β-Amyloid Peptides Impair PKC-Dependent Functions of Metabotropic Glutamate Receptors in Prefrontal Cortical Neurons

Joanna P. Tyszkieiwicz and Zhen Yan
Department of Physiology and Biophysics, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, New York
Submitted 9 September 2004; accepted in final form 17 January 2005

Tyszkieiwicz, Joanna P. and Zhen Yan. β-amyloid peptides impair PKC-dependent functions of metabotropic glutamate receptors in prefrontal cortical neurons. J Neurophysiol 93: 3102–3111, 2005. First published January 19, 2005; doi:10.1152/jn.00939.2004. The β-amyloid peptides impair PKC-dependent functions of metabotropic glutamate receptors in prefrontal cortical neurons. J Neurophysiol 93: 3102–3111, 2005. First published January 19, 2005; doi:10.1152/jn.00939.2004. The metabotropic glutamate receptors (mGluRs) have been implicated in cognition, memory, and some neurodegenerative disorders, including the Alzheimer’s disease (AD). To understand how the dysfunction of mGluRs contributes to the pathophysiology of AD, we examined the β-amyloid peptide (Aβ)-induced alterations in the physiological functions of mGluRs in prefrontal cortical pyramidal neurons. Two potential targets of mGluRs signaling involved in cognition, the GABAergic system and the N-methyl-D-aspartate (NMDA) receptor, were examined. Activation of group I mGluRs with (S)-3,5-dihydroxyphenylglycine (DHPG) significantly increased the spontaneous inhibitory post-synaptic current (sIPSC) amplitude, and this effect was protein kinase C (PKC) sensitive. Treatment with Aβ abolished the DHPG-induced enhancement of sIPSC amplitude. On the other hand, activation of group II mGluRs with (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC) significantly increased the NMDA receptor (NMDAR)-mediated currents via a PKC-dependent mechanism, and Aβ treatment also diminished the APDC-induced potentiation of NMDAR currents. In Aβ-treated slices, both DHPG and APDC failed to activate PKC. These results indicate that the mGluR regulation of GABA transmission and NMDAR currents is impaired by Aβ treatment probably due to the Aβ-mediated interference of mGluR activation of PKC. This study provides a framework within which the role of mGluRs in normal cognitive functions and AD can be better understood.

INTRODUCTION

Glutamate, the most abundant excitatory neurotransmitter in the CNS, activates both ligand-gated ion (ionotropic) channels and G-protein-coupled metabotropic (mGluRs) receptors (Nakanishi 1992). The former mediate fast glutamatergic transmission, whereas the latter exert slower and modulatory roles. The eight mGluR subtypes are divided into three groups based on the homology of their amino acid sequences and transduction mechanisms: group I mGluRs (mGluR1 and -5) stimulate phospholipase C and phosphoinositide hydrolysis, group II (mGluR2 and -3) and group III mGluRs (mGlu4, -6, -7, and -8) primarily couple to the inhibition of cAMP formation (Pin and Duvoisin 1995). The differential distribution of mGluR subtypes on pre- and/or postsynaptic terminals allows these glutamate receptors to play important roles in neuronal communication and signal processing underlying higher cognitive functions (Conn 2003). Many forms of synaptic plasticity rely on mGluR-mediated signaling (Anwyl 1999; Bashir et al. 1993; Cho and Bashir 2002). Mice lacking mGluR subtypes show impaired learning and altered synaptic plasticity (Aiba et al. 1994; Lu et al. 1997; Yokoi et al. 1996). Thus mGluRs have been implicated in regulating the molecular targets responsible for learning and memory (Conn and Pin 1997; Nakanishi 1994).

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive deficiency and memory loss. The pathogenesis of AD is believed to involve the accumulation of β-amyloid peptides (Aβ) (Price and Sisodia 1998; Selkoe 2001). Derived from β-amyloid precursor protein (APP) via proteolytic processing by β- and γ-secretases, Aβ has the propensity to aggregate and form neuritic plaques—the main culprit of cognitive decline. In search for a safe and effective pharmacological strategy to ameliorate the Aβ-driven mental impairments, the attention has spread over a number of potential therapeutic targets. The mGluRs, because of their involvement in cognition and neurodegeneration (Nicoletti et al. 1996), offer exciting possibilities for AD drug development (Bruno et al. 2001; Conn and Pin 1997). Elucidating the function and dysfunction of mGluRs under normal and pathological conditions may therefore provide valuable insights into our knowledge of cognition and memory as well as our understanding of senile dementia and AD.

Prefrontal cortex (PFC), the primary brain region involved in cognitive control (Fuster 2001; Miller and Cohen 2001), is one of the main targets of Aβ deposits (Price and Sisodia 1998; Selkoe and Schenk 2003). To understand how the dysfunction of mGluRs contributes to the pathophysiology of AD (Lee et al. 2004), we need to determine whether Aβ interferes with the physiological functions of mGluRs in PFC neurons. PFC neural activity is controlled by GABAergic inhibition and glutamatergic excitation. The GABAergic transmission has been shown to play a key role in “working memory” by shaping the temporal flow of information during cognitive operations (Constantinidis et al. 2002; Rao et al. 2000), whereas the N-methyl-D-aspartate (NMDA)-type glutamate receptor has long been recognized as a major player in synaptic plasticity, learning, and memory (Malenka and Nicoll 1999). Thus the GABAergic system and the NMDA receptor are two potential targets of mGluR signaling involved in cognition. In this study, we examined the Aβ-induced alterations in the mGluR regulation of GABA transmission and NMDA receptor (NMDAR) currents in PFC pyramidal neurons.
METHODS

Electrophysiological recordings in slices

Young adult rat slices containing PFC were prepared as described previously (Feng et al. 2001; Wang et al. 2003). All experiments were carried out with the approval of State University of New York at Buffalo Animal Care Committee. In brief, animals were anesthetized by inhaling 2-bromo-2-chloro-1,1,1-trifluoroethane (1 ml/100 g, Sigma) and decapitated, and brains were quickly removed, iced and then blocked for slicing. The blocked tissue was cut in 300–400 μm slices with a Vibrotome while bathed in a low Ca2+/MgCl2, 0.1 CaCl2, 23 glucose, 15 HEPES, and 1 kynurenic acid, pH 7.4, 300–305 mosm. Slices were then incubated for 1–6 h at room temperature in a NaHCO3-buffered saline bubbled with 95% O2-5% CO2 (containing, in mM): 140 NaCl, 2.5 KCl, 2 CaCl2, 2 MgCl2, 26 NaHCO3, 1.25 NaH2PO4, 10 glucose, 1 pyruvic acid, 0.05 glutathione, 0.1 N2O-arginine, and 1 kynurenic acid, pH 7.4, 300–305 mosm.

To evaluate the regulation of spontaneous inhibitory postsynaptic current (IPSC) by mGluRs in PFC slices, the whole cell voltage-clamp recording technique (Zhong et al. 2003) was used. Patch electrodes (5–9 MΩ) were filled with the following internal solution (in mM): 100 CsCl, 30 N-methyl-d-glucamine, 10 HEPES, 1 MgCl2, 4 NaCl, 5 EGTA, 12 phosphocreatine, 2 MgATP, 0.2 Na2ATP, and 0.1 leupeptin, pH 7.2–7.3, 265–270 mosM. The slice (300 μm) was placed in a perfusion chamber attached to the fixed-stage of an upright microscope (Olympus) and submerged in slices with a Vibratome while bathed in a low Ca2+/MgCl2, 0.1 CaCl2, 23 glucose, 15 HEPES, and 1 kynurenic acid, pH 7.4, 300–305 mosM.

Whole cell recordings in acutely dissociated neurons

Whole cell recordings of currents in dissociated neurons employed standard voltage-clamp techniques (Tyszkiewicz et al. 2004; Yan et al. 1999). The internal solution consisted of (in mM) 180 N-methyl-d-glucamine (NMG), 40 HEPES, 4 MgCl2, 0.1 bis-(o-aminophenoxo)-N,N,N’-tetraacetic acid (BAPTA), 12 phosphocreatine, 2 Na2ATP, 0.2 Na2GTP, and 0.1 leupeptin, pH = 7.2–7.3, 265–270 mosM. The external solution consisted of (in mM) 127 NaCl, 20 CsCl, 10 HEPES, 1 CaCl2, 5 BaCl2, 12 glucose, 0.001 TTX, and 0.02 glycin, pH = 7.3–7.4, 300–305 mosM. Recordings were obtained with an Axon Instruments 200B patch-clamp amplifier that was controlled and monitored with an IBM PC running pCLAMP (v. 8) with a DigiData 1320 series interface (Axon Instruments, Union City, CA). Electrode resistances were typically 2–4 MΩ in the bath. After seal rupture, series resistance (4–10 MΩ) was compensated whenever a significant increase (>20%) occurred. The cell membrane potential was held at −60 mV. NMDA (100 μM) was applied for 2 s every 30 s. Drugs were applied with a gravity-fed “sewer pipe” system. The array of application capillaries (150 μm ID) was positioned a few hundred micrometers from the cell under study. Solution changes were effected by the SF-77B fast-step solution stimulus delivery device (Warner Instrument, Hamden, CT).

Data analyses were performed with AxoGraph (Axon Instruments), Kaleidagraph (Albeck Software, Reading, PA), and StatView (Abacus Concepts, Calabasas, CA). For analysis of statistical significance, Mann-Whitney U tests were performed to compare the current amplitudes in the presence or absence of agonists. Student t-test was performed to compare the differential degrees of current modulation between groups subjected to different treatment.

Western blot analysis

For detecting activated PKC, a phospho-PKC (pan) antibody that recognizes PKCα, β1, β2, δ, η, and ζ isozymes only when phosphorylated at a carboxyl-terminal residue homologous to Ser960 of PKCB1 was used in the Western blot analysis (Gu et al. 2003; Tyszkiewicz et al. 2004). After incubation, slices were transferred to boiling 1% SDS and homogenized immediately. Insoluble material was removed by centrifugation (13,000 g for 10 min), and protein concentration for each sample was measured. Equal amounts of protein from slice homogenates were separated on 7.5% acrylamide gels and transferred to nitrocellulose membranes. The blots were blocked with 5% nonfat dry milk for 1 h at room temperature. Then the blots were incubated with the phospho-PKC (pan) antibody (Cell Signaling, 1:2,000) or anti-phospho-p44/p42 MAP kinase (Thr202/Tyr204) antibody (Cell Signaling, 1:100) for 1 h at room temperature. After being rinsed, the blots were incubated with horseradish peroxidase-conjugated anti-rabbit or anti-mouse antibodies (Amersham Biosciences, 1:2,000) for 1 h at room temperature. After three washes, the blots were exposed to the enhanced chemiluminescence substrate. Then the blots were stripped for 1 h at 50°C, followed by saturation in 5% nonfat dry milk and incubated with a PKC antibody recognizing the α, β, and γ isozymes (Santa Cruz, 1:2,000) or an antibody recognizing EKR1/2 (Cell Signaling, 1:200). Quantification was obtained from densitometric measurements of immunoreactive bands on autoradiograms.
FIG. 1. Activation of group I, but not group II, metabotropic glutamate receptor (mGluR) enhances the amplitude and frequency of spontaneous inhibitory postsynaptic currents (sIPSC) in prefrontal cortex (PFC) pyramidal neurons. A: cumulative plots of the distribution of sIPSC amplitude (left) and representative traces (right) before (ctl) and during DHPG (50 μM) application. B: cumulative plots of the distribution of sIPSC amplitude (left) and representative traces (right) before (ctl) and during DCG-IV (500 nM) application. Scale bars: 30 pA, 10 s.

RESULTS

Activation of group I mGluRs enhances the spontaneous IPSC amplitude and frequency in rat PFC pyramidal neurons

To investigate the role of mGluRs on GABAergic inhibitory transmission in PFC, we examined the effects of group I and group II mGluR agonists on the spontaneous inhibitory postsynaptic currents (sIPSC) in deep layer PFC pyramidal neurons. Bath application of DHPG (50 μM), a selective group I mGluR agonist, resulted in a marked increase in the amplitude and frequency of sIPSC (Fig. 1A). In contrast, DCG-IV (500 nM), a highly potent group II mGluR agonist, was unable to regulate sIPSC (Fig. 1B). In a sample of cells we tested, DHPG caused a significant increase in the mean amplitude (52.7 ± 5.0%, n = 21; P < 0.001, K-S test) and mean frequency (150.4 ± 19.8%, n = 21; P < 0.001, K-S test) of sIPSC (Fig. 1, C and D), whereas DCG-IV had little effect on either the amplitude (−3 ± 1.5%, n = 3, P > 0.05, K-S test) or the frequency (3.7 ± 5.3%, n = 3; P > 0.05, K-S test) of sIPSC (Fig. 1, C and D). We further recorded the miniature IPSC (mIPSC) in the absence and presence of DHPG. In all cells tested, the amplitude and frequency of mIPSC (recorded in the presence of TTX) were not changed by DHPG (amplitude: −0.3 ± 2.3%; frequency: −4.1 ± 3.1%, n = 8, P > 0.05, K-S test). These results suggest that the modulation of sIPSC amplitude and frequency is specific to group I mGluRs.

To dissect which mGluR subtype contributes to the responses of DHPG, we applied selective antagonists of mGluR1 or -5. As shown in Fig. 2, A–C, the mGluR5 antagonist MPEP (5 μM) blocked the enhancing effect of DHPG on sIPSC amplitude, whereas the mGluR1 antagonist CPCCOEt (50 μM) failed to do so. As summarized in Fig. 2, D and E, in the presence of MPEP, DHPG had little effect on sIPSC mean amplitude (−9.3 ± 5.0%, n = 7; P > 0.05, K-S test) and mean frequency (−11.4 ± 9.5%, n = 7; P > 0.05, K-S test), which was significantly different from the effects of DHPG in the presence of CPCCOEt (amplitude: 67.3 ± 2.7%; frequency: 116.5 ± 43.4%; n = 4, P < 0.001, K-S test). These results suggest that mGluR5 mediates the effects of DHPG on GABA transmission.

Group I mGluR regulation of GABAergic transmission is PKC dependent

We next tried to determine the signaling mechanism underlying the mGluR regulation of sIPSC. Activation of group I mGluRs stimulates the PLC–PKC cascade (Conn and Pin 1997), thus we first examined whether PKC was involved in the regulation of GABA transmission by group I mGluRs.

PFC slices were incubated with the cell-permeable and specific PKC inhibitor, calphostin C (1 μM), for 1 h, followed by recordings of sIPSC in the absence and presence of DHPG. As shown in Fig. 3, A and B, the DHPG enhancement of sIPSC amplitude was abolished in slices treated with calphostin C, suggesting the involvement of PKC. To confirm the role of PKC, we also applied another mechanistically distinct PKC inhibitor, myristoylated PKC20−28 (20 μM) (Eichholtz et al. 1993). Similarly, the DHPG enhancement of sIPSC amplitude was abolished in slices treated with myristoylated PKC20−28 (Supplemental Fig. 31). To determine whether the group I mGluR regulation of sIPSC amplitude is PKC-specific, we further examined the DHPG effect in PFC slices pretreated with the cell-permeable PKA inhibitor, myristoylated PKI14−22.

1 The Supplementary Material for this article (3 figures) is available online at http://jn.physiology.org/cgi/content/full/00939.2004/DC1.
As shown in Fig. 3C, after incubation with PKI14-22, DHPG still induced a robust increase in the amplitude of sIPSC. As summarized in Fig. 3D, DHPG caused little increase in sIPSC amplitude in calphostin-treated cells (5.3 ± 7.2%, n = 7, P > 0.05, K-S test) or PKC20-28-treated cells (3.3 ± 6.1%, n = 4, P > 0.05, K-S test), which was significantly different from the effect of DHPG in non-treated cells (52.6 ± 6.5%, n = 21, P < 0.001, K-S test) or PKI14-22-treated cells (67.2 ± 17.1%, n = 4; P < 0.001, K-S test).

Because previous studies have shown that mGluR-induced synaptic plasticity is mediated by the p42/44 or p38 MAP kinase (Bolshakov et al. 2000; Rush et al. 2002), we further explored the potential involvement of these MAP kinases in the mGluR regulation of GABA transmission. Blocking the activation of p42/44 MAP kinase (ERK) with U0126 (20 μM) (Favata et al. 1998), the specific inhibitor of MEK (the upstream kinase of ERK), failed to affect the DHPG-induced enhancement of sIPSC amplitude (Fig. 3D, 59.3 ± 5.8%, n = 4, P < 0.001, K-S test). Similarly, incubation with the specific p38 MAP kinase inhibitor SB203580 (1 μM) (Young et al. 1997) was also ineffective in blocking the DHPG-induced enhancement of sIPSC amplitude (Fig. 3D, 63.6 ± 16.3%, n = 5, P < 0.001, K-S test), suggesting the lack of involvement of p42/44 or p38 MAP kinase in the mGluR regulation of GABA transmission. The effect of group I mGluRs on the sIPSC frequency was not significantly altered by any of these kinase inhibitors (Fig. 3E, controls: 141.4 ± 28.2%, n = 16; calphostin C: 162.5 ± 53.7%, n = 6, PKC20-28: 214.5 ± 48.1%, n = 4; PKI14-22: 103.7 ± 34.1%, n = 4; U0126: 133 ± 52.1%, n = 4; SB203580: 122.2 ± 34.1%, n = 5; P < 0.001, K-S test). Taken together, these data suggest that the group I mGluR regulation of sIPSC amplitude, but not frequency, is mediated by a mechanism depending on the activation of PKC.

Treatment with β-amyloid peptides abolishes the group I mGluR regulation of sIPSC amplitude

β-Amyloid peptide (Aβ), derived from APP via proteolytic cleavage, is the primary component of neuritic plaques found in specific brain regions of AD patients (Selkoe and Schenk 2003). To investigate whether Aβ interferes with the group I mGluR modulation of GABAergic transmission in PFC, we incubated PFC slices with Aβ peptides and recorded sIPSC in...
the absence and presence of DHPG. We first compared the basal properties of sIPSCs in nontreated versus Aβ-treated slices (Supplemental Fig. 2). No significant difference was found between these groups (mean amplitude: control: 31.4 ± 1.9 pA, n = 16; Aβ25–35-treated: 24.8 ± 3.0 pA, n = 6; Aβ1–42-treated: 40.6 ± 5.5 pA, n = 10; P > 0.05, t-test; mean event number/min: control: 397.6 ± 50.3, n = 16; Aβ25–35-treated: 296.7 ± 56.0, n = 6; Aβ1–42-treated: 374.9 ± 76.5, P > 0.05, t-test). We then examined the effect of DHPG on sIPSC amplitude in Aβ-treated slices. As shown in Fig. 4, A and B, in the nontreated neuron, DHPG caused a potent enhancement of the sIPSC amplitude, whereas in the neuron treated with the aggregated Aβ25–35 (1 μM), which represents the biologically active region of Aβ (Pike et al. 1995; Yankner et al. 1990), the effect of DHPG on sIPSC amplitude was abolished. Similarly, in the neuron treated with the full-length Aβ peptide, Aβ1–42 (1 μM), DHPG failed to increase sIPSC amplitude (Fig. 4C). Lower concentration of Aβ1–42 (0.5 μM), but not Aβ1–42 (0.1 μM), also blocked the DHPG effect on sIPSC amplitude (Supplemental Fig. 1). In contrast, in the neuron treated with the control peptide containing the reverse sequence, Aβ40–41 (1 μM), the enhancing effect of DHPG on sIPSC amplitude was intact (Fig. 4D).

The group I mGluR regulation of GABA transmission with or without Aβ treatment is summarized in Fig. 4. E and F. DHPG failed to increase sIPSC amplitude in Aβ25–35-treated slices (−3.8 ± 5.3%, n = 6, P > 0.05, K-S test) or Aβ1–42-treated slices (1 μM: −4.7 ± 8.2%, n = 10; 0.5 μM: 0.6 ± 5.3%, n = 5; P > 0.05, K-S test), which was significantly

FIG. 3. The DHPG-induced increase in sIPSC amplitude is PKC dependent. A–C, cumulative plots of the distribution of sIPSC amplitude (top) and representative traces (bottom) before and during DHPG (50 μM) application in neurons from the nontreated slice (A) or the slice treated with calphostin C (1 μM, B) or PKI14–22 (1 μM, C). Scale bars: 20 pA, 10 s. D and E: summary histograms comparing the effect of DHPG on sIPSC amplitude (D) and frequency (E) in neurons under different treatments. *, P < 0.001, t-test.
different from the effect of DHPG in nontreated slices (52.5 ± 3.5%, n = 16, P < 0.001, K-S test), Aβ40–41 (0.1 μM)-treated slices (48.7 ± 7.9%, n = 5, P < 0.001, K-S test), or Aβ1–42 (1 μM)-treated slices (49.5 ± 11.9%, n = 6; P < 0.001, K-S test). The DHPG-induced increase in sIPSC frequency was not affected by Aβ treatment [Fig. 4F, controls: 141.4 ± 28.2%, n = 16; Aβ25–35: 96.7 ± 22.2%, n = 6; Aβ1–42 (0.1 μM): 86.8 ± 35.5%, n = 10; Aβ1–42 (0.5 μM): 184.2 ± 56.3%, n = 5; Aβ40–41 (1 μM): 205.8 ± 58.7%, n = 5; Aβ40–41: 159.7 ± 53.5%, n = 6; P < 0.001, K-S test]. Collectively, these results suggest that β-amyloid interferes with the group I mGluR regulation of sIPSC amplitude.

β-Amyloid peptides impair the group II mGluR-mediated potentiation of NMDAR currents in PFC neurons

We have recently reported that activation of group II mGluRs increases NMDAR currents in PFC pyramidal neurons via a PKC-dependent mechanism (Tyszkiewicz et al. 2004). Considering that β-amyloid peptides impair the group I mGluR-mediated, PKC-dependent regulation of GABAergic transmission, we hypothesized that the group II mGluR-mediated, PKC-dependent regulation of NMDAR currents may also be impaired by Aβ exposure. To investigate this, we incubated PFC slices with Aβ1–42 (1 μM) for 4 h and recorded NMDAR currents from acutely isolated neurons. We first compared the basal NMDAR currents in nontreated versus Aβ1–42-treated slices (Supplemental Fig. 2). No significant difference on the amplitude of NMDAR currents was found between these groups (control: 1.07 ± 0.19 nA, n = 9; Aβ1–42-treated: 1.22 ± 0.18 nA, n = 13; Aβ40–41-treated: 1.24 ± 0.22 nA, n = 4, P > 0.05, t-test). We then examined the effect of group II mGluRs on NMDAR currents in Aβ-treated slices. As shown in Fig. 5, A and B, application of APDC, a selective agonist for group II mGluRs, caused a reversible enhancement of NMDAR currents in the neuron from a nontreated slice but failed to enhance NMDAR currents in the neuron from an Aβ40–41-treated slice. In contrast, the enhancing effect of APDC on NMDAR cur-
rents was intact in the neuron from a slice treated with the control peptide Aβ/H9252 (40–1) (Fig. 5C). As summarized in Fig. 5D, APDC had little effect on NMDAR currents in Aβ/H92521–42-treated neurons (1.2 ± 0.8%, n = 13; P > 0.05, Mann-Whitney), which was significantly different from the effect of APDC in nontreated neurons (21.3 ± 1.1%, n = 9, P < 0.001, Mann-Whitney) or Aβ40–1-treated cells (18.3 ± 1.9%, n = 4; P < 0.001, Mann-Whitney). These data indicate that the group II mGluR regulation of NMDAR currents is disrupted by Aβ.

β-Amyloid peptide treatment inhibits the mGluR activation of PKC

We then tried to determine the mechanism underlying the Aβ-induced impairment of mGluR functions. Because both the group I mGluR enhancement of sIPSC amplitude and the group II mGluR potentiation of NMDAR currents are PKC-dependent, we speculated that the impairment of these mGluR functions by Aβ may be caused by the loss of mGluR activation of PKC after Aβ treatment. To examine this, we compared DHPG- and APDC-induced activation of PKC in PFC slices treated with or without Aβ1–42 (1 μM). As shown in Fig. 6A, application of the group I mGluR agonist DHPG (100 μM) caused a strong increase in PKC activity in the nontreated control slice but failed to do so in the Aβ1–42-treated slice. The total level of PKC was not changed by DHPG with or without Aβ1–42 treatment. As summarized in Fig. 6B, DHPG significantly increased the PKC activity in nontreated slices (1.7 ± 0.03-fold, n = 6, P < 0.001, t-test), but not in Aβ1–42-treated slices (0.9 ± 0.05-fold, n = 4, P > 0.05, t-test). Similarly, as shown in Fig. 6C, application of the group II mGluR agonist APDC (50 μM) also potently increased PKC activity in the nontreated control slice, but this effect was abolished in the Aβ1–42-treated slice. Summarized data (Fig. 6D) show that APDC significantly increased PKC activity in control slices (1.9 ± 0.11-fold, n = 6, P < 0.001, t-test) but lost the capability to activate PKC in Aβ1–42-treated slices (0.8 ± 0.02-fold, n = 4; P > 0.05, t-test). Similarly, the capability of phorbol ester PMA to activate PKC was also impaired in Aβ1–42-treated slices (Fig. 6E, n = 4), consistent with the previous finding that Aβ directly inhibits PKC activation (Lee et al. 2004).

To test whether the impairment of mGluR activation of PKC is due to a selective change in the signaling mechanisms or a general dysfunction of mGluRs caused by β-amyloid peptides, we examined the effect of group I mGluRs on ERK activation in Aβ-treated PFC slices. As shown in Fig. 6F, application of DHPG (100 μM) induced a strong increase in ERK phosphorylation (Thr202/Tyr204) and activation, and this effect was not altered in slices pretreated with Aβ1–42 (1 μM). Similar results
DISCUSSION

The activation of mGluRs has diverse cellular actions that lead to alterations in excitability and synaptic transmission (Anwy 1999; Mannai et al. 2001; Semyanov and Kullmann 2000; Valenti et al. 2003). Because of the important role of GABAergic transmission in "working memory" subserved by PFC (Constantinidis et al. 2002), we first examined the mGluR regulation of GABA transmission in PFC pyramidal neurons. Activation of group I mGluRs produced a strong increase in the amplitude and frequency of sIPSC. This increase could be caused by mGluR activation of GABAergic interneurons, which may result in the increase of synaptic currents through NMDAR channels in acutely dissociated PFC pyramidal neurons (Tyszkielawicz et al. 2004). It suggests that group II mGluRs not only inhibit evoked glutamate release in PFC via presynaptic mechanisms (Cartmell and Schoepf 2000; Marek et al. 2000) but also regulate postsynaptic NMDA receptor channels, one of the major substrates involved in cognition.

Because mGluRs have been implicated in memory acquisition, learning, and some neurodegenerative disorders (Conn and Pin 1997), growing effort is being directed to understand the relation between mGluR signaling and amyloid accumulation in AD. Aβ strongly inhibits the induction of long-term potentiation (LTP) (Walsh et al. 2002), a synaptic model of learning and memory, and this effect is prevented by a group I/II mGluR antagonist and a selective mGluR5 antagonist, suggesting the involvement of mGluR5 in the Aβ-mediated inhibition of LTP (Wang et al. 2004). Moreover, pharmacologic blockade or activation of different mGluRs produces neuroprotection in models for chronic neurodegenerative disorders. For example, prolonged exposure of cultured cortical cells to Aβ25–35 induces neuronal apoptosis, and the apoptosis is substantially attenuated by group II or III mGluR agonists (Copani et al. 1995). Selective antagonism of mGluR5 also exhibits neuroprotective function against Aβ toxicity in cortical cultures (Bruno et al. 2000). These results have demonstrated that mGluR signaling exerts an important impact on the cellular actions of Aβ; however, the impact of Aβ deposits on mGluR functions is largely unknown.

The most important finding of the present study is that Aβ treatment impairs two important functions of mGluRs involved in cognition: the group I mGluR regulation of GABA transmission and group II mGluR regulation of NMDA receptor currents. Emerging evidence has suggested that AD is a synaptic failure, with functional—not structural—synaptic changes being responsible for the cognitive deficits prior to frank neuronal degeneration (Hsia et al. 1999; Selkoe 2002). The accumulation of diffuse deposits of Aβ in the brain is an early event in the development of AD, which emphasizes the importance of elucidating the neuronal response to Aβ before clinical symptoms arise. Strong correlations between soluble Aβ levels and the extent of synaptic loss and cognitive impairment have been found in AD brains (Lue et al. 1999; McLean et al. 1999), suggesting that synapses are the initial target in AD (Small et al. 2001). We speculate that the Aβ-induced dysregulation of GABAergic and glutamatergic synapses will cause subtle alterations of cortical synaptic efficacy, leading to impairment of memory as the disease progresses. The aberrant synaptic functions of mGluRs in neurons after Aβ treatment, along with our previous findings on the impaired synaptic functions of muscarinic receptors in Aβ-treated PFC slices and in APP transgenic mice (Zhong et al. 2003), provide a cellular mechanism showing how Aβ could alter the complex regulation of synapses, which may result in the deficient cognition and memory.

Several mechanisms could account for the DHPG effects on GABA transmission. First, mGluRs increase the excitability of GABAergic interneurons by suppressing potassium conductances or potentiating cation currents, therefore leading to the elevated probability of GABA release. Second, mGluRs enhance the probability of action potential-dependent GABA release from axon terminals, therefore leading to the increase
of the contribution of large-size (multiquantal) sIPSCs to the overall population of synaptic events. One possible underlying mechanism for this mGluR action is that the mGluRI/phospholipid/PKC signaling regulates the presynaptic protein synaptotagmin that functions as a calcium sensor to trigger synchronous vesicle fusion events, thus facilitating the Ca2+ cooperativity of transmitter release. The signaling mechanism mediating the DHPG increase in sIPSC frequency awaits to be elucidated.

Given the PKC dependence of both the group I mGluR enhancement of sIPSC amplitude (this study) and the group II mGluR potentiation of NMDAR currents (Tyszkiwicz et al. 2004), one possible mechanism underlying the A\textbeta-induced impairment of these mGluR functions is the loss of mGluR activation of PKC after A\textbeta treatment. Considerable evidence has suggested that many postreceptor signal transduction processes are severely compromised in AD, including the impaired G protein regulation of phospholipase C, the decreased receptor sites for the second messenger IP3, and the reduced vesicle fusion events, thus facilitating the Ca2+ cooperativity of transmitter release. The signaling mechanism mediating the DHPG increase in sIPSC frequency awaits to be elucidated.

Our data have demonstrated that A\textbeta peptides inhibit only the PKC limb of the mGluR pathway and not the ERK limb, suggesting that mGluR function in general is not affected by A\textbeta. These data also suggest that other neurotransmitter systems that activate PKC may be inhibited by A\textbeta as well, like the muscarinic receptors (Zhong et al. 2003). Thus A\textbeta may have a selective effect on PKC-dependent processes as opposed to general mGluR functioning.

Taken together, this study has revealed that the mGluR regulation of two important targets involved in cognition, GABA transmission and NMDA receptors, is impaired by A\textbeta treatment, which may be attributable to the A\textbeta-induced loss of mGluR activation of PKC. Given the important role of mGluRs, GABA transmission, NMDA receptors and PKC in cognition, this finding provides a potentially important clue to the possible ways in which A\textbeta could act to cause cognitive decline. It supports the notion that elucidation of the effects of A\textbeta on synaptic function rather than on cell death is critical for understanding the pathogenesis of AD and for finding novel therapeutic targets (Small et al. 2001).

ACKNOWLEDGMENTS

We thank X. Chen for technical support.

GRANTS

This work was supported by National Institutes of Health Grants AG-21923 and MH-63128 and National Science Foundation Grant IBN-0117026 to Z. Yan.

REFERENCES

J Neurophysiol • VOL 93 • JUNE 2005 • www.jn.org

Yan Z and Surmeijer DJ. D5 dopamine receptors enhance Zn2+-sensitive GABA(A) currents in striatal cholinergic interneurons through a PKA/PP1 cascade. *Neuron* 19: 1115–1126, 1997.

