Ionic Mechanism Underlying Recovery of Rhythmic Activity in Adult Isolated Neurons

Rodolfo J. Haedo1 and Jorge Golowasch1,2
1Department of Biological Sciences, Rutgers University; and 2Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey

Submitted 12 April 2006; accepted in final form 26 June 2006

Haedo, Rodolfo J. and Jorge Golowasch. Ionic mechanism underlying recovery of rhythmic activity in adult isolated neurons. J Neurophysiol 96: 1860–1876, 2006. First published June 28, 2006; doi:10.1152/jn.00385.2006. Neurons exhibit long-term excitability changes necessary for maintaining proper cell and network activity in response to various inputs and perturbations. For instance, the adult crustacean pyloric network can spontaneously recover rhythmic activity after complete shutdown resulting from permanent removal of neuromodulatory inputs. Dissociated lobster stomatogastric ganglion (STG) neurons have been shown to spontaneously develop oscillatory activity via excitability changes. Rhythmic electrical stimulation can eliminate these oscillatory patterns in some cells. The ionic mechanisms underlying these changes are only partially understood. We used dissociated crab STG neurons to study the ionic mechanisms underlying spontaneous recovery of rhythmic activity and stimulation-induced activity changes. Similar to lobster neurons, rhythmic activity spontaneously develops in crab STG neurons. Rhythmic hyperpolarizing stimulation can eliminate, but more commonly accelerate, the emergence of stable oscillatory activity depending on Ca2+ influx at hyperpolarized voltages. Our main finding is that upregulation of a Ca2+ current and downregulation of a high-threshold K+ current underlies the spontaneous homeostatic development of oscillatory activity. However, because of a nonlinear dependence on stimulus frequency, hyperpolarization-induced oscillations appear to be inconsistent with a homeostatic regulation of activity. We find no difference in the activity patterns or the underlying ionic currents involved between neurons of the fast pyloric and the slow gastric mill networks during the first 10 days in isolation. Dynamic-clamp experiments confirm that these conductance modifications can explain the observed activity changes. We conclude that spontaneous and stimulation-induced excitability changes in STG neurons can both result in intrinsic oscillatory activity via regulation of the same two conductances.

INTRODUCTION

Neuronal excitability regulation is important for the maintenance of stable activity patterns in individual neurons (Davis and Bezprozvanny 2001; Desai et al. 1999; Franklin et al. 1992; Hong and Lennicka 1995; Li et al. 1996; Lindsell and Moody 1994; Turrigiano et al. 1994) and in neuronal networks (Galante et al. 2001; Luther et al. 2003; Turrigiano and Nelson 2004). This homeostatic plasticity allows neuronal and network activity to remain within functional limits during their normal operation and in response to perturbations or injury. Regulation of neuronal excitability and intrinsic properties can be induced by electrical stimulation (Cudmore and Turrigiano 1999a; Li et al. 1996; Turrigiano et al. 1994), ionic conductance perturbations (Desai et al. 1999; Lindsell and Moody 1994), development and growth (Spitzer et al. 2002), and trauma (Darlington et al. 2002) and may play a role in memory formation (Dauodul and Debanne 2003; Marder et al. 1996; Zhang and Linden 2003).

The rhythmical activity pattern of the pyloric network in the stomatogastric ganglion (STG) of crustaceans is conditional on neuromodulatory release from neurons located in central ganglia. When these inputs are permanently removed, activity ceases but a stable new activity pattern spontaneously develops within hours to days (Golowasch et al. 1999b; Luther et al. 2003; Thoby-Brisson and Simmers 1998). It has been suggested that this recovery of rhythmic activity occurs via up- and downregulation of voltage-dependent ionic conductances and the consequent acquisition of oscillatory properties by some of the network components (Golowasch et al. 1999b; Mizrahi et al. 2001; Thoby-Brisson and Simmers 2002). Indeed, this recovery correlates with some ionic conductance changes (Mizrahi et al. 2001; Thoby-Brisson and Simmers 2002). Neuromodulators may also have suppressive trophic effects on the excitability of STG neurons in the intact network, suppression that may be released after removal of neuromodulatory input by decentralization (Le Feuvre et al. 1999; Thoby-Brisson and Simmers 1998, 2000).

Neuronal intrinsic excitability is affected by patterned electrical activity in isolated STG neurons in culture (Turrigiano et al. 1994) and in neurons in situ (Golowasch et al. 1999a). Excitability changes can also occur spontaneously both in isolated STG neurons in culture in response to cell dissociation (Turrigiano et al. 1995) or in the intact ganglion in response to decentralization (Golowasch et al. 1999b; Mizrahi et al. 2001; Thoby-Brisson and Simmers 2002). To understand how network activity evolves in response to persistent perturbations (such as the removal of central inputs essential for the generation of the activity), it is essential to understand the dynamics and plasticity of the voltage-dependent ionic currents of its component neurons. In cultured STG neurons, spontaneous activity changes have been correlated with changes in a TEA-sensitive K+ current and in various inward currents (Turrigiano et al. 1995). However, the conductance changes induced by prolonged rhythmic stimulation (Turrigiano et al. 1994) have not been identified.

Here we study the ionic mechanisms involved in spontaneous and activity-induced recovery of oscillatory activity in Isolated Neurons.

Address for reprint requests and other correspondence: J. Golowasch, Dept. Mathematical Sciences, NJIT, University Heights, Newark, NJ 07102 (E-mail: Jorge.P.Golowasch@njit.edu).

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
adult dissociated crab STG neurons. We find the same ionic currents to be modified in both cases, although probably via different signaling pathways. Dynamic-clamp experiments confirm that the ionic currents modified are sufficient to produce the observed activity changes. Surprisingly, during the first 10 days after dissociation, neurons from the pyloric and gastric networks cannot be distinguished on the basis of neuronal activity, ionic conductance changes, or response to stimulation.

METHODS

Animals and solutions

Adult male crabs Cancer borealis (carapace length >15 cm) were obtained from local fish markets (Newark, NJ) and maintained in saltwater aquaria at 12–14°C. The following solution compositions were used (concentrations all in mM): standard Cancer saline solution (440.0 NaCl, 11.0 KCl, 13.0 CaCl₂, 26.0 MgCl₂, 5.0 Maleic acid, and 11.2 Trizma base, pH 7.4–7.5); salt supplement solution (743.7 NaCl, 16.4 KCl, 24.7 CaCl₂, 50.2 MgCl₂ and 10.0 HEPES, pH 7.4); 11.2 Trizma base, pH 7.4–7.5); salt supplement solution (743.7 NaCl, 16.4 KCl, 24.7 CaCl₂, 50.2 MgCl₂ and 10.0 HEPES, pH 7.4); 0 Ca²⁺/0 Mg²⁺ dissociation solution (440.0 NaCl, 11.0 KCl, and 10.0 HEPES, pH 7.4); barium saline solution (440.0 NaCl, 11.0 KCl, 12.9 BaCl₂, 0.1 CaCl₂, 26.0 MgCl₂, 5.0 Maleic acid, and 11.2 Trizma base, pH 7.4–7.5); Mn²⁺ saline was identical to barium saline with Mn²⁺ substituting for Ba²⁺. All chemicals were obtained from Fisher Scientific (Fairlawn, NJ) unless otherwise indicated. The sodium channel blocker Tetrodotoxin, TTX (EMD, Biosciences) was used at 0.1 mM. Tetrodotoxin, TTX (EMD, Biosciences) was used at 0.1 mM.

Cell dissociation

Adult STG neurons were cultured following a protocol similar to those used by Turrigiano and Marder (1993), Gloewik et al. (1997), and Swensen and Marder (2000). Crabs were anesthetized by cooling during 15–30 min on ice. The foregut was removed, and the STG, with a portion of the nerves attached, was isolated as previously described (Selverston et al. 1976) in a sterile laminar flow hood. The dissected nerves and ganglia were rinsed four to five times in sterile saline containing 0.1 mg/ml gentamicin (MP Biomedicals, Aurora, OH). The ganglia were pinned down in sterile silicone elastomer (Sylgard)-lined Petri dishes, incubated in sterile 0 Ca²⁺/0 Mg²⁺ saline plus 2 mg/ml of the proteolytic enzyme Dispase (Gibco) for 6 h at room temperature, and then transferred to an incubator at 12°C overnight in the same solution. Individual somata were then removed from the ganglia by aspiration with glass micropipettes coated inside with goat serum (Invitrogen, Carlsbad, CA) and with fire-polished tips. Dissociated neurons were plated individually onto uncoated 35-mm plastic Nunclon culture dishes in sterile salt supplement solution diluted 1:1 with sterile Leibowitz L-15 medium (In-vitrogen) and then placed in an incubator at 12–14°C for the duration of the culturing period. Saline was not replaced during this time.

Cell identification

A subset of the experiments was performed with identified neurons of the STG. Because the gastric network is known to oscillate at a frequency several times slower than the pyloric network (Nusbaum and Beenhakker 2002), we hypothesized that gastric neurons, if they become oscillatory in dissociated culture, would oscillate at a lower frequency than dissociated pyloric neurons. Thus we aimed to distinguish only between neurons belonging to the pyloric network, the gastric network and other neurons not belonging to either of these networks. For this purpose, we followed the established protocol for cell identification (Selverston et al. 1976). A map of the STG neurons was drawn and neurons successively impaled with one electrode and identified. The tips of the theta filament electrodes used for recording (WPI, Sarasota, FL) were filled with either the dye Alexa Fluor 488 or

FIG. 1. Dissociation preserves biophysical properties. A: extracellular recordings from the lateral ventricular nerve (lvn) showing the action potentials of 3 main pyloric motor neurons [lateral pyloric (LP), pyloric constrictor (PY), and pyloric dilator (PD)]; Top: (control before treatment) from a freshly dissected preparation. Middle: (control, 24 h) recorded in normal saline after protease treatment (METHODS). Bottom: (pilocarpine) was recorded immediately after the middle trace was recorded, showing a strong neuromodulatory response to 100 μM pilocarpine after enzymatic treatment. B: recordings from 2 stomatogastric ganglion (STG) neurons 24 h after enzymatic treatment and mechanical dissociation (METHODS). Neurons were impaled with 1 electrode and stimulated with a +0.1-nA current pulse (top traces). Voltage responses before (control) and after application of the neuromodulator pilocarpine (5 μM) are shown below. Neuronal input resistance was >10 times the electrode resistance and thus no attempt was made to subtract electrode resistance in these recordings. †, −55 mV (left) and −63 mV (right).
Alexa Fluor 568 (Invitrogen) by dipping the back of the electrode in the dye solution for 1–2 min and backfilling the rest of the micropipette with 1 M KCl. Neurons identified as pyloric were filled by passing −10 nA for 10–30 s with one dye, and then neurons identified as gastric were filled similarly with the other dye. After this, the dissociation procedure was followed as described above.

Electrophysiological recordings

Single- or two-electrode voltage clamp (SEVC or TEVC) performed with an Axoclamp 2B amplifier (Molecular Devices, Union City, CA) was used to measure ionic currents. Data were digitized and then analyzed using the pClamp9.0 software (Molecular Devices). Recordings were obtained using Citrate-filled microelectrodes (4 M K-citrate +20 mM KCl). Current injection electrodes had resistances of 12–18 MΩ and voltage recording electrodes of 15–25 MΩ. The preparation was grounded using an Ag/AgCl wire connected directly to the bath or via an agar bridge (4% agar in 0.6 M K2SO4). No differences were observed with or without the agar bridge. All experiments were carried out at room temperature (20–22°C) ~1 h after transferring the cells to the recording setup.

K+ currents were measured in standard Cancer saline +0.1 μM TTX and separated into two components: high-threshold, voltage-gated currents, \(I_{Ca}\), and 800-ms-long depolarizing membrane potential steps from a holding voltage of −40 mV, and the voltage-gated transient current, \(I_{\Delta}\), that was activated with depolarizing steps from a holding voltage of −80 mV (Golowasch and Marder 1992; Graubard and Hartline 1991). In crabs, the high-threshold component is known to consist of two conductances, a delayed-rectifier, \(I_{K_{Ca}}\), partially blocked by TEA and a Ca\(^{2+}\)-dependent conductance, \(I_{K_{Ca,H}}\), that is completely blocked by 10–20 mM TEA. The high-threshold currents activated during the \(I_{\Delta}\) activation protocol were removed by subtracting the currents measured from a holding potential of −40 mV from those obtained from a holding voltage of −80 mV. The hyperpolarization-activated current, \(I_{h}\), was measured using 4-s-long hyperpolarizing pulses from a holding potential of −40 mV (Golowasch and Marder 1992; Hurley and Graubard 1998). The high-threshold currents activated during the \(I_{\Delta}\) activation protocol were removed by subtracting the currents measured from a holding potential of −40 mV from those obtained from a holding voltage of −80 mV.

Stimulation protocols

Neuronal activity was altered by applying 1-s-long hyperpolarizing current pulses at 0.33 Hz, driving neurons to a membrane potential of approximately −120 mV (peak response, see Fig. 4E). This protocol has been found to be effective in modifying the spontaneous activity of cultured lobster STG neurons before (Turrigiano et al. 1994). Current level was adjusted often during the stimulation period to maintain this level of hyperpolarization. Control ionic current measurements were recorded in voltage clamp immediately prior to the beginning. Currents were measured again after a 45- to 60-min stimulation period.

Analysis

SigmaStat (Aspire Software International, Leesburg, VA), Origin (OriginLab, Natick, MA), and CorelDraw (Corel) software packages were used for statistical and graphical analysis. ANOVA tests were performed using either a standard two-way ANOVA, the nonparametric Kruskal-Wallis ANOVA on ranks for nonnormally distributed populations, or a repeated-measures (RM) ANOVA. Results of statistical analysis were considered significant if the significance level \(P\) was below \(\alpha = 0.05\). All error bars shown and the reported variability around the averages correspond to SDs.

Dynamic-clamp experiments

A NI PCI-6070-E board (National Instruments, Austin, TX) was used for current injection in dynamic clamp experiments. Data acquisition was performed using the Digidata board and pClamp software, as described in the preceding text. The dynamic-clamp software was developed by Farzan Nadim and collaborators (available for download at http://stg.rutgers.edu/software.htm) in the LabWindows/CVI software environment (National Instruments, Austin, TX) on a Windows XP operating system. Ionic currents that showed an approximately average effect in response to prolonged rhythmic stimulation were recorded and fitted with Hodgkin and Huxley-type equations. We used the measured parameters that produced the best fit to reproduce ionic conductances that were then added to or subtracted from a neuron...
TABLE 1. Ionic current parameters used for dynamic-clamp experiments

<table>
<thead>
<tr>
<th>τ_m , ms</th>
<th>τ_h , ms</th>
<th>$V_{1/2m} , \text{mV}$</th>
<th>$V_{1/2h} , \text{mV}$</th>
<th>I_{m} , mV</th>
<th>I_{h} , mV</th>
<th>E_{m} , mV</th>
<th>E_{h} , mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{Ca}</td>
<td>1</td>
<td>300</td>
<td>-13</td>
<td>-16</td>
<td>-9</td>
<td>$+10$</td>
<td>1</td>
</tr>
<tr>
<td>I_{KSt}</td>
<td>100</td>
<td>NA</td>
<td>-20</td>
<td>NA</td>
<td>-9</td>
<td>NA</td>
<td>-80</td>
</tr>
<tr>
<td>I_{KTr}</td>
<td>1</td>
<td>70</td>
<td>-23</td>
<td>-34</td>
<td>-4</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

where $g_{m,1}$ is the maximum conductance of the current, m is the activation gate, h is the inactivation gate, V_m is the membrane potential, and E_x is the equilibrium potential of ion x that each current is specific for. $\tau_{m,1}$ and $\tau_{h,1}$ are the time constants with which the m and h gates, respectively, evolve in time toward their respective steady states m_{∞} and h_{∞}. These steady states are governed each by two voltage-dependent parameters $V_{1/2X}$ and s_X that are listed in Table 1. q is an exponent that takes value 1 if the ionic current exhibits voltage-dependent inactivation and value 0 if it does not.

RESULTS

Spontaneous activity changes with time in culture

Our dissociation procedure typically yielded around 20–40% of the 25–26 STG neurons found (Kilman and Marder 1996) in each ganglion and, with careful suction, the soma and a relatively long segment of the major neurite could be removed. Figure 2, B–D, illustrates the morphology of three typical neurons with differing neurite lengths immediately after dissociation (days 0 and 1) and 6 days later. By the sixth day in culture, some neurons grew wide lamellipodia (Fig. 2B), others tended to grow one or more long processes with smaller lamellipodia extending from the ends (Fig. 2D), whereas others showed a combination of relatively wide lamellipodia and long processes (Fig. 2C). Any significant outgrowth originated almost exclusively from the neurite stump (Fig. 2C). Any significant outgrowth originated almost exclusively from the neurite stump (Fig. 2C) however short it may have been (see Fig. 2B). Only very small extensions were occasionally observed growing directly out of

![Figure 2](http://www.jn.org)
the soma (Fig. 2C, day 6). No obvious correlation was observed between the length of the original neurite and subsequent outgrowth morphology or electrical activity.

Neurons were classified according to the pattern of activity they expressed. Three types of electrical activity were readily distinguishable from the first day in culture when the cultured neurons were depolarized with low-amplitude current injection: silent, tonic, or oscillatory. Neurons that responded passively to all depolarizing and hyperpolarizing current injection levels were classified as silent (day 1 in Fig. 2, B and C). Tonic neurons were those that exhibited fast, transient depolarizations having a duty cycle ≤0.2 (Fig. 2A1, top, and B, day 4) and that could be blocked with 0.1–1 μM TTX (Fig. 2A1, bottom). Oscillatory activity was defined as slow, low-amplitude depolarizations having a duty cycle >0.2 (Fig. 2A2, top and middle, also see day 6 in Fig. 2, B–D), resistant to TTX treatment (Fig. 2A2, middle) and sensitive to Ca2+ current blockers such as Mn2+ (Fig. 2A2, bottom) or Cd2+ (not shown). The oscillations recorded on days 4 and 6 of Fig. 2C are considered to be at a transition between tonic and oscillatory states and were classified as oscillatory. Duty cycle was defined as the duration of a depolarizing event (action potential or slow oscillation) relative to the period of an oscillation measured at 50% of the maximum oscillation amplitude.

None of the neurons recorded during the initial 10 days in culture expressed spontaneous activity without some depolarizing current, and all neurons were tested with depolarizing current steps of various amplitudes. On day 0, most neurons (81%) are silent, 14% of the neurons showed tonic firing of action potentials, and a very small percentage (<5%) of the nearly 350 neurons we recorded from expressed oscillatory activity (Fig. 3A).

Figure 3A shows that during days 0–3 in culture, the silent state of activity was dominant, but the proportion of oscillatory neurons steadily increased as time progressed. The proportion of tonic neurons began to increase at day 3, whereas the proportion of silent neurons steadily decreased. The proportion of silent neurons continued to decrease throughout the initial 7 days, whereas that of oscillatory neurons steadily increased (with the exception of day 4). Instead, the proportion of tonically firing neurons seemed to reach a plateau on day 4 (Fig. 3A). The rate of change of neuronal activity we observed was slower than that previously observed in cultured lobster neurons (Turrigiano et al. 1995). This may be due to the fact that we incubated our dissociated cells at 12°C instead of 20°C or to species differences.

To determine whether any of the activity changes correlate with STG neuron identity, we recorded from 37 additional neurons, classified into pyloric and gastric type (see METHODS). Of these, 25 produced oscillations as defined in the preceding text at days 2–8 in culture. The average oscillation frequency of the identified pyloric neurons was 3.65 ± 2.01 Hz (n = 14), whereas the average oscillation frequency of the identified gastric neurons was 2.95 ± 1.43 Hz (n = 11). Thus the average oscillation frequency of the gastric neurons was somewhat lower than that of the pyloric neurons but this difference was not statistically significant (P = 0.342, Student’s t-test).

Spontaneous conductance changes with time in culture

To understand the contributions of ionic currents to the activity changes described in the preceding text, we measured individual ionic currents at different times in culture and estimated their conductance. Figure 3, B and C, shows the evolution of five different ionic conductances over ±10 days in cell culture. When data are available, we show conductance changes as a function of time. A progressive decrease of silent neurons and increase in both tonic and oscillatory neurons is observed. B: Ca2+- and high-threshold K+ conductance density changes. The changes observed in these conductances over the first 6 days in culture are statistically significant (gCa: P = 0.002, n = 38; gK: P = 0.047, n = 65). C: A, h, and leak current conductance changes. Peak gK was measured at 20–30 ms after the onset of a depolarizing pulse to 0 mV. gA was measured at the end of 4-s-long hyperpolarizing voltage steps to −120 mV. The values of gA were scaled up 10-fold to increase visibility. No statistically significant change in either gA or gK could be detected (gA: P = 0.654, n = 62; gK: P = 0.313, n = 59). gMax showed a statistically significant increase with time in culture (P < 0.001, n = 139), but this disappeared when the density values were considered (not shown). All statistical comparisons were made using the Kruskal-Wallis one-way ANOVA on ranks. Data show means ± SD.
density changes over time rather than simply conductance changes to remove possible effects of growth. Only two of these showed statistically significant changes over that period (Fig. 3B) after normalizing by the capacitance of the cell: g_{Ca}, which increased by 159% ($P = 0.002, n = 38$), and the high-threshold outward current g_{K} that includes both a delayed rectifier and a Ca^{2+}-dependent K^+ current (Golowasch and Marder 1992), which decreased by 54% ($P = 0.047, n = 65$, Fig. 3B). g_{leak} increased by 79% ($P < 0.001, n = 139$, Fig. 2C) but when normalized by cell capacitance, the increase was reduced to only 15% and was not statistically significant ($P = 0.777, n = 32$). Thus the change in leak conductance can probably be explained simply by the growth of the cell, whereas both g_{A} and g_{h} changes appear to be related to changes in neuronal activity as these changes correlate with the progression from silent to tonic to oscillatory activity (Fig. 3A).

In contrast, g_{A} and g_{h} (Fig. 3C) increased by $\sim 30\%$ between days 1 and 10 in culture, but these changes were not statistically significant ($P = 0.654, n = 62; P = 0.313, n = 59$, respectively; all the preceding reported statistical tests were performed using the Kruskal-Wallis one-way ANOVA on ranks). We did not measure the capacitance in most of the neurons in which g_{A} and g_{h} were measured. However, an increase of conductance density of these two currents with age in culture is not likely because the average capacitance during this period increased by the same amount as these conductances ($\sim 25\%$). Surprisingly, the increase in capacitance during the first week in culture (c_{m} on day 1 = 0.437 ± 0.154 nF, c_{m} on day 7 = 0.548 ± 0.238 nF) was not statistically significant ($P = 0.106, n = 87$) similar to what was observed by Turrigiano et al. (1995). Furthermore, the electrotonic length of these neurons is relatively short (thus neurons are electrotonically compact) and not significantly different between day 1, when there is virtually no growth ($L = 1.67 \pm 0.61, n = 16$), and day 6, when extensive growth is apparent (see Fig. 2, B–D; $L = 1.73 \pm 0.781, n = 8, P = 0.842$, Student’s t-test).

From these results, we conclude that neurons at these stages grow by extensively stretching the existing membrane rather than by incorporating significant amounts of new membrane.

To determine whether the conductances changes described in the preceding text correlate with STG neuron identity, we recorded g_{Ca} from seven pyloric and seven gastric neurons, ages 1 and 6 days in culture. We found no statistically significant difference between pyloric and gastric neurons ($P = 0.841$, Student’s t-test). However, we found a statistically significant difference between ages 1 (0.007 ± 0.002 μS) and 6 days (0.024 ± 0.014 μS; $P = 0.012$, Student’s t-test) of the pooled data, confirming the results described in the preceding text for nonidentified cells. We also measured g_{K}, g_{A}, and g_{h} from 30 additional identified neurons (16 pyloric neurons and 14 gastric neurons). We grouped all neurons aged 5–7 days in culture and compared pyloric versus gastric neurons. No statistically significant difference in any of the three conductances between the two cell types was observed ($P = 0.366$, 2-way ANOVA), with $g_{\text{K}} = 0.30 \pm 0.34 \mu$S (pyloric) versus 0.23 ± 0.15 μS (gastric), $g_{\text{A}} = 0.93 \pm 0.65 \mu$S (pyloric) versus 0.77 ± 0.53 μS (gastric), $g_{\text{h}} = 0.020 \pm 0.009 \mu$S (pyloric) versus 0.018 ± 0.008 μS (gastric).

Activity changes induced by patterned stimulation

The changes in activity patterns and the accompanying conductance changes described in the preceding text, as well as previous observations in cultured lobster STG neurons (Turrigiano et al. 1994), suggest that isolated STG neurons follow a set course of spontaneous conductance changes and consequent modifications of activity that may be genetically predetermined. However, although a neuron may be on a predetermined course to ultimately become an oscillator, it may also be able to modify its pattern of activity as a function of the inputs it may receive (Cudmore and Turrigiano 2004; Franklin et al. 1992; Garcia et al. 1994; Golowasch et al. 1999a; Li et al. 1996; Turrigiano et al. 1994). We tested this possibility in our crab STG neurons by rhythmically stimulating them with current pulses and measuring possible changes in their patterns of activity. We found that in response to stimulation with hyperpolarizing current pulses (to bring the V_{rest} from the resting potential to approximately −120 mV), the majority of cells (60%) did change their activity pattern (Fig. 4D), remaining silent (28%), tonic (12%), or oscillatory (20%). We refer to this as no change in excitability. Similar to previous observations in lobster STG neurons (Turrigiano et al. 1994), we observed a small set of oscillatory neurons (10%) that reduced their excitability to tonic firing (Fig. 4, B and D). We were surprised to find that 30% of the stimulated neurons switched from either silent to oscillatory (26%, Fig. 4, A and D) or tonic to oscillatory activity (4%, Fig. 4, C and D) because this was not observed by Turrigiano et al. (1994) in their study of lobster STG neurons. We assume these changes in activity to reflect an enhancement of neuronal excitability. We observe no difference in the resting potential, V_{rest}, of neurons that change activity with stimulation ($V_{\text{rest}} = −69.1 \pm 8.9\text{mV}$, $n = 11$) from those neurons that do not change activity ($V_{\text{rest}} = −65.5 \pm 3.8\text{mV}$, $n = 11$, $P = 0.397$, unpaired Student’s t-test). Each set of neurons produced a slight but statistically significant depolarization in response to patterned stimulation (neurons with change: $\Delta V_{\text{rest}} = +6.1 \pm 5.8\text{mV}$, $P < 0.001$; neurons without change: $\Delta V_{\text{rest}} = +6.6 \pm 6.6\text{mV}$, $P < 0.001$, unpaired Student’s t-test). This depolarization, however, is indistinguishable between these two groups ($P = 0.525, n = 22$, unpaired Student’s t-test). Furthermore, we see no difference in the depolarization whether cells increased their excitability (silent or tonic to oscillatory transitions, Fig. 4D) or decreased their excitability (oscillatory to tonic transitions, Fig. 4D, $P = 0.958$, unpaired Student’s t-test). From this we conclude that the slight depolarization observed in stimulated cells is a nonspecific effect of stimulation.

In contrast to what was shown by Turrigiano et al. (1994), we found no consistent correlation of any of these activity changes with the presence of a measurable postinhibitory rebound (PIR) in these neurons. Figure 4E shows the stimulation-induced membrane potential changes during the “beginning” and “end” of the stimulation period used to induce activity changes. The traces marked A–C correspond to the cells the results of which are shown in A–C in this figure. The last trace, showing a relatively large PIR capped with an action potential, corresponds to an oscillator neuron the activity of which did not change with stimulation. In fact, most of the stimulated crab STG neurons shown in Fig. 4 (59%) express no measurable PIR at all (see traces A and C in Fig. 4E).
found that neurons that do not show a change in activity induced by patterned stimulation generate a PIR on average almost twice as large (4.5 ± 7.2 mV, n = 30) as those that do (2.7 ± 3.5 mV, n = 16), but this difference is not statistically significant (P = 0.363, unpaired Student’s t-test). As can be seen in all four examples shown in Fig. 4E, there was no major change in PIR properties or amplitude during the course of the stimulation.

Interestingly, none of the recorded neurons showed a transition from a silent to a tonic (or from a tonic to a silent) pattern of activity, suggesting a lack of sensitivity to patterned stimulation of those currents responsible for the generation of action potentials. Alternatively, in these cells some of the intermediate signaling molecules leading from the detection of membrane potential changes to the modification of the tonic currents responsible for the changes in activity may be absent. In all cases where recordings could be held long enough (2–4 h), reversal of the activity pattern was always significantly slower than the induction phase and almost always partial. We rarely observed a complete reversal of these effects. Figure 4, B and C, shows the only two examples (of 28 cases) we obtained of almost complete reversal of activity, and in both it took ~2.5 h to complete.

It is important to note that the ability for neurons to regulate activity in an activity-dependent manner did not appear to be related to the age of the neurons in culture but rather to their activity state at the time of stimulation. A similar fraction (40%) of “young” neurons (ages 1–4 days in culture) and “old” neurons (31%, ages 5–8 days in culture) could be induced to change their state of activity. However, most stimulated tonic (average age = 5.3 days) and oscillatory (average age = 3.5 days) neurons were older than stimulated silent (average age = 1.1 days) cells simply because of the spontaneous progression in activity observed in culture (see Fig. 3A).

Within the relatively simple activity pattern categories we have classified these neurons into, there is a wide range of variability in terms of action potential frequency, duration, and amplitude, slow-wave oscillation frequency and amplitude, threshold current required to elicit patterns of activity, etc. We reasoned that this variability may be related to the expression of large, variable amplitude outward currents (Golowasch et al. 1999a) and that reducing their amplitude may make the activity patterns more uniform and reveal a more consistent effect of rhythmical stimulation on neuronal activity. When outward K+ current amplitudes were reduced with 20 mM TEA in the bath, we did indeed observe a reduction in the variability of the activity states (Fig. 5). As shown before by Turrigiano and Marder (1993) in lobster isolated STG neurons, in the presence of TEA, most crab STG neurons showed a tendency to generate slow oscillations with relatively long depolarizations (Fig. 5B, control, n = 9/15) while all others were silent (Fig. 5A, control, n = 6/15) before rhythmical stimulation was begun. When these neurons were rhythmically stimulated, 100% of the initially silent neurons developed slow and large-amplitude oscillations (Fig. 5A, after stim), 100% of the initially oscillatory neurons increased the duration of the slow depolarizations by 83% from 319 ± 138 to 584 ± 369 ms (P = 0.030, n = 9, Fig. 5B, after stim), increased their amplitude by 40% from 24.4 ± 14.3 to 34.1 ± 14.2 mV (P < 0.001, n = 8, Fig. 9B, left), and also increased their oscillation period by 170% from 473 ± 314 to 1284 ± 936 ms (P = 0.046, n = 6, see Figs. 5B and 9B, left). Period was calculated on longer recordings than shown in Fig. 5. Comparisons were made with unpaired Student’s t-tests.

These changes indicate that, in general cultured STG neurons increase their excitability with patterned stimulation (from

FIG. 4. Rhythmic stimulation-induced neuronal activity changes. Examples of activity transitions resulting from rhythmic stimulation for 45–60 min with hyperpolarizing current pulses (METHODS). Fifty neurons were recorded in normal Cancer saline before (control) and after stimulation (after stim). A: silent to oscillatory transition. Silent activity (control) changed to rapid oscillatory activity after 60 min of rhythmic stimulation. We classify the stimulus-induced state as oscillatory because of the high duty cycle. The activity shown was elicited with +0.1 nA current injection. •, −55 mV; B: oscillatory to tonic transition. Oscillatory activity (with bursts of 2–3 action potentials per oscillation) was induced by a −0.4 nA current injection (control). Sixty minutes of stimulation led to a change to tonic firing (after stim). Reversal to oscillatory activity took ~2 h of no stimulation. •, −60 mV. C: Tonic to oscillatory transition; +0.4 nA depolarizing current was used in all traces. Tonic firing (control) changed to oscillatory activity after 60 min of rhythmic stimulation (after stim). The pattern reversed to tonic firing after ~2 h of no stimulation (reversal). •, −45 mV. D: percentage of neurons (from a total of 50 cells) that changed activity among silent (S), tonic (T), and oscillatory (O) after 45–60 min of rhythmic stimulation. E: voltage changes during the period of hyperpolarizing stimulation used to induce activity changes. (below traces), hyperpolarizing current injection. Traces labeled A–C correspond to those cells the activity states of which are shown in A–C. The bottom trace corresponds to an oscillatory cell the activity of which did not change as a result of prolonged stimulation. Notice the presence of PIR in this cell and in trace B, but no PIR in traces A and C. F: high-threshold K+ conductance measured at +10 mV in normal saline before (○, pre) and after 45–60 min of stimulation (●, post) in neurons that showed a clear activity change with patterned stimulation (left; ** P = 0.005, n = 6, paired Student’s t-test) and in neurons that showed no difference in activity pattern (right; P = 0.375, n = 6, paired).
modified, no change in g_K was observed ($0.65 \pm 0.17 \mu S$ before stimulation; $0.68 \pm 0.15 \mu S$ after stimulation, $P = 0.375, n = 6$, paired Student’s t-test; Fig. 4F, right). These results are consistent with an increased excitability of those neurons sensitive to prolonged stimulation as would be expected for neurons that switched activity from a silent or tonic pattern to an oscillatory pattern (Fig. 4, A and C). These results appear to be inconsistent with the change in activity from oscillatory to tonic firing that we saw in a small subset of stimulated neurons (12%, Fig. 4D), which under our definition, would be considered due to a reduction of excitability (see dynamic clamp results below and discussion).

STG neurons in situ (cf. Golowasch and Marder 1992; Graubard and Hartline 1991) and in culture (Turrigiano et al. 1995) express large outward currents dominated by a TEA-sensitive $I_{K(Ca)}$. In contrast with the complete block of $I_{K(Ca)}$ by TEA in situ (Golowasch and Marder 1992; Graubard and Hartline 1991), TEA has been reported to incompletely block $I_{K(Ca)}$ in cultured STG neurons (Hurley and Graubard 1998). In our hands, 20 mM TEA eliminates 84% ± 6% ($n = 6$) of the total high-threshold outward current in cultured STG neurons. $I_{K(Ca)}$ constitutes ~20% of the outward current recorded in 20 mM TEA if defined as the current additionally blocked by 200 µM Cd2⁺; the high-threshold current remaining in the presence of Cd2⁺ corresponds to a delayed rectifier current, I_{Kd}. In the presence of 20 mM TEA, we observed that prolonged patterned stimulation induced a significant reduction of the outward current for all voltages above −20 mV (P = 0.004, n = 6, 2-way RM ANOVA, Fig. 6A) but with no apparent effect on the voltage dependence of activation (Fig. 6A; $V_{1/2}$ before stimulation = −9.4 ± 17.6 mV, $V_{1/2}$ after stimulation = −10.4 ± 14.7 mV, $P = 0.900, n = 6$, paired Student’s t-test). We estimated the maximum conductance from the current averages measured at 0 mV. Before stimulation, the estimated maximum conductance was 0.12 ± 0.06 µS, which decreased by a statistically significant 22% to 0.09 ± 0.06 µS ($P = 0.022, n = 7$, paired Student’s t-test). In the absence of known specific K⁺ current inhibitors, these data suggest that most of the spontaneous and stimulation-induced changes of I_K could be attributed to $I_{K(Ca)}$ because 87% of the total I_K corresponds to $I_{K(Ca)}$, as defined by K⁺ current blockade with Cd2⁺ (Golowasch and Marder 1992), and 13% to a delayed rectifier K⁺ current. Thus the 45% stimulation-induced reduction in the total K⁺ current that we observe cannot be accounted for by effects on the delayed rectifier only. Furthermore, because we observe a stimulation-induced reduction of 22% of the remaining total outward current in the presence of 20 mM TEA and 20% of that current can be further blocked with Cd2⁺ (and thus corresponds to $I_{K(Ca)}$), we conclude that an effect of rhythmic stimulation exclusively on $I_{K(Ca)}$ is in principle sufficient to account for all our observations of activity-dependent effects on outward currents.

We performed similar measurements on six identified pyloric neurons and five identified gastric neurons to confirm if any of these changes are neuron type-specific. We compared the high-threshold K⁺ current $I-V$ relationship difference (after normalization) before and after 0.33-Hz hyperpolarizing stimulation for pyloric and gastric neurons separately as was done with unidentified neurons before (see Fig. 6A, bottom). A two-way RM ANOVA reveals no statistical significant differ-

Conductance changes induced by patterned stimulation

In neurons stimulated with rhythmic hyperpolarizing pulses, we observed a statistically significant decrease in high-threshold K⁺ conductance, g_K, recorded at +10 mV in normal saline of −45% (0.58 ± 0.07 µS before stimulation, 0.31 ± 0.04 µS after stimulation, $P = 0.005, n = 6$, paired Student’s t-test; Fig. 4F, left). In those neurons in which the activity was not initially silent and 60% were initially oscillatory in response to a small depolarizing current pulse. A: example of 1 of the 6/15 neurons that shifted their activity from silent (control) to oscillatory (after stim) on 40 min of hyperpolarizing stimulation. B: example of 1 of the 9/15 neurons that show oscillatory behavior on depolarization (+0.4 nA) in control conditions. After 45-min rhythmic hyperpolarizing stimulation, the neuron displays larger amplitude and lower frequency bursts (after stim). C: example of 1 of the 9/15 neurons that show oscillatory behavior on depolarization (+0.4 nA) in control conditions. After 45-min rhythmic hyperpolarizing stimulation, the neuron displays larger amplitude and lower frequency bursts (after stim). D: example of 1 of the 9/15 neurons that show oscillatory behavior on depolarization (+0.4 nA) in control conditions. After 45-min rhythmic hyperpolarizing stimulation, the neuron displays larger amplitude and lower frequency bursts (after stim).
ence in the effect of rhythmic stimulation between identified pyloric and gastric neurons \((P = 0.546)\).

We isolated \(I_{\text{Ca}} \) as described in METHODS (Fig. 6B). Hyperpolarizing stimulation for as little as 15 min induced a marked increase in \(I_{\text{Ca}} \) (Fig. 6B, top). Figure 6B also shows the peak current-voltage relationship before (control, □) and after rhythmic stimulation of STG neurons (after stim, ▼). A statistically significant increase for all voltages above -20 mV is observed \((P = 0.011, n = 15, 2\text{-way RM ANOVA followed by Bonferroni post hoc analysis}) \), with the peak conductance measured at +10 mV growing 2.5-fold from 0.014 ± 0.031 to 0.036 ± 0.031 \(\mu \text{S} \) \((P = 0.046, n = 7, \text{paired Student's } t\text{-test}) \). We observed no significant effect of stimulation on the voltage dependence of activation of this current (Fig. 6B; the half-maximal activation voltage, \(V_{1/2} \) before stimulation = -2.5 ± 10.0 mV, \(V_{1/2} \) after stimulation = -5.5 ± 30.2 mV, \(P = 0.099, n = 7, \text{paired Student's } t\text{-test}) \).

As can be seen in the current traces in Fig. 6B (top), \(I_{\text{Ca}} \) measurements are slightly contaminated with \(I_{\text{k}} \), although the very early measurements of \(I_{\text{Ca}} \) minimized this contamination. In 20 mM TEA -20% of that \(K^+ \) current corresponds to \(I_{\text{k}}(\text{Ca}) \), the conductance of which we argue is reduced by rhythmic hyperpolarizing stimulation. To eliminate this possibility, we first tested the effect of 100 mM TEA on \(I_{\text{k}} \). We found that the cells were not adversely affected by this extremely high concentration. We also found that adding 200 \(\mu \text{M} \) Cd\(^{2+}\) does not produce an additional block of \(I_{\text{k}} \) (not shown). We take this as evidence that 100 mM TEA completely eliminates \(I_{\text{k}}(\text{Ca}) \), leaving intact only part of the delayed rectifier conductance. As a further way to isolate \(I_{\text{Cat}} \) we measured the Ca\(^{2+}\) tail currents (in the presence of 100 mM TEA + 0.1 \(\mu \text{M} \) TTX) at -80 mV after activating \(I_{\text{Ca}} \) with 800-ms-long depolarizing pulses in the range -60 to +30 mV (Fig. 6C). The K\(^+\) equilibrium potential in these neurons is close to -80 mV. Thus these tail currents should be almost entirely free of contaminating K\(^+\) currents. Under these conditions, we observe a highly significant increase in \(I_{\text{Cat}} \), at all voltages above -20 mV \((P = 0.001, n = 5, 2\text{-way RM ANOVA followed by Bonferroni post hoc analysis}) \). At +20 mV, we calculate a highly significant Ca\(^{2+}\) conductance increase from 0.040 ± 0.047 to 0.061 ± 0.056 \(\mu \text{S} \) \((P < 0.001, n = 10, \text{paired Student's } t\text{-test}) \).

In contrast with the effect on \(I_{\text{k}} \) and \(I_{\text{Ca}} \), the leak conductance showed no change in conductance in these experiments \((0.004 ± 0.003 \mu \text{S before stimulation and 0.005 ± 0.002 } \mu \text{S after stimulation, } P = 0.712, n = 7, \text{paired Student's } t\text{-test}) \). Leak conductance was determined in these experiments from the current changes elicited in response to the voltages steps from -40 to -50 (or -60) mV. Additionally, the transient \(I_{\text{A}} \) current (measured in TEA to minimize other K\(^+\) currents and with \(I_{\text{k}} \) and leak current subtracted) is completely unaffected by patterned stimulation in cultured crab STG neurons (Fig. 6D, \(P = 0.918, 2\text{-way RM ANOVA over the activation range: -40 to +30 mV} \)). Specifically, the average peak conductance \(g_{\text{A}}(V_{1/2}) \) and 25% values measured at +10 mV were \(g_{\text{A}} = 0.32 ± 0.11 \mu \text{S}, V_{1/2} = -24.9 ± 5.6 \mu \text{V} \), and \(s = 9.5 ± 3.5 \mu \text{V} \) before stimulation, and \(g_{\text{A}} = 0.33 ± 0.13 \mu \text{S}, V_{1/2} = -23.5 ± 5.3 \mu \text{V} \), and \(s = 7.9 ± 2.4 \mu \text{V} \) after stimulation were likewise
 FIG. 7. Role of Ca$_2^+$ influx on activity-dependent conductance regulation. Unidentified STG neuron current recordings in normal Ca$_2^+$ saline before and after stimulation with 0.33-Hz hyperpolarizing current pulses was carried out under conditions that eliminate Ca$_2^+$ influx. I_{Ca} was recorded in 100 mM TEA saline after loading cells with TEA and Cs+ (METHODS). High-threshold K$^+$ current, I_K, was recorded in normal saline + 20 mM TEA. Top: a sample raw current trace recorded under each of the applied test conditions, arrowheads indicate 0 nA. Middle: raw voltage trace used to elicit the current traces above. The $I-V$ curves were normalized by currents measured in control conditions at 0 mV after loading cells with TEA and Cs+ and recorded in normal Ca$_2^+$ conditions. Control (•) trace was recorded before stimulation began. Stim in Cd$_2^+$ (○) trace was recorded after 30 min of stimulation in the presence of 200 μM Cd$_2^+$ and washout of Ca$^2+$. Re-Stim in Ca$^2+$ (×) trace was recorded after washout of Cd$^2+$ and additional 40 min stimulation in normal Ca$^2+$ conditions. Bottom: average $I-V$ plots of the normalized peak I_{Ca}, measured 25 ms after the onset of the depolarizing test pulse, recorded before stimulation (control) and after stimulation in (and after washout of) Cd$^2+$ (Stim in Cd$^2+$). $P = 0.308$, $n = 5$. Inset: example of a single cell recorded under the 3 conditions indicated above. B, top and middle: nonactivating I_{Ba} (top) elicited by a test pulse from −40 to +10 mV (middle) before (control) and after 45 min of rhythmic stimulation (after stim). Bottom: $I-V$ plot of the steady-state average (±SD) normalized currents. $P = 0.300$, $n = 5$. C, top and middle: I_{Ba} (top) elicited by a test pulse from −40 to 0 mV (middle), before (control) and after 40 min of rhythmic stimulation in (and washout of) 200 μM Cd$^2+$ (Stim in Cd$^2+$). Bottom: $I-V$ plot of the steady-state average (±SD) and normalized currents. $P = 0.618$, $n = 5$.

not statistically significantly affected by stimulation ($P = 0.938$, $n = 7$, 2-way RM ANOVA).

The hyperpolarization-activated current’s voltage-dependence (i.e., steady-state activation curve) is strongly shifted to more negative values than those observed in cultured lobster STG neurons or crab’s LP neuron in situ (Golowasch 1992; Turrigiano et al. 1995) before ($V_{1/2} = −104.1 ± 4.4$ mV, slope factor $s = 8.3 ± 3.7$ mV, $n = 7$), and neither of these values nor the maximum conductance were affected by patterned stimulation. The maximum conductance measured at −120 mV was 0.015 ± 0.007 μS before stimulation, and 0.018 ± 0.010 μS after stimulation ($P = 0.140$, $n = 8$, paired Student’s t-test).

Role of calcium influx in activity-dependent regulation of conductances

The conductance changes reported in the preceding text most likely occurred in response to the experimentally imposed activity pattern and were not due to effects of the electrode-filling solutions (K-citrate, K$_2$SO$_4$, or TEACl + CsCl) or of different bathing solutions (TEA, TTX, Cs+), and occurred in the absence of any known growth factors or neuromodulators. For activity to be responsible for these changes, neurons need to be able to detect changes in their own patterns of activity. A plausible candidate for such a gauge of activity is intracellular Ca$^{2+}$ (Bito et al. 1997; De Koninck and Schulman 1998; Liu et al. 1998; Schulman et al. 1995). Indeed, in our neurons the only conditions that block the effects of rhythmic stimulation are those that interfere with Ca$^{2+}$ influx (neither the K$^+$ current blocker TEA nor the Na$^+$ current blocker TTX do). Figure 7A shows peak I_{Ca} recorded in 100 mM TEA and C shows I_{K} recorded in 20 mM TEA, before (control) and after 0.33-Hz hyperpolarizing stimulation in the presence of 200 μM CaCl$_2$ (stim in CdCl$_2$). Cd$^{2+}$ is known to block the high-threshold I_{Ca} in STG neurons (Golowasch and Marder 1992; Graubard and Hartline 1991; Turrigiano et al. 1995), and we reasoned that stimulation in the presence of a blocker of Ca$^{2+}$ influx should eliminate the effect of stimulation on I_{K} and I_{Ca}. Indeed we observed that 0.33-Hz hyperpolarizing stimulation in the presence of Cd$^{2+}$ eliminates the enhancing effect on I_{Ca} ($P = 0.308$, $n = 5$) and the depressing effect on I_{K} ($P = 0.618$, $n = 5$, 2-way RM ANOVA). The inset in Fig. 7A (re-stim in Ca$^{2+}$) also shows a strong enhancement of I_{Ca} recorded in one (of 2) cells in which we succeeded to wash out Cd$^{2+}$ and further stimulate with hyperpolarizing pulses for ~30 additional minutes with Ca$^{2+}$ influx restored. Furthermore, Fig. 7B shows an inward current that shows virtually no inactivation when Ca$^{2+}$ is replaced with Ba$^{2+}$ in the extracellular solution. With Ca$^{2+}$ influx thus minimized, no change in the amplitude of the inward current now carried by Ba$^{2+}$ was observed in response to prolonged patterned stimulation (after stim, Fig. 7B). No significant changes were recorded over the voltage-dependent activation range (~30 to +30 mV) of this current ($P = 0.300$, $n = 5$, 2-way RM ANOVA).

Effect of stimulation protocol

The results shown thus far suggest that rhythmic neuronal activity plays an important role in determining both activity and ionic conductance changes. The stimulation protocol used thus far has been hyperpolarizing 1-s-long pulses every 3 s...
where 0.33-Hz stimulation induces a clear and hyperpolarizing stimulation. Compared with the results shown of either stimulus pattern was observed on 0.33-Hz stimulation (Fig. 6). Cells were hyperpolarized rhythmically at a slower rate (1-s pulses every 2 s, i.e., 0.5 Hz, Fig. 8) and at a slightly faster rate (1-s pulses every 2 s, i.e., 0.5 Hz, Fig. 8B) than the standard stimulation frequency of 0.33 Hz. Because our several controls on identified pyloric and gastric neurons have shown no correlation of any of the measurements of activity or conductance with neuronal cell type, we performed this experiment on unidentified neurons. Figure 8 shows the results of such an experiment. Depolarizing stimulation had no discernible effect on I_K (Fig. P = 0.526, n = 5). In 2 occasions, depolarizing stimulation was followed by 40-min stimulation with the standard 1-s hyperpolarizing pulses at 0.33 Hz. Measurements of 1 of these cells is shown in the inset (then \rightarrow Hyperpolarize, open gray triangles).

Does the effect of rhythmic stimulation on activity and ionic currents depend on the properties of the stimulus? We tested this by measuring the high-threshold K$^+$ current, I_K (Fig. 8A). Cells were hyperpolarized rhythmically at a slower rate (8 s pulses every 9 s, i.e., 0.11-Hz Hype, Fig. 8A) and at a slightly faster rate (1-s pulses every 2 s, i.e., 0.5 Hz, Fig. 8B) than the standard stimulation frequency of 0.33 Hz. Because our several controls on identified pyloric and gastric neurons have shown no correlation of any of the measurements of activity or conductance with neuronal cell type, we performed this experiment on unidentified neurons. Figure 8A shows the effects on I_K of applied 0.11-Hz hyperpolarizing stimulation for \sim25 min, followed by 35–45 min of standard 0.33-Hz hyperpolarizing stimulation. Compared with the results shown in Fig. 6A, where 0.33-Hz stimulation induces a clear and statistically significant decrease in amplitude of I_K at all voltages above -40 mV, 0.11-Hz hyperpolarizing stimulation instead induces a statistically significant increase of the current amplitude at voltages ≤ 0 mV ($P = 0.002$, n = 6, 2-way RM ANOVA; Fig. 8A, solid gray triangles). When 0.11-Hz hyperpolarizing stimulation was followed by 0.33-Hz stimulation (Fig. 8A, open gray squares), we observed a statistically significant decrease of the current amplitude at voltages above -20 mV (control vs. 0.33 Hz stim; $P = 0.011$; 0.11-Hz Hype vs. 0.33-Hz Hype: $P < 0.001$, n = 6, 2-way RM ANOVA) comparable to our previous observations (Fig. 6A). To establish if this is a specific effect on the high-threshold K$^+$ current, we measured the effects of the same stimulation sequence on I_A, which we have already shown to be unresponsive to 0.33-Hz stimulation (Fig. 6D). No statistical significant effect of either stimulus pattern was observed on I_A (P = 0.869, n = 5, 2-way RM ANOVA). On the other hand, only a slightly higher hyperpolarizing stimulation frequency (0.5 Hz) compared with the standard 0.33-Hz frequency results in no significant change in amplitude of I_K at any voltage (Fig. 8B, P = 0.779, n = 5). I_A was also not affected by 0.5-Hz hyperpolarizing stimulation ($P = 0.254$, n = 5, 2-way RM ANOVA). The fact that hyperpolarizing stimulation within a voltage range in which no Ca$^{2+}$ current has been directly detected in STG neurons in culture or in situ raises the question of what the path may be for cytoplasmic Ca$^{2+}$ increase. Because I_{Ca} is strong at -10 mV, we stimulated STG neurons with depolarizing pulses from -40 to -10 mV in voltage clamp to ensure Ca$^{2+}$ influx through a path known to be present in these cells. Figure 8C shows the results of such an experiment. Depolarizing stimulation had no discernible effect on I_K ($P = 0.526$, n = 5, 2-way RM ANOVA). To demonstrate that this result is specific to depolarizing stimulation, in two instances, we were able to maintain the cells impaled long enough to stimulate them with 0.33-Hz hyperpolarizing pulses for additional 40 min. Figure 8C, inset, shows that the characteristic downregulating effect of hyperpolarizing stimulation could be clearly elicited in this neuron. Finally, depolarizing stimulation also had no significant effect on I_A ($P = 0.898$, n = 5, 2-way RM ANOVA).

Additionally, as would be expected from the effects of 0.11-Hz hyperpolarizing stimulation on I_K mentioned in the preceding text, 0.11-Hz stimulation had a statistically significant effect on the amplitude of the slow oscillations recorded in the six neurons that we stimulated (50.2 ± 14.0 mV before stimulation, 31.7 ± 17.8 mV after stimulation; $P = 0.016$, Student’s t-test). We could not measure either burst duration or cycle period because 0.11-Hz stimulation had the additional effect of drastically reducing the number of oscillations measured with a current pulse of any levels, in most cases to only one or zero oscillations. These results, although not quantifiable, are consistent with an enhancement of a high-threshold K$^+$ current.

Dynamic-clamp experiments

The effects of prolonged stimulation on voltage-dependent currents and neuronal activity only partially reversed during the time we could maintain the recordings (2–4 h). To verify if
the spontaneous and stimulation-induced conductance changes (I decrease and ICa increase) are indeed sufficient to account for the observed alterations in neuronal patterns of activity, we introduced negative or positive outward and inward conductances with dynamic clamp. We fitted with Hodgkin and Huxley-type equations the high-threshold K+ current difference and separately the Ca2+ current difference of neurons sensitive to patterned stimulation in normal saline. For these fits, we chose neurons that responded to patterned stimulation with high-threshold K+ and Ca2+ current changes close to the population average. The best fit to the K+ current could be obtained with two conductance components, one transient (gKtr) and one sustained (gKst), whereas the Ca2+ current could be fitted well with a single component (gCa). The conductance parameters thus obtained and used for our dynamic-clamp experiments are given in Table 1. Because the voltage dependence of these currents does not appear to be affected by patterned stimulation, we modified only the maximum conductances to mimic the changes observed on these two currents. Figure 9A shows the results of one such experiment on naïve unstimulated neurons recorded in normal saline. Activity was elicited by small depolarizing current injections. Conductance values indicated above the arrows correspond to the maximum conductance values of each dynamic-clamp current. Many different patterns of activity could be produced by relatively small changes of the maximum conductance values, which depended on the particular neuron recorded (Fig. 9A). However, we could repeatedly induce oscillatory activity by reducing the outward currents (negative conductance) and/or increasing the inward current (positive conductance, Fig. 9A). It was relatively easy to also find combinations of maximum conductance values within the range of the spontaneous or stimulation-induced conductance changes described before that could produce tonic firing in a neuron that was originally oscillatory (Fig. 9A, bottom). Figure 9B shows in more detail that some properties induced by prolonged rhythmic stimulation cannot only be mimicked by adding gCa and subtracting gK but also reversed by subtracting gCa and adding gK after they were induced by stimulation. Before rhythmic stimulation was started, the neuron shown in Fig. 9B (top left) was bathed in 20 mM TEA to induce slow, large-amplitude oscillations. Adding gCa and subtracting gK with dynamic clamp increased the amplitude and slightly decreased the frequency of oscillations (Fig. 9B, top right). A similar but more pronounced effect was later observed after rhythmically stimulating the neuron for 20 min with dynamic clamp discontinued. Finally, the enhanced oscillation amplitude and reduced oscillation frequency induced by rhythmic stimulation was partially reversed by subtracting gCa and adding gK with identical levels as used immediately before to induce the changes with dynamic clamp (Fig. 9B, bottom right).

Discussion

Long-term regulation of neuronal excitability and intrinsic properties can play a key role in maintaining activity patterns of single neurons and networks within stable and operational ranges in response to a variety of perturbations (Davis and Bezprozvanny 2001; Desai et al. 1999; Franklin et al. 1992; Galante et al. 2001; Hong and Lnenicka 1995; Li et al. 1996; Lindsell and Moody 1994; Luther et al. 2003; Turrigiano and Nelson 2004; Turrigiano et al. 1994). Here we have used adult cultured STG neurons of the crab C. borealis to identify mechanisms that underlie the recovery and stabilization of rhythmic activity after dissociation. We find that downregulation of the high-threshold K+ current, IK, and upregulation of a Ca2+ current, ICa, is called into play during the spontaneous regulation of activity after dissociation. Prolonged 0.33-Hz rhythmic stimulation with hyperpolarizing pulses induces similar changes in the same two currents. However, low-frequency...
hyperpolarization (0.11 Hz) had the opposite effect on I_K and slightly higher frequency (0.5 Hz) had no effect at all (Fig. 8A), indicating that crab STG neurons are sensitive to the temporal properties of the stimulus as previously suggested by Turrigiano and collaborators. As a consequence STG neurons may be tuned to the oscillating frequencies of the network each of these neurons are normally part of (Turrigiano et al. 1994). From this it would be expected that neurons belonging to networks the natural frequency of which is not the same would respond differently to the same pattern of stimulation or, alternatively, develop a different frequency of oscillation in culture. Surprisingly, however, we found that identified neurons belonging to both the pyloric and the gastric mill networks, which typically oscillate in situ at 5- to 10-fold different frequencies, developed oscillations in culture with indistinguishable frequencies. We further found that gastric and pyloric neurons cannot be distinguished during the culture period studied (≤10 days) on the basis of their activity changes or the ionic mechanism involved in their responses to stimulation. Preliminary ongoing experiments indicate that in culture pyloric neurons appear to retain the properties developed during the first week in culture, whereas gastric neurons appear to slowly differentiate from a pyloric neuron phenotype in a time scale of weeks via an unknown mechanism.

We find that excitability cannot only be reduced by patterned stimulation as has previously been reported (Turrigiano et al. 1994) but can also be heightened with the same type of stimulation, an excitability increase being three times more likely in crab neurons than an excitability reduction. The apparent difference in response to rhythmic stimulation of lobster neurons, which in the study of Turrigiano and collaborators were not shown to be able to enhance their excitability, may stem from the fact that in their study only bursting neurons were selected for stimulation and analysis (Turrigiano et al. 1994). We find that oscillating neurons can only respond to stimulation by switching to either tonic firing (similar to lobster neuron responses) or not at all. In their study, Turrigiano et al. (1994) apparently did not analyze bursting neurons that did not respond to stimulation.

Spontaneous activity changes

The progressive decrease in the proportion of silent STG neurons in primary culture and the increase in the proportion of neurons expressing tonic and, later, mostly oscillatory activity, suggests a predetermined tendency to oscillate and the existence of homeostatic mechanisms that allow neurons to restore their oscillatory activity after it is lost (see also Turrigiano et al. 1995). Pyloric network neurons can behave as oscillators when acutely isolated from the network but, with the exception of the single pacemaker AB neuron, all oscillate irregularly (Bal et al. 1988). These oscillations occur only when neuromodulatory inputs to the STG are intact (Nusbaum and Beenakker 2002). In the absence of these neuromodulatory inputs, all STG neurons, including the AB neuron, lose the ability to oscillate (Bal et al. 1988). Our results and those of Turrigiano et al. (1995) indicate that most (if not all) STG neurons in time evolve robust oscillatory activity when isolated from network and from neuromodulatory influences.

In our culture conditions, neuromodulators are completely absent and the recovery of rhythmic activity of isolated STG neurons is reminiscent of the recovery of rhythmic activity in the intact pyloric network after the permanent removal of neuromodulatory inputs (Luther et al. 2003; Thoby-Brisson and Simmers 1998). In lobsters, this latter recovery is accompanied by the development of oscillatory properties by some identified pyloric network neurons within a few days (Thoby-Brisson and Simmers 2002). Thus the acquisition of oscillatory properties we and Turrigiano et al. (1995) have observed in isolated STG neurons in culture provides a plausible mechanism for the recovery of rhythmic activity in the network. It is interesting, however, that the conductances that have been shown to be spontaneously regulated in the intact network after decentralization are not the same as those regulated in dissociated neurons in culture (Thoby-Brisson and Simmers 2002) (see Ionic mechanism of activity regulation).

Two hypotheses (as of yet not tested) may explain the suppression of endogenous oscillatory properties in neurons within the intact STG. One, oscillatory properties may be suppressed by neuromodulators exerting trophic effects (Le Feuvre et al. 1999; Thoby-Brisson and Simmers 2000). Two, activity itself may regulate the expression of endogenous oscillatory properties (Golowasch et al. 1999b; Turrigiano et al. 1994). Our results are consistent with both hypotheses. In the intact network, neuromodulators may somehow suppress the expression of endogenous oscillatory properties in most neurons. Once this input is eliminated (by cell dissociation or by removal of neuromodulatory inputs in situ), constraints on the expression of these properties are removed and oscillatory activity can be expressed by up- and downregulation of ionic currents such as those characterized in this work and those characterized previously by Turrigiano et al. (1995). Spontaneous emergence of oscillatory properties in culture conditions may be genetically determined as suggested by the spontaneous changes in activity and ionic currents described in this study and by Turrigiano et al. (1995). However, this possibility does not exclude the possibility that activity itself may also regulate neuronal electrical properties (Desai et al. 1999; Golowasch et al. 1999a; Liu et al. 1998).

Stimulation-dependent effects on activity

Our results show that isolated STG neurons are sensitive to prolonged rhythmic stimulation. Neurons displaying either silent or tonic firing activity can be induced to oscillate, whereas neurons that show oscillatory activity remain able to revert to tonic firing (but not to the silent) states (Fig. 4).

The large variability of the effects on activity of prolonged stimulation (Fig. 4D) may partly be due to the heterogeneity of our sample of (mostly unidentified) neurons. However, when outward currents were reduced in the presence of TEA, 100% of the stimulated neurons increased their excitability (Fig. 5). Furthermore, 100% of the neurons in which outward currents were measured in the presence of TEA showed a decrease of the remaining TEA-resistant I_K, and 100% of those neurons in which I_{Ca} was measured showed an increase in conductance. The homogeneity of these effects, although variable in their extent, suggests to us that all STG neurons, irrespective of cell type, can regulate their excitability in an activity-dependent manner and via the same ionic mechanism, namely by down-regulation of a I_K current and an upregulation of I_{Ca}. This conclusion is further supported by the similarity of the results.

Downloaded from http://jn.physiology.org/ by 10.220.22.246 on October 9, 2016
of our measurements of change in I_K in identified pyloric and gastric neurons.

Ionic mechanism of activity regulation

Only two ionic currents appear sensitive to prolonged patterned stimulation in dissociated *C. borealis* STG neurons, I_{Ca} and I_K. The same two currents are responsible for the spontaneous changes of activity seen in these neurons. It has previously been shown in cultured lobster STG neurons that, in addition to these currents, changes in two Na$^+$ currents also correlate with spontaneous changes of activity from silent to tonic firing but that only I_{Ca} continues to increase as neurons become bursters (Turrigiano et al. 1995). We cannot exclude the participation of Na$^+$ currents in cultured crab STG neurons. However, tonic firing becomes gradually less and less prevalent among neurons recorded up to day 6 in culture (Fig. 3A) and almost completely absent after 3 wk in culture (not shown). Also, silent cells could never be induced to fire action potentials with prolonged hyperpolarizing (patterned or constant) stimulation. These observations suggest that Na$^+$ currents in crab STG neurons, apparently in contrast with their lobster counterparts, may not be subject to long-term upregulation or to activity-dependent regulation but may only spontaneously and transiently be upregulated during the first few days in culture. Additionally, Turrigiano et al. (1995) observed a drastic reduction in the transient A current, I_A, as neurons transition between silent, tonic, and oscillatory states. In contrast, we have seen no change in I_A at any time in culture (Fig. 3C), and also no changes in I_A are induced by prolonged stimulation (Fig. 6D and see RESULTS). The lack of effects of prolonged hyperpolarizing stimulation on I_A in crab cultured STG neurons is consistent with the lack of effects of similar hyperpolarizing stimulation on I_A in two different identified crab pyloric neurons in situ (Golowasch et al. 1999a). However, although I_A was strongly affected by depolarizing stimulation of IC$^-$ neurons in situ (Golowasch et al. 1999a), I_A was not affected in any neurons in culture (this study). On the other hand, in situ hyperpolarizing stimulation of these same cells did also not affect the high-threshold K^+ currents (Golowasch et al. 1999a) that we find to be affected in our STG cultured neurons. Finally, the hyperpolarization-activated current I_h did not change either spontaneously or in response to stimulation in our study, but it does increase spontaneously after decentralization in lobster PD neurons ([Thoby-Brisson and Simmers 2002]; it was not measured in lobster cultured neurons (Turrigiano et al. 1995)). It could be argued that these differences in spontaneous changes and response to rhythmic stimulation may stem from the fact that our cultured neurons were not precisely identified to the level of individual cell types (but only to the level of network identity). Although this is possible, we find that, as stated in the previous section, all the neurons stimulated respond, and all respond in the same manner at the level of ionic conductance changes, suggesting that neuronal identity appears not to be a factor. It is possible that in situ the high-threshold K^+ currents sensitive to stimulation represents a small current relative to the total high-threshold K^+ current and thus activity changes, or total conductance changes, could not be unambiguously discerned. Alternatively, the process of dissociation in which cells lose most of their dendritic structure, the special culture conditions (artificial saline, complete absence of neuromodulators, etc) and the absence of synaptic network interactions may reveal a new, or alter an existing activity-sensing mechanism.

The 2.5-fold stimulation-induced I_{Ca} increase was achieved with 30–60 min of stimulation (Fig. 6B). I_{Ca} increases spontaneously also by ~2.5-fold but over 4 days in culture (Fig. 3B). Similarly, the high-threshold K^+ conductance was reduced by 45% in normal saline with 45–60 min of rhythmic stimulation but changes spontaneously by only 25% over 6 days in culture. Thus although the same currents appear targeted during spontaneous and induced activity changes, these effects may occur via two different but probably overlapping pathways. Slow, spontaneous changes may predominantly require gene transcription and protein synthesis, similar to the transcription requirement for spontaneous but slow pyloric activity recovery in the intact pyloric network after the permanent removal of neuromodulatory inputs (Thoby-Brisson and Simmers 2000).

Our dynamic-clamp experiments confirm that an increase in Ca$^{2+}$ conductance, g_{Ca}, and a decrease in K$^+$ conductance, g_K, are sufficient to explain all the observed changes in activity. We were able to induce a switch from either silent or tonic firing to oscillatory activity by modifying the same conductances (g_{Ca}, g_K), within the conductance ranges observed physiologically, that we showed to be affected during spontaneous activity changes and by patterned stimulation (Fig. 9A). Although relatively small g_K changes were sufficient to generate significant activity changes, the g_{Ca} levels we needed to use to induce activity changes were comparable to the g_{Ca} changes observed in response to prolonged patterned stimulation. Although increasing g_{Ca} with dynamic clamp always increased the tendency of neurons to burst, it is important to remember that this current is not a Ca$^{2+}$ current in the biological sense because no Ca$^{2+}$ influx occurs. An increase in Ca$^{2+}$ influx due to an augmented biological g_{Ca} will be accompanied by an increase in I_{Ca}, which can reduce the excitability of a neuron and thus induce tonic firing. However, even a dynamic-clamp-reduced K$^+$ current in a background of high I_{Ca} can switch an oscillatory to a tonically firing neuron (Fig. 9A, bottom), similar to 41% of our rhythmically stimulated oscillatory neurons (Fig. 4, C and D). Consistent with our observations of stimulation-induced activity changes, we could never induce tonic firing in silent cells by manipulating g_{Ca} and g_K. Unlike Thoby-Brisson and Simmers (2002), we observed no spontaneous or stimulation-induced changes in I_h and did not test the effects of this current with dynamic clamp. This current is well known to be involved in the generation of oscillatory activity (Forti et al. 2006; Maccarrone and McBain 1996; McCormick and Bal 1997; Noble et al. 1992) and may be responsible for the enhancement of oscillatory properties observed in decentralized lobster preparations (Thoby-Brisson and Simmers 2002). Our dynamic-clamp results show that changes in I_{Ca} and I_h are sufficient to explain our observations but certainly do not exclude the possible participation of I_h under other conditions or in other species.

Our observations suggest that spontaneous changes in Ca$^{2+}$ and high-threshold K$^+$ currents likely play a central role in homeostatic recovery of rhythmic function in the decentralized pyloric network of the crab STG. Decreases in K$^+$ currents as a result of decreased neuronal drive are common to most if not all systems in which a homeostatic recovery of excitability can
be identified (Zhang and Linden 2003). Although among inward currents sometimes Na\(^+\) currents are also affected (Desai et al. 1999; Mee et al. 2004), more commonly Ca\(^{2+}\) currents are strengthened due to decreased activity (Chung et al. 1993; Garcia et al. 1994; Su et al. 2002) or reduced due to enhanced neuronal activity (Delorme et al. 1988; Franklin et al. 1992; Hong and Lnenicka 1995; Li et al. 1996). The effects we have observed of very slow frequency hyperpolarizing stimulation (0.11 Hz) do not appear to be consistent with the concept of homeostatic regulation of function. Rather a different mechanism that regulates these same conductances in a frequency-dependent manner and with a faster time course than the spontaneous recovery appears to be active in parallel. A solid conclusion on this will need to await further experiments to rule out possible unphysiological effects of the strong hyperpolarization used during stimulation in our study.

Intracellular signaling

We show that activity-dependent Ca\(^{2+}\) and K\(^+\) conductance changes depend on Ca\(^{2+}\) influx into these cells. We suggest that a Ca\(^{2+}\)-dependent intracellular mechanism modifies the conductances of both \(I_K\) and \(I_{Ca}\). Ca\(^{2+}\) influx appears to be crucial also in other systems in mediating activity-dependent conductance and activity changes during development (Spitzer et al. 2002) and in the adult (Zhang and Linden 2003). Several possible Ca\(^{2+}\)-dependent mechanisms may be involved, including transcription regulation (Spitzer et al. 2002; West et al. 2002), ion channel downregulation (Klein et al. 2003), and posttranslational modifications (Cudmore and Turrigiano 2004), which can be sensitive to the exact pattern and path of Ca\(^{2+}\) entry (Bito et al. 1997; De Koninck and Schulman 1998; Dolmetsch et al. 1998; Fields 1994; Li et al. 1996). We observed no correlation of stimulation-induced activity changes with expression of post inhibitory rebound (PIR) properties. This lack of correlation of activity or conductance changes with the measured PIR may lie in that PIR is a rather indirect measure of Ca\(^{2+}\) changes with the measured PIR may lie in that PIR is a rather indirect measure of Ca\(^{2+}\) influx. If contaminated with a simultaneous activation of \(I_K\), a small Ca\(^{2+}\) influx may still take place with little or no measurable PIR. Second, we observed the opposite effect on the levels of \(I_K\) and on activity when the 0.33-Hz rhythmic pattern of hyperpolarizing stimulation was replaced with low-frequency (0.11 Hz) hyperpolarization, i.e., an increase instead of a decrease in \(I_K\) (Fig. 8A) and a reduction in the amplitude of the membrane potential oscillations. This is consistent with the possibility that a PIR-like mechanism during which a small but sufficient influx of Ca\(^{2+}\) takes place as suggested by Turrigiano et al. (1994). Prolonged hyperpolarization would simply close Ca\(^{2+}\) channels that are open near the resting potential and maintain them closed longer, thus preventing Ca\(^{2+}\) influx into the cells and bringing intracellular Ca\(^{2+}\) levels below the levels of the unstimulated neurons. Although this mechanism is plausible, it is harder to reconcile with our observation that only a slightly higher frequency of hyperpolarizing stimulation completely eliminates the effect of patterned stimulation on \(I_K\) (Fig. 8B). It is conceivable, however, that the kinetics of Ca\(^{2+}\) influx can sensitively interact with the kinetics of intracellular Ca\(^{2+}\) uptake and of intracellular activation of Ca\(^{2+}\)-dependent molecules involved in the activity-sensing mechanism to yield a highly frequency-specific transduction mechanism (Dolmetsch et al. 1998; Gorunova and Spitzer 2002; Soderling et al. 2001). A more serious challenge to this hypothesis comes from the results showing a complete lack of effect of depolarizing stimuli (that ensure Ca\(^{2+}\) influx through \(I_{Ca}\)) on \(I_K\) (Fig. 8C). These results strongly suggest that it is not merely Ca\(^{2+}\) influx that determines the effect on these currents. An interaction of the localization of the voltage-sensitive plasma membrane channels required for Ca\(^{2+}\) influx and the intracellular localization of the appropriate transducing signaling molecules would be required. Such an interaction has been observed in many other systems (Hobai and Levi 1999; Parekh 2006; Wu et al. 1999). The question still remains: what is the path of Ca\(^{2+}\) entry? Some forms of L-type Ca\(^{2+}\) channel, although they typically carry a high-threshold current, have a finite conductance at membrane potentials low enough (i.e., −70 mV) to contribute to the resting potential (Smith et al. 1993). As Fig. 6C shows, however, we observe no inward current at voltages near or below the resting potential of cultured STG neurons (i.e., −60 to −40 mV). No direct report to date exists of Ca\(^{2+}\) current mediating a Ca\(^{2+}\) influx at low membrane potentials in STG neurons, but such an influx has been inferred from the voltage dependence of synaptic release in these cells and from Ca\(^{2+}\) imaging data showing a Ca\(^{2+}\)-sensitive low-threshold Ca\(^{2+}\) influx (Kloppenburg et al. 2001). A very-low-level Ca\(^{2+}\) influx via these Ca\(^{2+}\)-sensitive channels could go undetected and could trigger Ca-induced Ca release from intracellular stores thus amplifying the Ca\(^{2+}\) signal. This mechanism would account for the sensitivity to Cd\(^{2+}\) at the same time as the absence of measurable transmembrane Ca\(^{2+}\) current but would require postulating two different Ca\(^{2+}\) channels, with distinct voltage dependence and cellular localization and both with similar Cd\(^{2+}\) sensitivity. With the exception of Cd\(^{2+}\) sensitivity, such distinct voltage dependence and cellular localization is not uncommon (cf. Ivanov and Calabrese 2006a,b). It has been shown that hyperpolarization-activated channels can be permeable to Ca\(^{2+}\) (Yu et al. 2004). Because most cultured STG neurons express an \(I_K\) this is a possibility that remains to be tested. Another candidate pathway for Ca\(^{2+}\) influx are gap junction-forming hemi-channels. Gap junctions are known to be permeable to Ca\(^{2+}\) (Saez et al. 1989), and many STG neurons form gap junctions. Hemi-channels may also be permeable to Ca\(^{2+}\) although to our knowledge this has not been established for innexins.

In conclusion, we suggest that, consistent with our observations and those of Turrigiano et al. (1995), adult STG neurons have a natural predetermined tendency to oscillate independent of neuronal type. Activity can, however, be regulated in an activity-dependent manner over this natural tendency. Only two ionic currents, \(I_{Ca}\) and \(I_K\), appear to be involved in both the spontaneous development of oscillations and in stimulation-induced changes of activity in crab STG neurons. Our dynamic-clamp experiments show that regulation of only these two currents is sufficient to produce different changes in activity. The spontaneous changes in \(I_{Ca}\) and \(I_K\) can explain the homeostatic recovery of pyloric network activity after removal of neuromodulatory input to the ganglion in situ, whereas the rhythmic stimulus-induced conductance changes appear to be to some extent at odds with the concept of homeostatic recovery of function. We also conclude that, at least during approximately the first week in culture, no discernible differences in the process of recovery of activity or the mechanisms involved
can be made between neurons belonging to the two main functional neural networks (pyloric and gastric) found in the STG. Differences in the generation of oscillatory properties in pyloric versus gastric neurons in situ may thus be due to either synaptic interactions within the STG or to intrinsic mechanisms operating at longer time scales than 1 wk after dissociation.

ACKNOWLEDGMENTS

We thank Dr. Farzan Nadim for useful comments at different stages of this work.

GRANTS

This work was supported by National Institutes of Health Grants MH-64711 to J. Golowasch and GM-060826 and National Science Foundation Grant IBN 0909250.

REFERENCES

Saez JC, Connor JA, Spray DC, and Bennett MV. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc Natl Acad Sci USA 86: 2708–2712, 1989.

