Neuronal Chloride Accumulation in Olfactory Epithelium of Mice Lacking NKCC1

William T. Nickell, Nancy K. Kleene, Robert C. Gesteland, and Steven J. Kleene

Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati, Cincinnati, Ohio

Submitted 12 September 2005; accepted in final form 28 November 2005
intact mouse olfactory epithelium. The EOG is an extracellular field potential measured at the surface of the epithelium in response to odor stimulation. It arises from the summated activities of many ORNs near the recording electrode (Ottoson 1956; Scott and Scott-Johnson 2002). Before the mechanisms of olfactory transduction were identified in isolated ORNs, the ionic basis of the EOG had been extensively studied (reviewed by Ishimaru 1992; Leveau et al. 1989). Whether Cl− might contribute to the EOG was never decided (Takagi et al. 1966, 1968). We now report that the EOG in wild-type mice is primarily caused by a depolarizing Cl− current. Surprisingly, we found that olfactory epithelium from mice lacking Nkcc1 also supports a large Cl− efflux on odor stimulation. This evidence indicates that much of the neuronal Cl− accumulation in intact olfactory epithelium is not accounted for by Nkcc1 activity.

METHODS

The electroolfactogram (EOG) is a summated receptor potential activated by odors and measured at the surface of the olfactory epithelium (Ottoson 1956; Scott and Scott-Johnson 2002). The EOG was recorded while rinsing the epithelium with a thin layer of Ringer as described by Chen et al. (2000). This allows reversible changes of the solution bathing the mucosa.

EOGs were recorded in epithelia from Nkcc1+/+ and Nkcc1−/− mice in an inbred FVBN background. The Nkcc1−/− mice have a null allele for Nkcc1 (Flagella et al. 1999). Nkcc1 homozygous mutant and wild-type mice were obtained by breeding gene-targeted Nkcc1 heterozygous mutant mice. The genotype of each mouse was determined by a PCR of DNA from tail biopsies as described previously (Flagella et al. 1999). Nkcc1−/− mice exhibit defects in hearing, balance, salivation, blood pressure, and spermatogenesis (reviewed in Delpire and Mount 2002). Their olfactory behavior has not been reported. The genotype of the mouse was not revealed to the person recording the EOGs until the experiment had been completed. The mice were 19–52 days old.

For each experiment, a mouse was asphyxiated with CO2 and decapitated in accordance with institutional and NIH guidelines. The head was hemisected in a midsagittal plane with the blade passing between the septum and the lateral mucosa. The septum was removed, and recordings were made from the olfactory turbinates, which are located on the lateral mucosa. Most EOGs were recorded from endoturbinate III (using the nomenclature of Ressler et al. 1993). The EOG was measured three times. The first (control) EOG was measured as the epithelium was perfused with normal Ringer. Then the epithelium was perfused for 5–10 min with Ringer containing 300 μM niflumic acid or flufenamic acid. These are inhibitors of the olfactory Ca2+/activated Cl− channel (Kleene 1993; Lowe and Gold 1993; Zhainazarov and Ache 1995). At the end of this perfusion, a second EOG was recorded. Finally, the epithelium was again perfused with Ringer lacking the inhibitor for 15–30 min to allow recovery from the inhibition. After this, a third and final EOG was recorded. In all but one mouse, the series of three EOGs was repeated in one or two additional locations on the epithelium.

Odorants, niflumic acid, and flufenamic acid were from Sigma-Aldrich (St. Louis, MO). Data are presented as means ± SE.

RESULTS

On stimulation with odors, isolated ORNs generate a receptor current, of which a substantial part is carried by Cl− (Kurahashi and Yau 1993; Zhainazarov and Ache 1995). To determine if this Cl− current is significant in intact tissue, we studied the EOG in mouse olfactory epithelium. The EOG is a summated receptor potential activated by odors and measured at the surface of the olfactory epithelium (Ottoson 1956; Scott and Scott-Johnson 2002). We examined the effects of niflumic acid and flufenamic acid on the EOG. Each of these is an inhibitor of the Ca2+/activated Cl− channels that are involved in olfactory transduction (Kleene 1993; Lowe and Gold 1993; Reisert et al. 2003; Zhainazarov and Ache 1995).

In olfactory epithelium from wild-type (Nkcc1+/+) mice, stimulation with a mixture of odorants produced the expected negative-going EOG (Fig. 1, left, control). On average, the amplitude of this EOG was 438 ± 65 μV (n = 7). After determined by an increase in electrical resistance on touching the epithelium. Electrical signals were amplified by a high-impedance preamplifier (AK-47L, Metametrics, Cambridge, MA), filtered at 500 Hz, and digitized at 2 kHz. Data acquisition and stimulus control were handled by a data-acquisition board (PCI-6024E, National Instruments, Austin, TX) run by Igor Pro 4 software (Wavemetrics, Portland, OR). The preparation was grounded through a 3 M KCl salt bridge. Recordings were done at room temperature (22–25°C).

The EOG was measured three times. The first (control) EOG was measured as the epithelium was perfused with normal Ringer. Then the epithelium was perfused for 5–10 min with Ringer containing 300 μM niflumic acid or flufenamic acid. These are inhibitors of the olfactory Ca2+/activated Cl− channel (Kleene 1993; Lowe and Gold 1993; Zhainazarov and Ache 1995). At the end of this perfusion, a second EOG was recorded. Finally, the epithelium was again perfused with Ringer lacking the inhibitor for 15–30 min to allow recovery from the inhibition. After this, a third and final EOG was recorded. In all but one mouse, the series of three EOGs was repeated in one or two additional locations on the epithelium.
perfusion with Ringer containing 300 μM niflumic acid, the amplitude of the EOG was greatly reduced (Fig. 1, left, +NFA). On average, the amplitude was 18% of the control value (Table 1). This reduction was largely reversible. After reperfusion with Ringer lacking niflumic acid, the EOG recovered on average to 71% of its original amplitude (Fig. 1, left, recovery; Table 1). Flufenamic acid (300 μM) was tested in epithelia from two wild-type mice. In one, flufenamic acid reduced the EOG amplitude to 14%. The amplitude returned to 56% of the control value after removing the inhibitor. In epithelium from a second wild-type mouse, flufenamic acid completely and irreversibly eliminated the EOG. Perfusion of epithelium from a second wild-type mouse, flufenamic acid greatly reduced the amplitude of the EOG (Fig. 1, right, control; Table 1). Flufenamic acid reduced the EOG amplitude to 57% after removal of the inhibitor. There were no major differences in the time courses of the EOGs in Nkcc1+/− and Nkcc1−/− mice.

DISCUSSION

We report that the EOG in mice is primarily caused by a Cl− current. The amplitude of the EOG was reversibly reduced by 82% after perfusing the tissue with niflumic acid (Fig. 1; Table 1). Flufenamic acid was also effective. These reagents have been shown to block the Ca2+-activated Cl− channels that are present in olfactory cilia, where transduction occurs. They do not block the cyclic-nucleotide-gated cationic channels that also contribute to transduction (Kleene 1993). In isolated frog ORNs, the concentration of niflumic acid used (300 μM) blocks 90% of the Cl− channel current (Kleene 1993). Thus it is possible that the fraction of the receptor current caused by Cl− in situ is greater than the 82% that was measured.

TABLE 1. Reduction of the EOG by niflumic acid in Nkcc1+/− and Nkcc1−/− mice

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Niflumic Acid</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nkcc1+/− (n = 5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude, μV</td>
<td>362 ± 58</td>
<td>67 ± 10</td>
<td>258 ± 50</td>
</tr>
<tr>
<td>Percent control</td>
<td>100</td>
<td>18 ± 2</td>
<td>71 ± 9</td>
</tr>
<tr>
<td>Nkcc1−/− (n = 6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude, μV</td>
<td>270 ± 23</td>
<td>44 ± 12</td>
<td>174 ± 22</td>
</tr>
<tr>
<td>Percent control</td>
<td>100</td>
<td>17 ± 4</td>
<td>68 ± 6</td>
</tr>
</tbody>
</table>

Values are ± SE. EOGs were recorded in series under three conditions (tissue in Ringer, then Ringer with 300 μM niflumic acid, then again in Ringer). Each column of the table represents one of the EOGs. In all but one mouse, the entire series was performed two or three times. For each mouse, a single average value was calculated for each EOG so that each animal was weighted equally in the table shown. EOG, electroolfactogram.

Recent evidence indicates that the cation-coupled Cl− co-transporter NKCC1 underlies the accumulation of Cl− by ORNs (Kaneko et al. 2004; Reisert et al. 2005). We find that the amplitude of the EOG in situ is reduced by just 39% in mice lacking NKCC1. In both strains, blockers of the Ca2+-activated Cl− channels reduced the amplitude by > 80%. There were no obvious differences in the time-courses of the EOGs. Thus it is clear that ORNs can effectively accumulate Cl− even in the absence of NKCC1.

In fact, there were already three lines of evidence that NKCC1 activity is not sufficient to fully account for Cl− accumulation by ORNs. 1) In rat, the concentrations of Na+, K+, and Cl− on both sides of the distal dendrite were measured by energy-dispersive X-ray microanalysis (Reuter et al. 1998). These concentrations suggest that NKCC1 could not support apical Cl− accumulation. Lowering [Na+]in from the measured value of 53 ± 31 (Reuter et al. 1998) to < 23 mM would allow Cl− accumulation (Kaneko et al. 2004). 2) Treating the epithelium with Na+-free Ringer or bumetanide reduced apical [Cl−]in in ORNs. However, [Cl−]in reached a steady-state value of ~40 mM after these treatments, compared with ~54 mM before treatment (Fig. 5B of Kaneko et al. 2004). As the authors mention, passive equilibration of Cl− would cause [Cl−]in to be ~10 mM. In other words, accumulation of Cl− is robust even after treatments designed to block NKCC1. 3) In isolated mouse ORNs treated with bumetanide, niflumic acid still reduced the odor-activated current by ~30% (Reisert et al. 2005). Again, this suggests that the neurons accumulate Cl− even when NKCC1 is blocked.

Our studies indicate that the EOG consists primarily of a Cl− current, even in mice lacking NKCC1. These conclusions rest on two premises. First, it is generally believed that the EOG arises from the receptor potentials of the ORNs with little direct contribution from other epithelial cells (Ottoson 1956; Scott and Scott-Johnson 2002). Extensive evidence supports this view. Transection of the olfactory nerve reduces the number of ORNs, and the amplitude of the EOG decreases in parallel (Takagi and Yajima 1965). The EOG is virtually eliminated in mice lacking the CNGA2 subunit of the CNG channel (Brunet et al. 1996) or the type III adenylate cyclase (Wong et al. 2000). These transduction proteins are expressed in ORNs but not in other cells of the olfactory epithelium (Bakalyar and Reed 1990; Dhallan et al. 1990).

Second, it is believed that niflumic and flufenamic acids reduce the EOG by blocking a neuronal Cl− channel. These reagents block the Ca2+-activated Cl− channels in the cilia of frog ORNs (Kleene 1993). The channels open during the odor response in isolated ORNs in amphibians (Kurahashi and Yau 1993; Lowe and Gold 1993; Zhainazarov and Ache 1995) and in mammals (Lowe and Gold 1993; Reisert et al. 2005). It is formally possible that niflumic and flufenamic acids might block some cationic channel in the ORNs that accounts for most of the EOG, but no such channel has been reported to date. In fact, substantial evidence indicates that the EOG is mostly caused by a cAMP-mediated cascade (Belfusci et al. 1998; Brunet et al. 1996; Chen et al. 2000; Wong et al. 2000). In this cascade, only the ciliary Ca2+-activated Cl− channels are blocked by niflumic and flufenamic acids (Kleene 1993).

In neonatal mice, sustentacular cells of the epithelium express a leak channel that is blocked by niflumic acid (Vogalis et al. 2005). This raises the possibility that niflumic and
flufenamic acids could reduce the amplitude of the EOG by two mechanisms. The first mechanism is a direct block of the neuronal Cl⁻ channels that underlie transduction. However, the blockers might also reduce neuronal Cl⁻ accumulation by an action on sustentacular cells. If such an action were to reduce the concentration of Cl⁻ bathing the ORNs, for example, this could indirectly reduce the neuronal Cl⁻ accumulation.

Some questions remain. First, it is not yet understood why isolated neurons from Nkcc1⁻/⁻ mice respond weakly to odors, whereas the intact epithelium gives a robust response. The ionic environment may be very different in situ, and there is evidence that Cl⁻ transport is less effective in isolated ORNs (Kaneko et al. 2004). Second, the mechanism of Cl⁻ accumulation in the Nkcc1⁻/⁻ mice is not yet known. NCC, another cation-coupled Cl⁻ cotransporter that often underlies Cl⁻ accumulation, has been detected in ORNs by PCR (Kaneko et al. 2004). Any Cl⁻/HCO₃⁻ exchangers present would support Cl⁻ accumulation. ATP-driven Cl⁻ pumps could also exist, but evidence for these is very limited. In Nkcc1⁻/⁻ mice, other mechanisms of Cl⁻ accumulation may be upregulated compared with the wild-type. It is not clear how multiple mechanisms might work together in the wild-type. Having multiple methods of Cl⁻ accumulation available should allow this function to persist despite changes in the ionic environment. A similar argument may explain why both cationic and Cl⁻ currents are used to depolarize ORNs (Kleene and Pun 1996; Kurahashi and Yau 1993).

Acknowledgments

We thank G. Shull for providing the mice and for a critical review of the manuscript.

Grants

This work was supported by National Institute on Deafness and Other Communication Disorders Grants DC-09206 and DC-04203.

References