Response Properties of Single Auditory Nerve Fibers in the Mouse

Annette M. Taberner1,3 and M. Charles Liberman1,2,3

1Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary and 2Department of Otology and Laryngology, Harvard Medical School, Boston; and 3Program in Speech and Hearing Bioscience and Technology, Division of Health Science and Technology, Harvard/ Massachusetts Institute of Technology, Cambridge, Massachusetts

Submitted 2 June 2004; accepted in final form 21 September 2004

INTRODUCTION

The availability of transgenic and mutant lines makes the mouse a valuable model for study of the auditory system. Minimally invasive measures of auditory function are often used to assess cochlear phenotype in mice. Such measures include distortion-product otoacoustic emissions, auditory brain stem responses (ABRs), compound action potentials, and background strain in which knockout mice have been produced (Mullen and Ryan 2001) and because it has also been extensively studied as a result of the presence of a type of age-related hearing loss (Ding et al. 1999; Henry and Lepkowski 1997; Willott 1986). The latter strain is of interest because it is often the one primarily interested in understanding cochlear mechanisms. One was aimed at validating the use of the galvanic skin response as a minimally invasive measure of cochlear sensitivity (Finck and Berlin 1965) and thus mainly collected data on single-fiber thresholds. The other was aimed at understanding the neurophysiological bases for critical bands and thus collected data on single-fiber thresholds and on the masking of tone responses by noise bands (Ehret and Moffat 1984). In contrast, our aim is to describe those fundamental aspects of auditory nerve response that provide the most insight into the mechanisms of transduction and synaptic transmission in the inner ear, especially when coupled with the use of targeted genetic modification in the mouse model. Thus our study was designed to provide a systematic description of the most fundamental response properties of the mouse AN response, including the distribution of spontaneous rates, tuning curves, rate versus level functions, dynamic range, response adaptation, degree of phase-locking, and the relations between spontaneous rate and the aforementioned response properties.

In the present study, we describe the spontaneous and sound-evoked discharge properties of a large number of AN fibers recorded from the CBA/CaJ strain and somewhat smaller set of recordings from the C57BL/6 strain. The former strain is important because it is commonly used in auditory research, and it retains excellent cochlear sensitivity throughout its life span (Jimenez et al. 1999; Li and Borg 1991; Zheng et al. 1999). The latter strain is of interest because it is often the background strain in which knockout mice have been produced (Mullen and Ryan 2001) and because it has also been extensively studied as a result of the presence of a type of age-related hearing loss (Ding et al. 1999; Henry and Lepkowski 1978; Li et al. 1993; Parham 1997; Willott 1986).

Comparisons between mouse AN physiology and that of other mammals is also of interest because the mouse cochlea is...
specialized for higher-frequency stimuli than cat, guinea pig, chinchilla, or gerbil, the other mammalian species in which AN responses have been well studied. Despite this important difference, we show that the fundamental aspects of AN response are qualitatively similar in the mouse. We further show that the responses of these 2 commonly used mouse strains are quantitatively similar as well.

The research described here is a component of a doctoral thesis, to be submitted in partial fulfillment of the requirements for a degree in Speech and Hearing Bioscience and Technology in the Health Science and Technology Division at Harvard and MIT.

METHODS

Single-fiber recordings were made from the auditory nerve in CBA/CaJ mice (age 8–17 wk) or in C57Bi/6 mice (age 16–17 wk). Animals were anesthetized with xylazine (5 mg/kg) and urethane (1.32 mg/kg). Animal temperature was maintained near 38°C with a heating pad and by maintaining the ambient temperature in the experimental chamber at about 33°C. For the surgical approach, the cartilaginous ear canals were removed, scalp reflected, skull opened, and a semicircular bony window performed to expose the left cochlear nucleus. Glass microelectrodes filled with 2 M KCl and 4% methyl blue were directed at the surface of the cochlear nucleus, about 1 mm medial to the edge of the temporal bone, angled anteriorly at 24° in the sagittal plane and laterally at 10° in the coronal plane. All animal procedures were approved by the IACUC of the Massachusetts Eye and Ear Infirmary.

The sound system consisted of dual electrostatic sound sources (TDT ED-1) and a Knowles electret microphone coupled to a probe tube. The sensitivity of the probe-tube microphone was calibrated for the spikes. Rise time

Distortion-product otoacoustic emissions (DPOAEs) were monitored throughout the experiments to assess cochlear stability. At the beginning of each experiment, before cerebellar aspiration, DPOAEs were measured with f2 frequencies from 5.6 to 45.2 kHz in half-octave steps. During single-fiber recordings, the DPOAEs were rechecked at the f2 nearest the characteristic frequency (CF) of each fiber studied. Data are included in the final database only if the thresholds for DPOAEs at 2f1 were ≤5 dB re initial values. The DPOAE at 2f1 − f2 was recorded in response to primary tones f1 and f2, with f2/f1 = 1.2 and L2 = L1 − 10 dB. The ear-canal sound pressure waveform was amplified and digitally sampled at 4-μs intervals. Fast-Fourier transforms (FFTs) were computed from averaged sound pressure waveforms, and the DPOAE and surrounding noise floor were extracted.

Noise bursts of 50-ms were used as search stimuli. Tone bursts were used for all other sound-evoked measures (except phase-locking): they were 50 ms in duration, with 2.5-ms rise-fall and a repetition rate of 10/s. Tuning curves were measured under computer control, and represent isorate contours for response magnitude of 10 sps > spontaneous rate. Spontaneous rates were calculated from 10-s samples.

Because both cochlear nucleus cell types and AN fibers are encountered along the electrode track, a classification scheme based on poststimulus time histogram (PSTH) shape, first spike latency (FSL), and the coefficient of variation (CV) of the interspike intervals was developed to distinguish the 2 cell types. PSTHs used to characterize response type were based on 150–250 tone burst presentations at CF and were always presented at 30 dB above threshold. A measure of FSL (i.e., the mode of the FSL distribution) and the CV (i.e., the ratio of the SD to the mean of the interspike interval distribution) were both obtained from responses to 150 CF tone bursts at 30 dB above threshold. CV measures were derived only from spikes occurring 20–40 ms after tone-burst onset (i.e., excluding the initial and final 10 ms, where some spike intervals may include spontaneous discharge).

Rate-level functions were measured at CF with 10–20 tone bursts per level. Levels (in 5-dB steps) were presented in random order and, if contact time permitted, also in sequential order. Rate versus level functions were fit using a modified version of a previously published model (Sachs et al. 1989). The input to the saturating nonlinearity was given an exponential β (a free parameter), which allowed the function to have steeper slopes. The fitting procedure was done in Matlab using the function *fminsearch*, which performs a multidimensional unconstrained nonlinear minimization (Nelder–Mead). The root-mean-square (rms) error between the response data and the best-fit curve was used to determine goodness of fit. To eliminate “noisy” data runs, a maximum allowable rms error of 14 sp/s was arbitrarily set for inclusion into the final data base. Dynamic range was defined as the difference between sound pressure levels (SPLs) evoking 10 and 90% of the (model fit) maximum driven rate.

Measures of synchrony were obtained from postzero-crossing (PZC) histograms derived from the presentation of single tones of 15-s duration. The tone frequencies were constrained (f = 1.0, 1.6, 2.0, 2.5, or 4 kHz) so that an integer number of cycles fit in the digital buffer. When measuring phase-locking in AN response, care was taken to eliminate artificial synchrony arising from microelectrode pick-up of cochlear microphonic potentials. A model developed by Johnson (1978) was used to compute a synchrony noise floor below which synchrony may be artifactual. According to the model, the synchronizaton index (SI) attributed to the microphonic artifact is given by

\[SI_{artifact} = \frac{\gamma}{2\pi f t} \]

assuming a randomly distributed spike train contaminated by an additive sine wave at frequency f. γ is the ratio of the rms stimulus artifact amplitude to the peak spike amplitude; and t is the rise time of the spikes. Rise time t and ratio γ were calculated from measurements of digitized spike trains obtained during each synchrony measurement: the amplitude of the sine wave (microphonic) component at the stimulus frequency was extracted by FFT. Only the data for which the measured SI was ≥2 times greater than SI_{artifact} are included in this paper.

RESULTS

Distinguishing auditory nerve from cochlear nucleus

Because the auditory nerve (AN) in mouse is difficult to expose directly without compromising cochlear function, the AN was reached by electrode penetrations that first travel through the cochlear nucleus (CN), which can be readily exposed. Electrode angles and insertion area were chosen to avoid the anteroventral CN, which contains cells with AN-like responses in other mammalian species (Rouiller and Ryugo 1984). Based on surface landmarks, most electrodes penetrations entered through the anterior portions of the dorsal cochlear nucleus (DCN). Cell types encountered along the electrode track yielded poststimulus-time histograms (PSTHs) with “chopper,” “onset,” “pri-notch,” and “primary-like” shapes. As expected, cells with chopper (Fig. 1C) tended to be seen superficially in the electrode tracks, whereas “primary-like” (AN) responses were almost exclusively seen at electrodes sites deeper than 1 mm from the point of penetration.

In addition to qualitative classification of PST shapes, 2 more quantitative measures were used to distinguish AN fibers from CN cells: 1) the coefficient of variation (CV) of interspike intervals and 2) first spike latency (FSL) (Young et al. 1988), both of which were measured in response to tone bursts at the characteristic frequency. In cat, where AN and CN can be
separately accessed by microelectrodes (with visible superficial landmarks identifying the Schwann–glial border separating these 2 structures), AN responses are more irregular (i.e., larger CV for interspike intervals) and show a smaller FSL than that of most CN cells with similar characteristic frequencies and spontaneous rates (Young et al. 1988).

In early experiments to develop effective criteria for differentiating AN fibers from CN cells, tone-burst responses were obtained and analyzed from all fibers encountered along each electrode pass, Fig. 1A shows the relationship between CV and FSL in fibers subjectively classified by PST shapes. Results suggest that mouse AN fibers have CVs <0.5 and FSLs <5 ms, which are similar to values reported for cat (Young et al. 1988). As in cat, there appears to be some overlap of CV and FSLs between AN and CN (e.g., for the “pri-notch” CN units) (Young et al. 1988). Nevertheless, the data in Fig. 1 suggest that the following criteria adopted for classification as AN fiber should provide the best trade-off between sensitivity and specificity: 1) CV <0.5, 2) FSL <5 ms, 3) electrode depth <1,000, and 4) “primary-like” PSTH.

In later experiments, the superficially located CN cells were bypassed to increase the yield of AN fibers in each animal studied. By the end of the experimental series, the mean yield of AN recordings had grown to 7/animal (with a maximum of 16/animal). Termination of the recording session was typically dictated by decreasing cochlear sensitivity leading to DPOAE threshold elevation beyond the 5-dB limit on threshold shift arbitrarily imposed to maintain data “purity.”

Rate threshold and tuning

A fundamental property of AN fibers is their frequency selectivity, which is often quantified by “threshold” tuning curves that track isoresponse contours in the frequency–intensity plane (Fig. 2). Tuning curves were obtained for all mouse AN fibers encountered. As in other mammalian species, mouse AN tuning curves show sharply tuned “tips,” defining a characteristic frequency (CF: frequency of maximum sensitivity) and broadly tuned low-frequency “tails.” The data in Fig. 2 show populations of tuning curves obtained from 28 CBA/CaJ mice, clustered according to CF. Tuning curve shapes are remarkably similar across animals. As reported for other species, tuning curves from lower CF regions tend to be more...
“V-shaped,” with a less obvious low-frequency tail. Tuning curves from C57BL/6 mice showed similar features.

Plotting thresholds at CF for all the AN fibers obtained in the present study provides an overview of the sensitivity and frequency range of the peripheral auditory system in these strains. In this study, CFs ranged from 3.1 to 69.8 kHz for 196 fibers obtained in 28 CBA/CaJ animals and from 2.5 to 22.6 kHz for 58 fibers from 13 C57BL/6 animals (Fig. 3A). A local threshold minimum in both strains was seen among fibers in the middle of that range (i.e., 12–24 kHz). In both strains, minimum thresholds rose for CFs below that region and the spread in thresholds at any one region of CF was on the order of 30 dB. In the CBA/CaJ, threshold sensitivity near 0 dB SPL could be seen in fibers with CF as high as 60 kHz. In C57BL/6, minimum thresholds rose dramatically for CFs >15 kHz, as expected, given the early onset of high-frequency threshold shifts in this strain (Li and Borg 1991).

The sharpness of AN tuning in mouse increases with CF. This relationship can be seen qualitatively in Fig. 2 and quantitatively in Fig. 3B, which shows Q10dB (ratio of CF to bandwidth at 10 dB above threshold at CF) for all AN fibers in the present study. No striking differences between the 2 strains were visible in regions where response thresholds overlap.

Spontaneous rate

Auditory nerve fibers discharge spontaneously in the absence of sound (Kiang et al. 1965). Figure 4A shows the

![Fig. 4. Spontaneous rate (SR) data from the same fiber populations shown in Fig. 3. A: frequency distribution of the SRs observed. B: SR as a function of CF. C: relation between SR and threshold sensitivity. Relative threshold is defined by referring the threshold at CF of each fiber to the threshold for the most sensitive fibers sampled in the same ear in the same CF band. In this and all subsequent figures with SR on a logarithmic scale, SR values of 0 are plotted as 0.05 sp/s. AN fibers from C57BL/6 with CF >15 kHz are not included because threshold elevation in this region indicates the presence of cochlear pathology (see Fig. 3).](http://jn.physiology.org/)

spontaneous rate (SR) distribution for the fiber populations sampled from the 2 strains in the present study. SRs ranged from 0 to 120 sp/s in both strains, with 49% (CBA/CaJ) and 67% (C57BL/6) of the fibers having SRs <20 sp/s. In contrast to many other mammalian species studied, such as cat (Kiang et al. 1965) or guinea pig (Tsuji and Liberman 1997), the SR distribution in mouse is not clearly bimodal. Although there is no clear relationship between fiber SR and CF (Fig. 4B), there is a clear relationship between fiber threshold and SR. As seen in other mammalian species (e.g., Liberman 1978), fibers with the lowest relative thresholds (with respect to the most sensitive fibers of similar CF) also had the highest SRs (Fig. 4C). There are no striking differences between data from CBA/CaJ versus C57BL/6 mice.
Response adaptation

PST histograms of AN fibers show a peak in discharge rate at tone-burst onset, which decays to a steady-state response (Kiang et al. 1965; Smith 1977). The ratio of peak to steady-state rate is one measure of response adaptation. In the present study, adaptation of mouse AN responses was studied using PST histograms of responses to CF tone bursts at 30 dB above threshold. The histograms were normalized by the number of tone burst presentations and the histogram bin width (0.5 ms) to give the instantaneous discharge rate.

Response adaptation is a function of both SR and CF in the mouse AN (Fig. 5, A and B). In CBA/CaJ mice, fibers with SR ≥1 sp/s had peak-to-steady state ratios from 2.2 to 7.4, whereas fibers with SR < 1 sp/s had ratios between 1.6 and 4.2 (Fig. 5A). Fibers with the largest peak-to-steady state ratios had CF > 20 kHz (Fig. 5B). The increase in peak-to-steady state ratio is attributed to an increase peak rate with CF. This difference can be seen from the superimposed PST histograms for high-SR (SR ≥1) fibers with CF < 20 kHz versus CF > 20 kHz (Fig. 5, C and D, respectively). All features of response adaptation appeared similar in CBA/CaJ and C57BL/6 strains.

Rate versus level functions and dynamic range

The dynamic range of single AN fibers in mouse was investigated by measuring discharge rate versus sound level for tone bursts at CF. The rate versus level data were fit by a modified version of an existing model (Sachs et al. 1989). Figure 6 shows examples of 2 rate-level functions, their model fits, and calculated dynamic ranges. The rms errors of the model fits in these 2 cases were 13.2 and 13.9 sp/s. Of 156 rate-level functions obtained from CBA/CaJ mice and 45 from C57BL/6, 92 and 41, respectively, had model fits with “acceptable” rms error (≤14 sp/s) and were included in the study.

Among mouse AN fibers there was a tendency for fibers with low-SR (<1 sp/s) to show lower maximum discharge rates than those with SR ≥1 sp/s (Fig. 7A); group mean differences were statistically significant (P = 0.026, Student’s
There did not appear to be any relation between maximum discharge rate and CF (data not shown), and there were no obvious differences between the 2 strains studied.

Dynamic ranges of most AN fibers were <15 dB [Fig. 7B: dynamic range defined as the dB range between the points corresponding to 10 and 90% of the (model fit) maximum driven rate. Root-mean-square errors for the model fits were 13.2 and 13.9 sp/s in A and B, respectively.]

Response synchrony

When AN fibers respond to low-frequency tones there is a correlation between the stimulus periodicity and the timing of spikes (Johnson 1980), as illustrated by the PZC histogram in Fig. 9C. In cat, where it has been most systematically studied, this phase-locking, or synchrony, falls off dramatically as stimulus frequency approaches 4 kHz (Johnson 1980). In the mouse AN, there are relatively few fibers with rate threshold <60 dB SPL at frequencies ≤4 kHz (e.g., Fig. 2). Thus given that high SPL tones elicit large cochlear microphonic potentials that can produce artifactual synchrony when picked up by the microelectrode, response synchrony could be studied systematically in only a few fibers. A model developed by Johnson (1978) was used to compute a synchrony noise floor for each recording (based on the ratio of microphonic size to spike size) to prevent pollution of data by these microphonic-based artifacts (see METHODS).

Although the sample size is limited by the general lack of low-frequency responsiveness in the mouse AN, the fundamental features of response synchronization are similar to those reported in other mammalian species. Data from one of the lowest-CF fibers in the present study illustrate the main trends of the synchrony data from mouse AN (Fig. 9, A and B). For this fiber (CF = 3.1 kHz), rate and synchrony data were obtained for stimulus-level functions at 5 frequencies from 1 to 4 kHz. No synchrony was demonstrable in the response to 4 kHz, and maximum synchrony increased systematically as stimulus frequency decreased toward 1 kHz (Fig. 9, B and C). As reported in other species, the AN discharge can synchronize to the stimulus period at lower SPLs than those at which the average rate increase (e.g., data at 1 or 2 kHz), although this is not always the case (e.g., 1.6 kHz). Note that the maximum synchronization seen across all mouse AN fibers studied in both strains was lower than the values reported for similar stimulus frequencies in the cat (gray region in Fig. 9C) but similar to guinea pig (dotted region in Fig. 9C), another rodent species.
FIG. 8. Shapes and dynamic ranges of all rate vs. level functions obtained from CBA/CaJ or C57BL/6 fibers, divided into those with small (<20 dB: A–C) or large (>20 dB: D–F) dynamic range. Superimposed rate vs. level functions for CBA/CaJ are shown in the first column and functions from C57BL/6 in the middle column; raw functions were normalized by 1) dividing the vertical axis by the maximum rate and 2) by shifting along the horizontal axis according to model-fit thresholds. Dynamic range distribution for each group is shown in the histograms in the right column (C and F): as shown in the key, data from CBA/CaJ are shown as filled circles, data from C57BL/6 as filled triangles.

FIG. 9. Phase-locking in mouse AN fibers. A and B: data from one well-studied fiber (CF = 3.1 kHz, SR = 22.4 sp/s). Synchrony (B) and rate (A) measures were extracted from postzero-crossing histograms obtained from 15-s continuous tones. Synchronization index (SI: B) was calculated as described by Johnson (1980). C: comparison of maximum SI vs. tone frequency for mouse data from B and for one AN fiber from a C57BL/6 mouse (CF = 5.81 kHz, SR = 37.5 sp/s) compared with published cat data (shaded area; Johnson 1980) and guinea pig data (dotted area; Palmer and Russell 1986), excluding an outlier at 1.68 kHz. SI values marked by asterisks are underestimates of the maximum because SI vs. level functions had not saturated at the highest sound level presented.
DISCUSSION

Robustness of criteria for identifying AN fibers

In the present study, PST shape, response regularity, response latency, and location along the electrode track were used to distinguish AN fibers from CN units. Based on this classification scheme, the fiber population studied must be dominated by AN responses. However, CN units with “primary-like” responses could also be included, given that, in cat, there is some overlap in response latency and regularity measures between these CN cells and AN fibers (Young et al. 1988). CN cells that can generate primary-like responses include spherical and globular bushy cells (Blackburn and Sachs 1989; Smith et al. 1993).

Spherical bushy cells are located in the anterior anteroventral cochlear nucleus (AVCN). Our electrode angle and insertion point in the DCN is such that anterior AVCN is not traversed. Thus it is not likely that any of the present results are from spherical bushy cells. Globular bushy cells are located more posteriorly in the AVCN. Because globular cells are located near the AN root in mouse (Webster and Trune 1982) and have tone burst FSLs comparable to those of AN fibers (Young et al. 1988), it is possible that some globular cell responses were classified as AN fibers in the present database. Such inclusion would have minimal affect on the conclusions because globular cell responses are generally so similar to those of AN fibers. The greatest differences include a tendency toward larger SRs, maximum driven rates, and peak-to-steady state ratios in globular cells (Rhode and Smith 1986). Thus these aspects of mouse AN response may be slightly skewed toward higher values in the present study.

Relevance to other data on auditory function in mouse

CF LIMITS AND COCHLEAR FREQUENCY MAPS. Information used by the CNS in processing auditory stimuli comes through the approximately 20,000 fibers of the AN. Thus the superposition of tuning curves obtained from mouse AN provides an informative overview of the threshold sensitivity of the auditory periphery (Fig. 10). Not surprisingly, the minimum envelope of these single-fiber data basically tracks the published behavioral thresholds obtained in a variety of mouse strains, at least for frequencies below 50 kHz. Because “threshold” is defined differently in each study, and because the behavioral studies use an intact pinna and free-field acoustics, absolute comparisons of threshold values are not warranted. The discrepancy above 50 kHz between single-fiber and behavioral data is likely attributable to the difficulties in accurately specifying the sound pressure at the eardrum in both cases.

Knowing the range of single-fiber CF present in the mouse AN is key to constructing an accurate cochlear frequency map. CFs encountered in our sample of mouse AN fibers ranged from 2.5 to 69.8 kHz (Fig. 3). The high-frequency limit was artificially imposed: the probe-tube microphone response was too attenuated at high frequencies to justify calibration above 70 kHz. The low-frequency CF limit of 2.5 kHz is subject only to sampling errors: i.e., low-CF fibers were rare and the true low-CF limit may be somewhat lower. Accurate CF measurement is sometimes difficult at very low CFs because tuning curves can be very broad. However, this is not an issue in mouse AN data because these “low-frequency” tuning curves are quite sharply tuned (see highlighted tuning curve in Fig. 10B).

A low-frequency CF limit of 2.5 kHz is significantly higher than the value predicted by 2 older cochlear frequency maps for mouse (Ehret 1975; Ou et al. 2000), although it is about 1 octave lower than that suggested by the most recent map (Mueller et al. 2004). The oldest map (Ehret 1975) was derived by choosing values for the upper and lower limit of mouse hearing from behavioral measures and then fitting a power function of the type inferred for the human cochlear map based on psychophysically derived critical bands (Greenwood 1961). The lower limit chosen for mouse hearing was 0.8 kHz. As shown in Fig. 10, our data suggest that the perception of
frequencies <2.5 kHz is mediated by excitation of the “tails” of the apical-most AN fibers, not by fibers with CFs of 0.8 kHz.

A second cochlear map for mouse was derived by comparing the patterns of noise-induced hair cell lesions to patterns of threshold shift seen in ABR responses (Ou et al. 2000). The data set did not include any frequency points below about 6 kHz, but the best-fit logarithmic function extrapolated to a value of 1.5 kHz for the apical-most CF in mouse. According to the present results, this value may also be too low by about 1 octave. A similar discrepancy between the cat cochlear map inferred by correlating lesion site to cochlear sensitivity changes was detected when a definitive map was derived by intracellular labeling of single physiologically characterized nerve fibers (Liberman 1982a).

Recently, a mouse map was more directly derived by injecting HRP extracellularly into the CN after recording neuronal responses and correlating CF with the locations of labeled terminals in the cochlea (Mueller et al. 2004). Although there were no data points for the apical cochlea (lowest CF was about 7 kHz), the best-fit logarithmic function extrapolated to a minimum CF value of 4.8 kHz. The present study shows that tuning in the cochlear apex extends at least down to 2.5 kHz. Thus the simple log-frequency-to-linear-distance relation, suggested by Mueller et al. (2004), should be modified to a function of the Greenwood type, such that frequency representation in the apical turn changes more slowly with distance, as is the case in cat (Liberman 1982a).

OTHER STUDIES OF AN RESPONSE AND BEHAVIORAL THRESHOLDS IN MOUSE. Two previous studies, Finck and Berlin (1965) and Ehret and Moffat (1984), describe recordings from mouse AN fibers, using the CBA/J strain and the (outbred) NMRI strain, respectively. In both studies, electrode tracks traversed the CN to access the AN, and thus the possibility for unit misclassification exists. This possibility was acknowledged, but not addressed, by Finck and Berlin; Ehret and Moffat developed a classification scheme based on average FSL. Thus as in the present study, their database may include a small population of globular bushy cells in addition to the majority population representing AN response.

Aspects of AN physiology characterized in these previous studies included: response areas (i.e., tuning curves), thresholds at CF, masked thresholds to tone bursts in noise, and critical ratio bands. Because the present study did not examine noise masking, and previous studies did not directly quantify the sharpness of tuning curves, the only point of comparison among the 3 studies concerns the distribution of thresholds at CF. Threshold data from the 3 studies are compared in Fig. 10A, where all tuning curves from CBA/CaJ mice in the present study (gray lines) are superimposed on curves representing the minimum thresholds at CF for AN fibers sampled in the CBA/J (filled diamonds) and the NMRI strains (filled circles). Minimum thresholds for the NMRI strain are lower at most CF regions than those seen in the present study. However, data from the present study do not show the precipitous loss of sensitivity for CFs >30 kHz (see following text). Minimum threshold envelopes for the CBA/J data and the present CBA/CaJ data are remarkably similar for CFs <30 kHz. For higher CF regions, CBA/CaJ maintains low minimum thresholds out to the high-frequency limits of our acoustic system (about 70 kHz), whereas the CBA/J data show steeply sloping loss of threshold sensitivity. It is not clear whether these differences in high-frequency behavior reflect true interstrain differences in high-frequency sensitivity, differences in acoustic calibration procedure, or artificial loss of sensitivity in the CBA/J arising from, for example, cochlear cooling in the anesthetized preparation (Brown et al. 1983).

Comparisons of single-fiber thresholds from the present study with behavioral thresholds for a number of mouse strains are also shown in Fig. 10. With the exception of an extremely low value for 1-kHz behavioral threshold in the NMRI mouse, all behavioral threshold functions agree reasonably well with the minimum single-fiber thresholds measured in CBA/CaJ in the present study (Fig. 10A). Note that none of the behavioral curves shows the precipitous threshold elevation for frequencies >30 kHz seen in the CBA/J single-fiber study. The reason for the discrepancy in high-frequency sensitivities between the behavioral and neural data for C57BL/6 (Fig. 10B) is not clear; however, it probably does not arise from incomplete sampling in the present study because there was a clear trend among fibers sampled showing threshold elevations for CFs above 15 kHz (e.g., Fig. 3A).

INTERSTRAIN DIFFERENCES AND THE CHOICE OF CBA/CaJ AND C57BL/6. The availability of transgenic and mutant lines with interesting auditory phenotypes makes the mouse a valuable model for the study of the auditory system; moreover, recording from single auditory nerve fibers provides a powerful tool for assessing the cochlear phenotype associated with any genetic manipulation. However, the interpretation of hearing results from mutant mouse lines is often complicated by the fact that these lines are created or maintained in several inbred mouse strains (e.g., C57BL/6, 129/SvEv, and FVB/N), and there can be clearcut interstrain differences in threshold sensitivity, especially as animals age, that complicate the selection of control animals. Although CBA/CaJ is not one of the inbred strains in which mutant or transgenic lines are typically available, it was chosen for the present study in that it is one of the most commonly used strains for the study of hearing because it does not show the premature age-related cochlear degeneration seen in these other strains.

A challenge in the use of single-fiber assays for phenotypic analysis in mouse is the time-consuming nature of the data collection, averaging only 5–10 units per 6-h experiment. Thus it is of practical importance to understand the nature of interstrain differences in AN response, so that informed decisions can be made as to the appropriateness of different “control” data sets. For example, is the present data set appropriate for comparison to data obtained in a knockout line maintained in a different background? Setting aside issues related to the premature onset of high-frequency threshold shifts in some of these non-CBA strains, the answer appears to be a cautious “yes.” As described in more detail below, results from this work suggest that several fundamental aspects of mouse AN response are quantitatively similar to those of other mammalian species, such as the relation between sharpness of tuning and CF (Fig. 11) and the relation between SR and threshold sensitivity (Fig. 4C). Other properties are qualitatively similar, such as the relation between SR and dynamic range. Thus the likelihood of significant interstrain differences in these general properties seems remote. More directly relevant to the question, the limited comparison between CBA/CaJ and C57BL/6...
AN data in the present study (e.g., Figs. 3–9) fails to reveal any obvious differences between these two strains.

Comparison to data from other mammals

TUNING-CURVE TIPS VERSUS TAILS AND RATE VERSUS SYNCHRONY CODING. Tuning curves recorded from the mouse AN were qualitatively similar to those recorded in other mammalian species. They showed sharply tuned “tips” near the characteristic frequency and broadly tuned low-frequency “tails” (Fig. 2). As in other mammals, mouse AN fibers showed increasing sharpness of tuning with increasing CF (Fig. 3B). A more quantitative comparison of mean Q10dB values obtained from several mammalian species is shown in Fig. 11. The combined data suggest a common relationship between Q10dB and CF, with similar sharpness of tuning seen across several mammalian species, where CF regions overlap.

A more quantitative comparison of tuning-curve “tails” shows that low-frequency thresholds are significantly elevated in mouse compared with other mammalian species, such as cat (Liberman 1978), guinea pig (Evans 1972), chinchilla (Dallos and Harris 1978), and gerbil (Ohlemiller and Echteler 1990). For example, a direct comparison of mouse and cat tuning curves for fibers with CF near 15 kHz (Fig. 12) shows that, whereas thresholds in mouse increase monotonically for frequencies below CF and rise above 90 dB for frequencies <4 kHz, thresholds in cat show a second minimum at low frequencies and do not rise above 90 dB SPL until frequencies fall below about 0.2 kHz. These differences in low-frequency responses of high-CF fibers are likely a result of the roll-off in middle-ear transmission for frequencies <10 kHz in the mouse (Rosowski et al. 2003).

In mammals with better low-frequency hearing than mouse, significant information is carried in the fine timing of AN discharge, in addition to the information carried by changes in average rate. Maximum response synchrony in cat AN is constant for frequencies <1 kHz, rolls off dramatically above 1 kHz, and is essentially absent for stimulus frequencies >4 kHz (Johnson 1980). Thus in cat or guinea pig, and probably humans, low-frequency sensitivity is such that AN fibers spanning many octaves of CF will show phase-locked response to a moderate-level (80 dB), low-frequency (e.g., 1 kHz) tone. In mouse AN, by contrast, there would be almost no fibers responding to such a stimulus (see Fig. 10). This raises the question as to whether this mammalian ear specialized for high-frequency hearing has also developed specializations to shift the frequency range of AN phase-locking. Data in the present study suggest that this is not the case: the relation between maximum synchronization index and stimulus frequency appears to be fundamentally similar to that seen in other mammals (Fig. 9). Indeed, if anything, the high-frequency limit of synchronization occurs at a lower frequency than that in cat. Thus the data further suggest that phase-locking of AN response is not a particularly important component of mouse hearing.

SPONTANEOUS DISCHARGE AND SR GROUPS. In cat and guinea pig, where it has been most exhaustively studied, differences in SR are strongly correlated with differences in other response properties such as threshold sensitivity (Liberman 1978), adaptation (Rhode and Smith 1985), susceptibility to forward masking (Relkin and Doucet 1991), and dynamic range (Winter et al. 1990), among others.

In cat, where data from hundreds of units can be obtained from individual animals under highly stable recording conditions, analysis of the relation between SR and threshold sensitivity suggested that 3 SR groups could be defined: high, medium, and low, with SR ranges of >18, 0.5 to 18, and <0.5 sp/s, respectively (Liberman 1978). Subsequent structure–function correlations using intracellular injection of neuronal tracers revealed that there are systematic differences among these 3 groups, in 1) locus of peripheral terminal on the IHC circumference (Liberman 1982b), 2) size and complexity of the synaptic apparatus within the IHC (Mercan-Perez and Liberman 1996), 3) degree of branching of the central axon (Fekete et al. 1984), and 4) the CN subdivisions to which they project.

![Figure 11](https://example.com/fig11.png)

FIG. 11. Mean Q10dB as a function of CF for AN tuning curves in 5 mammalian species (see key). Data from each species were segregated into groups according to CF (octave bins), and the average Q10dB for each bin was placed at the mean fiber CF. Data are shown only for frequency bins containing >5 data points. Data for mouse (present study), cat (Liberman 1978), guinea pig (Tsuiji and Liberman 1997), and chinchilla (Liberman, unpublished data) are all from our laboratory; thus the methods for data acquisition and analysis are identical. Data for gerbil are from other investigators (Ohlemiller and Echteler 1990).

![Figure 12](https://example.com/fig12.png)

FIG. 12. Comparison of tuning curves from cat and mouse AN fibers in a similar CF range (11–16 kHz) illustrates the difference in low-frequency sensitivity. Cat tuning curves were obtained in a previous study (Liberman 1978).
(Liberman 1991, 1980). Many of the same structure–function relationships have been corroborated in the guinea pig, suggesting that the subdivision of AN fibers into SR-based groups is part of the fundamental mammalian plan (Tsuiji and Liberman 1997).

In cat, guinea pig, chinchilla, and rabbit (Fig. 13A) the SR distribution is fundamentally bimodal, and fibers from the lower peak in the SR distribution have higher thresholds than those from the high rate peak (Tsuiji and Liberman 1997). Although the SR distribution in the mouse is not as clearly bimodal as in these other species, the general relation between SR and threshold sensitivity is maintained (although the evidence for discrete SR groups rather than a continuum of response is not clear). Recent ultrastructural work in mouse suggests that, in this species, as previously reported in cat and guinea pig, the AN terminals contacting the modiolar side of the IHC are lower in mitochondrial content than those on the pillar side (Francis et al. 2004). In cat, these mitochondrion-poor afferents have been definitively identified as corresponding to the high-threshold low-SR group. Thus the same anatomical differences may underlie the observed SR-based heterogeneity of response in mouse.

With respect to the shape of the SR distribution, mouse is similar to rat (el Barbary 1991), another high-frequency animal, and to high-CF AN fibers in gerbil (Ohlemiller and Echteler 1990), where the SR distribution varies dramatically with CF. As can be seen in Fig. 13B, for rat, mouse, and the basal turn of gerbils, the SR distribution is not clearly bimodal and is shifted toward lower spontaneous rates. This association between a compressed SR distribution and high-frequency hearing is interesting, given that robust background discharge may be most useful at frequencies <4 kHz, where response synchronization occurs, and where synchrony rises at lower SPLs than the average rate (Fig. 9, A and B).

As for cat (Rhode and Smith 1985) and guinea pig (Muller and Robertson 1991), response adaptation in mouse AN is related to fiber SR (Fig. 5A) and CF (Fig. 5B). In both cat and guinea pig, response adaptation for fibers with CF <4 kHz was smaller than the response adaptation in fibers of higher CF (Muller and Robertson 1991; Rhode and Smith 1985). Given that phase-locking occurs for frequencies <4 kHz (Johnson 1980), Rhode and Smith (1985) hypothesized that the lower peak rates observed in cat low-CF fibers were attributed to an interaction between phase-locking and rapid adaptation. In mouse, there was a difference in response adaptation between fibers with CF below versus above 20 kHz (Fig. 5). This CF-related difference clearly cannot be correlated with the presence or the absence of synchrony; rather, it likely arises from CF-related changes in the kinetics of synaptic transmission.

DYNAMIC RANGE IN THE AUDITORY PERIPHERY. Rate versus level functions for AN responses to CF tone bursts have been best studied in cat (Sachs et al. 1989), guinea pig (Winter et al. 1990), and gerbil (Ohlemiller et al. 1991). In all 3 of these mammals, dynamic ranges depend strongly on SR: low-threshold, high-SR fibers show hard rate-saturation and small dynamic ranges, whereas high-threshold, low-SR fibers show sloping saturation or nonsaturating rate versus level functions with significantly larger dynamic ranges. Data in the present study show that the mouse AN has fundamentally the same behavior (Fig. 7); thus these SR-related differences in dynamic range also appear to be part of a general mammalian plan.

A striking difference between AN properties in mouse versus other mammals is the small dynamic range of the low-threshold, high-SR fibers. For example, Fig. 14 compares dynamic ranges for high- and low-SR AN fibers from the present study to data from cat (Guinan and Stankovic 1996), which were derived according to exactly the same stimulation and analysis protocols. The great majority (>90%) of high-SR fibers in the mouse had dynamic range values <18 dB, whereas the majority (>70%) of high-SR fibers in cat showed dynamic ranges >18 dB. Gerbil high-SR fibers (Ohlemiller et al. 1991) have been shown to have even higher dynamic range values (25–40 dB). Quantitative data for guinea pig are not available.

FIG. 13. Comparison of SR distributions for AN fibers recorded from a number of different mammalian species. Bimodal distributions are grouped in A: cat (Liberman 1978), guinea pig (Liberman, unpublished data), rabbit (Borg et al. 1988), chinchilla (Liberman, unpublished data), and the low-CF region of the gerbil cochlea (Ohlemiller and Echteler 1990). Nonbimodal distributions are grouped in B: mouse (present study), rat (el Barbary 1991), and the high-CF region of the gerbil (Ohlemiller and Echteler 1990).
The small dynamic ranges seen among mouse AN fibers, compared with those measured in other mammalian ears, may be related to the fact that the mouse ear is specialized for high frequencies: most of the hearing range is above stimulus frequencies at which response phase-locking can be used to carry information. In the gerbil AN, there is a CF dependency to dynamic range (Ohlemiller et al. 1991): high-frequency fibers, with CFs above the limits of phase-locking, show a smaller mean dynamic range (about 25 dB) than low-CF fibers (about 35 dB). The existence of steeper rate versus level functions in mouse high-SR fibers might be expected to subserve an enhanced ability to detect small changes in stimulus intensity at levels near threshold. However, existing measurement of intensity difference limens in mouse do not suggest any extraordinary abilities compared with other mammalian species investigated (Fay 1988).

The steepness of rate versus level functions in mouse could arise at several stages in cochlear processing. Comparison of basilar membrane displacement versus level functions for tones at CF near the base of the cochlea in mouse (Legan et al. 2000) compared with other mammals (Robles and Ruggero 2001) do not suggest striking differences in slope (Fig. 15). Thus the basis for the observed differences in dynamic range must arise within the inner hair cell, the auditory nerve, or the synaptic transmission between the two.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Drs. John J. Guinan and Christopher A. Shera for critical comments on the manuscript. We thank Drs. John J. Guinan, Michael Heinz, Eric Young, and Kevin Ohlemiller for providing experimental data.

GRANTS

Training support for A. M. Taberner was provided by a National Science Foundation Minority Graduate Research Fellowship and by training grant T32 DC-0038. M. C. Liberman received support from National Institute of Deafness and Other Communication Disorders Grant RO1 DC-00188.

REFERENCES

