2 activation on nociceptive
transmission.

Possible mechanisms of action of AM1241

Our findings are consistent with the possibility that AM1241
produces analgesia by suppressing peripheral nociceptor sen-
sitization that may lead to central sensitization. However, the
mechanism by which AM1241 suppresses WDR neuronal
responses enhanced by ongoing primary afferent discharges
and presynaptic facilitation remains to be determined. In the
presence of inflammation, AM1241 may act locally on immune
cells in the periphery to suppress C-fiber sensitization. Activa-
tion of CB2 receptors localized to mast cells or other immune
cells attenuates the release of inflammatory mediators, includ-
ing nerve growth factor (Rice et al. 2002) and cytokines
(Klegeris et al. 2003), that in turn sensitize nociceptors (Maz-
zari 1996). However, CB2 modulation of immune responses
does not readily account for the effects of AM1241 on windup
and C-fiber responses in the absence of inflammation.

Direct actions at CB2 receptors localized to primary afferent
C-fibers (Patel et al. 2003) would provide a parsimonious
explanation for the antinociceptive and electrophysiological
actions of CB2 agonists observed in the absence of inflamma-
tion. More work is necessary to identify the cellular elements
that contain CB2. CB2 positive cells have been demonstrated in
cultured dorsal root ganglion cells (Ross et al. 2001); however,
other studies suggest that CB2 mRNA in dorsal root (Hohmann
and Herkenham 1999) and trigeminal (Price et al. 2003)
ganglia is near background levels.

AM1241 may also indirectly suppress primary afferent ac-
tivation by stimulating local release of �-endorphin in periph-
eral tissue; AM1241 stimulates �-endorphin release in both rat
hindpaw skin and cultured keratinocytes (Malan et al. 2004).
Furthermore, antinociception induced by AM1241 is blocked
by either naloxone or antiserum to �-endorphin and is absent in
both �-opioid and CB2 receptor knockout mice (Malan et al.
2004). CB2 mRNA expression is also induced in the lumbar
spinal cord coincident with the appearance of activated micro-
glia (Zhang et al. 2003), suggesting that additional targets for
CB2 agonists may also be present in pathological pain states. It
is therefore plausible that AM1241 produces antinociception
by a combination of the aforementioned mechanisms.

In conclusion, CB2 agonists offer considerable potential as a
novel pharmacotherapy for pain because they fail to produce
centrally mediated effects commonly associated with CB1
(Hanus et al. 1999; Malan et al. 2001; Patel et al. 2003).
Furthermore, such compounds are unlikely to be psychoactive
or addictive. The present work provides evidence that activa-
tion of a peripheral CB2 mechanism is sufficient to suppress
C-fiber–evoked responses and windup at the level of the spinal
dorsal horn. This suppression was observed in WDR neurons,
which are known to modulate nociception and contribute to the
ascending pain pathway, the spinothalamic tract. These data
collectively suggest that CB2 agonists may be used preemp-
tively to attenuate the development of persistent pain in the
absence of unwanted central side effects.
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