Morphological and Electrophysiological Properties of GABAergic and Non-GABAergic Cells in the Deep Cerebellar Nuclei

Marylka Uusisaari,1 Kunihiko Obata,2 and Thomas Knöpfel1

1Laboratory for Neuronal Circuit Dynamics and 2Obata Research Unit, Brain Science Institute, The Institute of Physical and Chemical Research, Wako City, Saitama, Japan

Submitted 12 September 2006; accepted in final form 3 November 2006

Uusisaari M, Obata K, Knöpfel T. Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol 97: 901–911, 2007. First published November 8, 2006; doi:10.1152/jn.00974.2006. The deep cerebellar nuclei (DCN) integrate inputs from the brain stem, the inferior olive, and the spinal cord with Purkinje cell output from cerebellar cortex and provide the major output of the cerebellum. Despite their crucial function in motor control and learning, the various populations of neurons in the DCN are poorly defined and characterized. Importantly, differences in electrophysiological properties between glutamatergic and GABAergic cells of the DCN have been largely elusive. Here, we used glutamate decarboxylase (GAD)-67-green fluorescent protein (GFP) knock-in mice to unambiguously identify GABAergic (GAD-positive) and non-GABAergic (GAD-negative, most likely glutamatergic) neurons of the DCN. Morphological analysis of DCN neurons patch-clamped with biocytin-containing electrodes revealed a significant overlap in the distributions of the soma sizes of GAD-positive and GAD-negative cells. Compared with GAD-negative DCN neurons, GAD-positive DCN neurons fire broader action potentials, display stronger frequency accommodation, and do not reach as high firing frequencies during depolarizing current injections. Furthermore, GAD-positive cells display slower spontaneous firing rates and have a more shallow frequency-to-current relationship than the GAD-negative cells but exhibit a longer-lasting rebound depolarization and associated spiking after a transient hyperpolarization. In contrast to the rather homogeneous population of GAD-positive cells, the GAD-negative cells were found to consist of two distinct populations as defined by cell size and electrophysiological features. We conclude that GABAergic DCN neurons are specialized to convey phasic spike rate information, whereas tonic spike rate is more faithfully relayed by the large non-GABAergic cells.

I N T R O D U C T I O N

The deep cerebellar nuclei (DCN) are in a key position within the cerebellar circuitry. Neurons of the DCN receive synaptic inputs from all cerebellar afferents, are the main target of Purkinje cells, and their own axons provide the major output of the cerebellum.

DCN neurons were originally classified on the basis of cell morphological criteria by Han-Palay (1977) into at least six distinct types. A more pragmatic classification based on connectivity and transmitter content differentiates large and small projection neurons and local circuit neurons (Chen and Hillman 1993; Fredette and Mugnaini 1991). Within this classification, GABAergic neurons are thought to represent small local circuit neurons (that also contain glycine; Chen and Hillman 1993) and projection neurons targeting the inferior olive (IO), whereas glutamatergic neurons are equivalent to the large neurons projecting to red nucleus and other precerebellar sites. A single Purkinje cell can innervate both glutamatergic and GABAergic cells (De Zeeuw and Berrebi 1995; Teune et al. 1998) and thus can have both an inhibiting and a disinhibiting effect on DCN output neurons. Disinhibition and differences in action potential (AP) firing dynamics (e.g., in firing frequency adaptation) increase the complexity of the DCN circuit dynamics beyond the level that is considered in most present cerebellar network models (Lisberger and Sejnowski 1992; Medina et al. 2001; Silberberg et al. 2005). Electrophysiological studies of DCN neurons published to date either did not specify the cell type recorded or referred to large neurons, often presumed glutamatergic, because they are more likely sampled with extracellular or intracellular recording techniques. The properties of these large but unidentified DCN neurons were described in classical and more recent work (Afshari et al. 2004; Aizenman and Linden 1999; Czubayko et al. 2001; Linas and Muhlethaler 1988; Molineux et al. 2006; Muri and Knöpfel 1994; Raman et al. 2000; Sultan et al. 2003).

It is not clear how these electrophysiological characteristics correlate with morphologically and biochemically defined cell types. Previous studies did not reveal strong correlations between morphological characteristics and electrophysiological properties (Aizenman et al. 2003; Czubayko et al. 2001). However, these studies did not directly attempt to differentiate glutamatergic and GABAergic neurons. A concurrent study by Molineux and colleagues (2006) found correlation between the expression of Ca,3 subtypes and the bursting propensity; however, even though the “weak-bursting” phenotype was restricted to non-GABAergic (GAD67-negative) cells, both GAD67-positive and GAD67-negative cells could express a “bursting” phenotype. Thus the bursting phenotype only weakly correlated with the transmitter used by DCN neurons.

To address the issue of identification and characterization of GABAergic versus non-GABAergic (presumed glutamatergic) cells in the DCN, we used glutamate decarboxylase 67-green fluorescent protein (GFP) knock-in mice to record from identified GABAergic (GAD-positive, GAD+) and non-GABAergic (GAD-negative, GAD–) neurons in DCN slice preparation. We characterized the active and passive membrane properties of GAD+ and GAD– cells and correlated electrophysiological measures with morphometric data obtained with biocytin histochemistry. We found that the GAD+ and GAD– cells exhibit similar morphological features with...
significant differences revealed only when comparing population averages. Electrophysiological features were more distinct and a combination of electrophysiological measures was found to be necessary and sufficient for reliable determination of cell identity (GABAergic vs. non-GABAergic).

METH ODS

Generation of knock-in animals (GAD67-GFP)

The generation of GAD67-GFP knock-in mice was previously described elsewhere (Tamamaki et al. 2003). In brief, a cDNA-encoding enhanced GFP (EGFP; Clontech, Palo Alto, CA) was targeted to the locus encoding GAD67 using homologous recombination. We used heterozygous GAD67-GFP knock-in mice identified by PCR of tail DNA (Tamamaki et al. 2003). Experimental protocols were approved by the RIKEN Experimental Animal Committee and conducted in compliance with the Guidelines for the Use of Animals in Neuroscience Research (The Society for Neuroscience, Washington, DC).

Slice preparation

Young (postnatal days 14–20) mice were anesthetized with halothane and decapitated. The cerebellum was quickly removed and mounted for sectioning with a vibratome (Leica VT1000S, Leica Microsystems, Nussloch, Germany) using ceramic blades (Campden Instruments, Loughborough, UK) in ice-cold standard physiological solution [artificial cerebrospinal fluid (ACSF)] containing (in mM): NaCl, 124; KCl, 3; KH2PO4, 1.2; MgSO4, 1.9; glucose, 12; NaHCO3, 26; and CaCl2, 2; and gassed with 95% O2-5% CO2. The two to three coronal slices (300 μm) containing the DCN were allowed to recover for >1 h in oxygenated ACSF at room temperature (21–23°C) and used for recording during the next 4 h.

Electrophysiological recordings

Slices were transferred to a submerged-type chamber mounted on a Leica DMLFSA microscope equipped with differential interference contrast (DIC) optics, whole field epifluorescence (Till Photonics, Gräfelfing, Germany), and laser scanning confocal (Leica TCS SP2; Leica Microsystems, Mannheim, Germany) imaging. Slices were superfused with gassed ACSF (2–3 ml/min, at 23–24°C). In some experiments recording temperature was switched from 25 to 35°C by keeping subthreshold for spontaneous AP firing (usually –70 to –70 mV) by injection of up to ~250-pA holding current.

In the beginning of each experiment, the input resistance and time constant were measured using hyperpolarizing current steps small enough so that the I_h-like voltage sag was not resolved, and from these values the apparent membrane capacitance (C_{app}) was estimated. All subsequent amplitudes of current steps were normalized on C_{app}, so that increments in current steps amounted to 0.3 pA/pF. The standard test protocols included series of 1-s hyperpolarizing and depolarizing current steps from the holding membrane potential of around –65 mV as well as prolonged (several minutes) recording of spontaneous firing under zero holding current.

In some cell-attached experiments 20 μM 6-nitro-7-sulfamoylbenzoxo(f)-quinoxaline-2,3-dione (NBQX, Tocris), 50 μM N-2-amino-5-phosphonopentanoate (o-APV, Tocris), and 100 μM picrotoxin (PitX; Sigma) were used to block synaptic transmission. Electrophysiological characterization was concluded within 5–10 min after breaking into whole cell mode but the whole cell configuration was kept for ≥20 min to ensure sufficient biocytin fill by diffusive loading through the patch pipette. The electrode was then gently withdrawn from the cell body. Slices were kept for an additional hour in room temperature ACSF to provide sufficient time for biocytin diffusion into distal dendrites and axons and then fixed in 4% paraformaldehyde in 0.1 M PBS (pH 8) at 4°C for 12 h.

Measurement of electrophysiological parameters

For analysis of the shape of evoked APs (eAPs), the first APs fired by each cell in response to a series of increasing depolarizing current steps were peak-aligned and averaged. For steady-state AP (ssAP) shape analysis, the same was performed for several tens of consecutive APs recorded under zero holding current condition. The half-width and peak amplitude of these average APs were measured and the grand average over APs of a given cell type were calculated. For frequency–current (f–I) measures, the mean firing frequency evoked with increasing current steps was measured; for frequency adaptation, the interspike intervals of APs evoked in response to a current step that evoked around 40-Hz firing were measured and normalized to peak values. I_h-type depolarizing sag in the voltage response to hyperpolarizing current injections was normalized to initial maximum hyperpolarization evoked by a −1.5-pA/pF current step. The strength of rebound depolarization (RD) after a 1-s-long, −1.5-pA/pF current step was quantified in terms of the duration of RD at half-amplitude.

Biocytin histochemistry

Fixed slices were washed with PBS and endogenous peroxidases were quenched by a 5-min incubation in 1% H2O2. Tissue was reacted overnight in avidin–biotin complex (ABC Elite kit; Vector Laboratories, Burlingame, CA) at 4°C. Finally, biocytin was demonstrated by 3,3′-diaminobenzidine tetrahydrochloride histochemistry.

Confocal imaging and anatomical quantification

For morphometry, slices with biocytin-stained cells were mounted on objective glass under coverslip and digitally imaged using a Leica DC500 digital camera on a Leica DMRE microscope.

Whole z-axis stack sequence of the biocytin-filled cells was projected into a single image using Image Pro Plus 5.1 software (Media Cybernetics, Silver Spring, MD) and the cell body area was calculated as the area of the cross section of the cell body in the image. Dendritic distance was measured as the longest distance between a visible dendrite tip and soma center. The branching index (BI) was determined by dividing the number of dendritic branches crossing a 30-μm-radius circle centered on the soma by the number of primary dendrites visible. All spatial features were analyzed using ImagePro Plus 5.1 software.

Confocal images of GFP-expressing fixed DCN slices were acquired using either the Olympus Fluview Fv500 (Olympus, Tokyo, Japan; Fig. 1A) or Leica TCS SP2 confocal (Fig. 1B) microscope.

Data analysis

Electrophysiological data were analyzed using Clampfit 9.2 software (Axon Instruments).

Statistical analysis of all parameters was performed using OriginLab 7 software (OriginLab, Northampton, MA). Because no differ-
RESULTS

Identification of GABAergic cells in the DCN

The cells of DCN are a heterogeneous population of glutamatergic and GABAergic neurons (Chan-Palay 1977; Chen and Hillman 1993; De Zeeuw and Berrebi 1995; Fredette and Mugnaini 1991; Teune et al. 1998). GABAergic neurons can unambiguously be identified in “knock-in” mice that express GFP under the natural regulatory sequences for GAD67 (Tamamaki et al. 2003). As seen in confocal-scan images (Fig. IA; paraformaldehyde-fixed section), the deep cerebellar nuclei of these mice contain a large population of brightly fluorescent neurons. Both the shapes of the DCN and the prominent projections from cerebellar cortex are easily seen.

At larger magnification (Fig. 1A, right) individual cells are clearly visible. Notably, even though the largest cell bodies (marked with white asterisks) belong to non-GFP–expressing cells (i.e., GAD67-negative, GAD−), it was immediately evident that not all smaller cells were GFP-expressing (thus GAD67-positive, GAD+; compare cell bodies marked with arrowheads and arrows). Because of this, all of the recordings reported in this study were performed using slices from GFP knock-in mice for unambiguous identification of GABAergic neurons.

The GFP fluorescence of GAD+ cells was sufficiently bright as to perform targeted patch-clamp recordings using epifluorescence in combination with DIC microscopy (Fig. 1B).

Morphological properties of GAD− and GAD+ cells

Whole cell patch-clamp recordings were performed with biocytin-containing pipettes; 43 GAD− and 21 GAD+ biocytin-filled cells were recovered after fixing the slices (examples shown in Fig. 2, A–D) and their morphological features were analyzed. Consistent with earlier studies (Chan-Palay 1977) both GAD+ and GAD− cells exhibited a wide range of dendritic morphologies. Both cell groups included neurons with axons that either coursed locally or that projected to more distant targets (arrowheads in Fig. 2, B and C). Spines were occasionally seen on both GAD+ and GAD− cells (see insets in Fig. 2, A and D).

In general, GAD− neurons had larger cell bodies and a more complex dendritic morphology than those of GAD+ neurons. However, quantitative analysis revealed clearly overlapping distributions of several key morphometric measures (Fig. 3, A–D). On average, the GAD-negative cells were larger (average soma cross-sectional area $322 \pm 20 \mu m^2$; Fig. 3A), had more primary dendrites (PDs) (3.66 ± 0.16; Fig. 3B) that extended further away ($174 \pm 11 \mu m$; Fig. 3C) from the soma.
than the GAD+ cells (area 150 ± 15 μm², P < 0.0001; 2.7 ± 0.26 PDs, P < 0.01; dendritic extension 117 ± 16 μm, P < 0.05). The GAD− and GAD+ cells did not differ significantly in their average BI (see methods; Fig. 3D). The overlap of all these measures is seen in the distribution of individual values superimposed on the histogram graphs of the mean values in

Both GAD− and GAD+ cells are spontaneously active

DCN neurons in vivo typically fire spontaneously at 35–55 Hz (LeDoux et al. 1998; Rowland and Jaeger 2005; Thach 1968). During sensory stimulation or motor execution their firing frequency can reach hundreds of Hertz (e.g., Gruart et al. 2000). Also, they are known to fire APs spontaneously in vitro (slice preparation; Aizenman and Linden 1999; isolated cells: Raman et al. 2000).

We compared the rate of spontaneous firing of GAD+ and GAD− neurons with patch pipettes in the noninvasive cell-attached configuration (voltage-clamp mode). In both cell types, the frequency of spontaneous firing was not affected by blocking synaptic transmission with a cocktail of NBQX, AP5, and PiTX (data not shown). GAD− cells clearly fired faster (14.8 ± 2.1 Hz; n = 13) than did the GAD+ cells (9.9 ± 1.1 Hz, n = 17; pooled data from ACSF and synaptic blocker recordings; P < 0.05; Fig. 4, A1–A3). This difference was preserved (and even augmented) after breaking into whole cell configuration. Without injected bias current GAD− neurons fired at 29.9 ± 5.8 Hz (n = 20) and GAD+ neurons at 9.8 ± 1.0 Hz (n = 19; P < 0.005; experiments performed without synaptic blockers, Fig. 4, B1–B3).
cells. These grand-average eAP shapes differed in several aspects between GAD+ and GAD− neurons. The most prominent difference between GAD− and GAD+ eAP shapes was their duration: GAD+ cells fired much broader eAPs than did the GAD− cells.

Even though the average eAP widths differed significantly (GAD−: 0.70 ± 0.05 ms, n = 29; GAD+: 0.99 ± 0.05 ms, n = 22; P < 0.001), the value ranges overlapped, as seen in the scatterplot in Fig. 5A2 superimposed on the histogram of mean ± SE values. The GAD− cell eAP widths clustered into two groups with values above and below 0.6 ms, suggesting presence of more than one neuron population. In fact, plotting eAP width against cell capacitance (Cm; Fig. 5B1) and fitting the eAP width distri-

Action potential shapes of GAD+ and GAD− cells

For characterization of active and passive membrane properties, the DCN cells were current-clamped below but near to the threshold for spontaneous firing. We analyzed the shape of the first evoked AP (eAP) fired in response to series of depolarizing current steps of increasing amplitudes (0.3–1.8 pA/pF). To compare eAP shapes in GAD+ and GAD− cells, “grand average” eAP shapes (Fig. 5A1) were calculated as the average of all the average eAP shapes obtained from individual

FIG. 4. Spontaneous firing of DCN neurons. A1 and A2: example traces of cell-attached recordings form GAD− (A1) and GAD+ (A2) neurons. A3: bar graph of mean ± SE firing frequencies at 24°C. B: intracellularly recorded examples of spontaneous firing from GAD− (B1) and GAD+ (B2) cells at zero-bias current injection. B3: bar graph of the mean ± SE values. C: examples of spontaneous cyclic bursting activity observed in part of the GAD− (C1) and of GAD+ (C2) cells (C1, no current injection; C2, −3-pA current injection).

Spontaneous bursting, as previously described by Aizenman and Linden (1999), Czubayko et al. (2001), and others, was observed in both GAD− (20 of the 35 cells that had their bursting ability assessed by gradual hyperpolarization) and GAD+ cells (12 of 21 cells) (Fig. 4, C1 and C2). The bursting GAD− cells tended to be larger in size (Cm on average 128 ± 10 vs. 84 ± 8 pF; P < 0.05) and have lower BI values than those of nonbursting ones (1.47 ± 0.09 vs. 2.31 ± 0.29; P < 0.005).

FIG. 5. Waveforms of evoked action potentials (APs). A1: peak-aligned grand averages of APs evoked by depolarizing current steps from subthreshold membrane potentials of GAD− and GAD+ cells. Vertical lines denote SE values. Note the significantly broader APs in GAD+ cells. A2: bar graph and distribution of individual AP widths. Bars are mean ± SE values; circles are individual values. B1: plot of Cm values against AP widths (dots) and a histogram of AP widths (gray bars). Blue line is a dual Gaussian fit (peaks at 0.43 ± 0.85 and 0.85 ± 0.23 ms) of AP width histogram; black and orange lines are the 2 Gaussian components of the fit. Individual values from large GAD− cells (Cm > 100 pF) are plotted in black and those from small GAD− (Cm < 100 pF) cells in orange. B2: Cm values of GAD+ neurons plotted vs. AP width. Note lack of correlation or clustering. C1: peak-aligned grand average AP waveforms from large and small GAD− and GAD+ cells. Vertical lines denote SE values. Note the similarity of small GAD− and GAD+ cells fired much broader eAPs than did the GAD− cells.
bution with a bimodal Gaussian curve (with no constraints) reveals that large (C_m ≥ 100 pF; n = 12) GAD– neurons fire significantly shorter eAPs than small (C_m < 100 pF; n = 17) GAD-negative neurons (0.53 ± 0.03 vs. 0.85 ± 0.06 ms; P < 0.001). The corresponding plot for GAD+ cells did not reveal any correlation between eAP widths and C_m (Fig. 5B2). The GAD– cells were thus divided into two groups over this (somehow arbitrary) border value of 100 pF.

Even though the eAP induced by a step depolarization from a hyperpolarizing current keeping the voltage at subthreshold level is often used for quantification purposes in other cell types, in spontaneously firing neurons such as the DCN cells it does not reflect the natural situation. Thus we also analyzed AP shapes in steady-state firing cells using zero injected current (ssAPs, Fig. 6A1). As expected from the fact that tetrodotoxin (TTX)-sensitive sodium currents are partially inactivated at the interspike voltage ranges (Raman et al. 2000) ssAP widths were clearly broader in spontaneously active cells (large GAD–: 0.74 ± 0.07 ms, n = 11; small GAD–: 1.15 ± 0.18 ms, n = 8; GAD+: 1.48 ± 0.09 ms, n = 12) but large GAD– ssAP remained the fastest and GAD+ ssAPs the slowest (Fig. 6A2; ANOVA F = 14.85, P < 0.0001). In spontaneously firing cells the ssAP overshoots (peak amplitudes) of small GAD– and GAD+ neurons were significantly larger than those of large GAD– neurons (small GAD–: 27.1 ± 1.1 mV; GAD+: 21.0 ± 2.3 mV; large GAD–: 9.0 ± 4.4 mV; ANOVA F = 7.97, P < 0.005; Fig. 6A3), even though the membrane voltage from which the ssAP initiated did not differ significantly between cell groups (V_m at 2 ms before ssAP peak: large GAD–: −35.5 ± 2.0 mV; small GAD–: −33.1 ± 1.4 mV; GAD+: −38.6 ± 2.2 mV; ANOVA F = 1.83, P = 0.178).

Importantly, the three types of neurons differed in the expression of fast and slow AP afterhyperpolarizations (AHPs). GAD– cells (both large and small) exhibited a fast AHP (fAHP; Fig. 6, B1 and B2), whereas both small GAD– and GAD+ neurons exhibited a pronounced slow AHP (sAHP; Fig. 6, B2 and B3). There was no significant difference in the delay to fAHP peak in large and small GAD– cells (large GAD–: 4.05 ± 0.24 ms; small GAD–: 4.6 ± 0.3 ms; Fig. 6C1, left) or fAHP peak relative to V_m measured at 2 ms before peak (large GAD–: −9.1 ± 1.1 mV; small GAD–: −11.1 ± 2.1 mV; Fig. 6C2, left). The small GAD– and GAD+ cells did not differ in terms of the delay (from ssAP peak) before their sAHPs reached peaks (small GAD–: 31.0 ± 2.6 ms; GAD+: 34.7 ± 2.1 ms; P = 0.3; Fig. 6C1, right) but the GAD+ cells’ sAHP amplitudes were significantly larger (14.7 ± 0.9 mV) than those of the small GAD– (−11.7 ± 1.1 mV) or large GAD– (−9.5 ± 0.9 mV) cells (ANOVA F = 8.58, P < 0.005; Fig. 6C2, right). The AP and AHP parameters are summarized together with other electrophysiological measures in Table 2.

Dynamics of evoked AP firing in large and small GAD-negative cells and in GAD-positive cells

The dynamics of AP firing induced by injection of a current pulse is a classical criterion for classification of neuronal phenotypes. The firing frequency versus injected current (f–I) relationship provides information related to the sensitivity of a neuron to synaptic input. The adaptation of spike rate during a current pulse indicates how a neuron relays and integrates tonic (continuous) and phasic (burstlike) synaptic inputs. DCN neuron AP firing dynamics was studied using sets of depolarizing and hyperpolarizing current steps, normalized on the cell C_m (Fig. 7A). This normalization facilitates the comparison of cells of varying sizes (and thus input resistance). The f–I relationship of GAD+ cells was less steep than that of large and small GAD– cells (Fig. 7B1). Small GAD– cells had a sensitivity to injected current that did not differ from that of large GAD– cells at small current amplitudes but with larger currents their...
firing frequency saturated around 50 Hz. Notably, the ability to fire at high frequencies on depolarization was one of the most significant measures that differed between the large GAD− and the small GAD− and GAD+ cells.

Frequency adaptation during a 1-s depolarizing current step clearly differed between large GAD− and small GAD− and GAD+ cells. The large GAD− cells adapted on average only to roughly 80% of peak frequency, whereas the small GAD− and GAD+ cells slowed down to 50% of the peak frequency during the first 20 APs in a train where the average firing frequency was around 40 Hz (Fig. 7A1). Correspondent differences in frequency adaptations were also seen during the first 20 APs in a train where the average firing frequency was around 40 Hz (Fig. 7B2). Correspondent differences in frequency adaptations were also seen during the rebound depolarization (RD) on release from hyperpolarization (Fig. 7A1–A3).

An Ih-like depolarizing sag during step hyperpolarization (Fig. 7A, single arrowheads) as well as RDs (Fig. 7A, double arrowheads) could be seen in all three of the cell groups studied. Even though the amount of Ih-like depolarization varied between cells of the same group (Fig. 7C1), no significant differences were found between the cell groups. In contrast, intriguing differences were observed in the duration of the RD (Fig. 7C2). Although there was no correlation between cell Cm and RD width (data not shown), the GAD+ cells exhibited much longer lasting RDs than did the GAD− cells, and the RDs in large GAD− cells were shorter than those in the small GAD− cells (GAD+: 1,728 ± 270 ms, n = 16; large GAD−: 638 ± 123 ms, n = 8; small GAD−: 936 ± 258, n = 13), although the cells were held at very similar Vm.

Occasionally, the release from hyperpolarization triggered a very long-lasting “up-state” where cells continued to fire for many seconds before returning to the initial holding level; this property was most often seen in GAD+ cells. Almost all of these cells (five of six) also displayed spontaneous burst firing as shown in Fig. 4C.

Temperature dependency of the AP firing properties
To compare our results with those obtained in vivo or at higher experimental temperatures, we investigated the effect of recording temperature on the key electrophysiological parameters. We analyzed five large GAD−, four small GAD−, and nine GAD+ cells that were recorded first at 24°C followed by a switch to 34°C. The effects of temperature on the AP shape parameters and firing characteristics are exemplified in Fig. 8. With raising the temperature from 24 to 34°C, the eAP half-widths decreased from 0.65 ± 0.07, 1.23 ± 0.15, and 1.14 ± 0.08 to 0.38 ± 0.03, 0.79 ± 0.12, and 0.77 ± 0.08 (large GAD−, small GAD−, and GAD+ cells, respectively) (Fig. 8A1). The ssAP half-widths decreased (large GAD−, small GAD−, and GAD+ cells, respectively) from 0.93 ± 0.05, 1.39 ± 0.17, and 1.63 ± 0.14 to 0.56 ± 0.09, 0.82 ± 0.1, and 1.01 ± 0.09 (Fig. 8A2). The shortening of eAP and ssAP half-width in these cells was used to calculate the Q10 values as follows: Q10 for eAP: large GAD−, 1.84 ± 0.05; small GAD−, 1.73 ± 0.14; GAD+, 1.87 ± 0.07; Q10 for ssAP: large GAD−, 2.07 ± 0.26; small GAD−, 1.84 ± 0.04; large GAD+, 1.73 ± 0.14.

Table 1. Morphological parameters of DCN neurons

<table>
<thead>
<tr>
<th>Parameter</th>
<th>GAD−</th>
<th>GAD+</th>
<th>n</th>
<th>Mean</th>
<th>SE</th>
<th>n</th>
<th>Mean</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soma area, μm²</td>
<td>322 ± 20</td>
<td>150 ± 15</td>
<td>43</td>
<td>1.52</td>
<td>0.2</td>
<td>38</td>
<td>2.7</td>
<td>1.1</td>
</tr>
<tr>
<td>Soma length, μm</td>
<td>26 ± 1.5</td>
<td>17 ± 1.1</td>
<td>43</td>
<td>3.8</td>
<td>0.2</td>
<td>37</td>
<td>0.2</td>
<td>0.08</td>
</tr>
<tr>
<td>No. of primary dendrites</td>
<td>3.7 ± 0.2</td>
<td>2.7 ± 0.2</td>
<td>38</td>
<td>3.8</td>
<td>0.2</td>
<td>37</td>
<td>0.2</td>
<td>0.08</td>
</tr>
<tr>
<td>Branch index (BI)</td>
<td>1.88 ± 0.14</td>
<td>1.44 ± 0.08</td>
<td>38</td>
<td>0.14</td>
<td></td>
<td>37</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Max. dendritic distance, μm</td>
<td>177 ± 11</td>
<td>106 ± 17</td>
<td>36</td>
<td>11</td>
<td></td>
<td>36</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Electrophysiological parameters of DCN neurons at room temperature

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Large GAD−</th>
<th></th>
<th>Small GAD−</th>
<th></th>
<th>GAD+</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input resistance, MΩ</td>
<td>220 ± 22</td>
<td>572 ± 69</td>
<td>1,069 ± 91</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Membrane time constant (tau), ms</td>
<td>33.1 ± 4.3</td>
<td>36.8 ± 3.7</td>
<td>55.7 ± 6.2</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cm, pF</td>
<td>141.7 ± 7.4</td>
<td>69.2 ± 4.3</td>
<td>55.9 ± 5.4</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spontaneous firing frequency (external recording), Hz</td>
<td>16.9 ± 1.9</td>
<td>8.3 ± 2.2</td>
<td>9.8 ± 1.1</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spontaneous firing frequency (whole cell), Hz</td>
<td>30.6 ± 5.8</td>
<td>28.5 ± 13.2</td>
<td>9.9 ± 1.0</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eAP peak Vm, mV</td>
<td>27.5 ± 4.1</td>
<td>28.0 ± 11.4</td>
<td>30.2 ± 3.3</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eAP half-width, ms</td>
<td>0.53 ± 0.03</td>
<td>0.85 ± 0.06</td>
<td>0.99 ± 0.05</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ssAP threshold Vm, mV</td>
<td>−35.5 ± 2.0</td>
<td>−33.1 ± 1.4</td>
<td>−38.6 ± 2.2</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ssAP peak Vm, mV</td>
<td>10.0 ± 2.3</td>
<td>27.1 ± 1.1</td>
<td>21.0 ± 2.3</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ssAP half-width, ms</td>
<td>0.74 ± 0.07</td>
<td>1.15 ± 0.18</td>
<td>1.52 ± 0.09</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ssAP fAHP peak time, ms</td>
<td>4.05 ± 0.24</td>
<td>4.6 ± 0.30</td>
<td>NA ± NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ssAP fAHP peak Vm (relative to prespike Vm), mV</td>
<td>−9.1 ± 1.1</td>
<td>−11.1 ± 2.1</td>
<td>NA ± NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ssAP sAHP peak time, ms</td>
<td>19.19 ± 2.43</td>
<td>31.0 ± 2.6</td>
<td>34.7 ± 2.1</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ssAP sAHP peak Vm, mV</td>
<td>−9.5 ± 0.9</td>
<td>−11.7 ± 1.06</td>
<td>−14.7 ± 0.9</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cm, apparent cell capacitance; eAP, evoked action potential; ssAP, steady-state action potential; fAHP, fast afterhyperpolarization; sAHP, slow afterhyperpolarization. NA, data not available.
FIG. 7. Action potential firing dynamics. A: example traces of firing dynamics of large (A1) and small (A2) GAD− and GAD+ (A3) DCN neurons. Voltage responses evoked by 1-s, ±1.5-pA/pF current steps from subthreshold holding membrane potentials. Strong frequency adaptation in small GAD− and GAD+ cells can be seen both in response to depolarizing current step and during the rebound depolarization (RD, double arrowheads). Note the presence and qualitative similarity of hyperpolarizing current (Ih)-like voltage sags (single arrowheads) and RD after release from hyperpolarization in all cell types. B: quantification of AP firing dynamics. B1: firing vs. injected current (I–f) plot. Steeper slope of GAD− cells compared with GAD+ cells shows that the GAD− cells are more sensitive to input strength than the GAD+ cells. Note firing frequency saturation of small GAD− neurons around 50 Hz. Horizontal dashed line marks 40-Hz mean firing frequency, which was used in quantification of AP firing accommodation (B2). B2: frequency adaptation during depolarizing current step inducing a nearly 40-Hz mean firing rate. Instantaneous firing frequency (I/inter spike interval) was normalized for the maximal value in each cell and the mean values are plotted against the AP number in the AP train. Vertical lines denote SE values. Note that the GAD+ (green) and small GAD− (orange) cells display a more pronounced frequency accommodation than the large GAD− (black) cells. C1: quantification of Ih-like currents in terms of the depolarizing sag in response to hyperpolarizing current pulse (~1.5 pA/pF). Differences between cell groups are not significant. C2: quantification of the RD duration at half-amplitude. Bar graph (mean ± SE) and individual data points: *P < 0.05.

GAD+, 1.79 ± 0.08. The averaged temperature dependency of AP half-width in DCN can be given as a Q10 value of 1.86 ± 0.05.

The spontaneous firing frequency (recorded with no bias current injection) increased in all cells [from 19.8 ± 5.1, 3.9 ± 0.4, and 7.34 ± 1.23 Hz to 34.2 ± 7.0, 12.0 ± 0 (n = 1), and 14.4 ± 2.8 Hz, large GAD−, small GAD−, and GAD+ cells, respectively] but the firing accommodation or bursting behavior did not change qualitatively. As an example of this, Fig. 8B shows two RDs triggered by a release from hyperpolarization in a large GAD− and a GAD+ cell; note the similar firing pattern at both temperatures.

DISCUSSION

In the present study, we morphologically and electrophysiologically characterized three neuronal populations of the DCN: the GABAergic neurons and large and small non-GABAergic neurons. GAD67 has been widely used as a marker in studies requiring identification of GABAergic cells in different brain areas including the DCN (e.g., Molineux et al. 2006). In contrast to transgenic mice in which an ectopic GAD67 promoter drives expression of a fluorescent marker protein, GFP was targeted to the locus encoding GAD67 using a homologous recombination in the GAD67-GFP knock-in mice used in the present study (Tamamaki et al. 2003). Although this method ensures, to the best of our understanding, a faithful expression of GFP in GAD67-expressing cells, it is accompanied by the potential caveat that reduced GAD67 activity in heterozygous knock-in mice causes an alteration of the cellular parameters studied here. We have no reason, however, to believe that such alterations occur. As for the identity of the GAD− neurons, it is reasonable to assume that the majority of these cells are glutamatergic (Chen and Hillman 1993). Because we did not demonstrate the transmitter content of these cells, we simply refer to them collectively as “non-GABAergic cells.” We cannot exclude the possibility that the cells categorized here as “small GAD-negative cells” would be GABAergic and lack (for any unknown reason) GFP fluorescence; however, our results demonstrate that their properties differed significantly from the GAD+ cells (and “large GAD− cells”) in several parameters.

Another issue requiring note is the division of GAD-negative cells into large and small neurons. As is evident from Fig. 5B1, the large and small GAD-negative cells overlap in terms of AP width and thus the cells with Cm = 100 pF cannot clearly be allocated to either type based on the Cm value alone. In general, we found that the identification of individual DCN neurons based on their electrophysiological properties requires a combination of several measures. The electrophysiological dynamics of large non-GABAergic cells enables them to faithfully relay tonic spike rate information, whereas small non-GABAergic and GABAergic neurons are specialized for relaying and integrating phasic input.

Morphological characteristics of DCN neurons

It has been well established that DCN neurons have complex and diverse morphologies. Correlating biocytin-label–based cell morphometry with the transmitter genotype did not reveal dendritic branching patterns that would be indicative for the neurotransmitter content. On average, the GABAergic neurons have smaller cell bodies and less complex dendritic arborization so that GABAergic cells can be described as “scaled-down” versions of the non-GABAergic (likely glutamatergic) cells.
Dendritic spines (Aizenman et al. 2003) were seen in all cell types. We saw cell morphologies corresponding to all of the types originally described by Chan-Palay (1977) except for the smallest (“6,” small bridging neurons), which we did not target. All cells with clearly columnar dendritic organization (resembling Chan-Palay’s “large columnar cells”) recovered were GAD-negative. As a result of the lower success rate in patching small (soma length <15 μm) cells, our sample is biased toward somewhat larger cells.

Spontaneous activity of GABAergic and non-GABAergic DCN neurons

DCN neurons have been known to spontaneously fire APs at several tens of Hertz in vivo and (in the absence of synaptic transmission) in vitro. Our present work demonstrates that both GABAergic and non-GABAergic DCN neurons are intrinsically active. Interestingly, and in contrast to the cell types described in many cortical structures, both large and small GAD-negative cells fire slightly (but significantly) faster than the GABAergic cells (Fig. 4). Under the premise that spontaneous firing of DCN neurons is promoted by resurgent sodium current (Raman et al. 2000) our data suggest that this current is expressed in all cell types included in the study.

We could induce burst firing, as described in earlier studies both in vitro (Aizenman and Linden 1999; Czubayko et al. 2001) and in vivo (Rowland and Jaeger 2005), in all cell types. Thus the expression of bursting activity is not indicative for the neurotransmitter used by the cell, consistent with a concurrent study by Molineux and colleagues (2006). An earlier compartmental modeling study of medioventral vestibular nucleus neurons (that share many properties with DCN neurons) demonstrated that the ability to generate burst firing critically depends on the number of primary dendrites (Quadroni and Knöpfel 1994). This number varies largely within each group of the DCN neurons (Figs. 2 and 3) and thus could be the determinant of bursting likelihood. Statistical confirmation of this hypothesis was not possible with the available number of cells with completely recovered biocytin-labeled dendritic trees.

Action potential waveforms of GABAergic and non-GABAergic DCN neurons

APs evoked by depolarizing steps from subthreshold holding voltages were much faster in non-GABAergic than in GABAergic DCN neurons (Fig. 5). This, again, contrasts to neuron categories described in the cerebral cortex where GABAergic neurons are often characterized by faster APs (Jonas et al. 2004; Swadlow 2003). The distribution of AP widths of non-GABAergic neurons was broad and this measure along with the cell capacitance suggested that these neurons could be divided into two groups that we termed large and small GAD-negative (GAD−) cells (Fig. 5). The distinction between these two groups of GAD-negative DCN neurons was further supported by observed differences in AP afterpotentials and spike train dynamics (see following text).

Induction of APs from subthreshold holding potentials recruits ionic currents that are partially inactivated or deactivated during normal spontaneous firing of DCN neurons. Therefore we also characterized the AP waveforms during spontaneous steady-state activity. Not surprisingly, steady-state APs in all cell types were broader than the evoked APs. However, the relative differences in AP widths observed between the subgroups with evoked APs remained and were even more pronounced under steady-state conditions (Fig. 6).

Finally, the three groups of DCN neurons differed in the expression of fast and slow spike AHPs. During steady-state spontaneous firing conditions, all large GAD− and almost all small GAD− cells underwent a fast afterhyperpolarization

FIG. 8. Effect of temperature on action potential firing in DCN cells. A: example traces of evoked action potentials (eAPs, A1) and steady-state action potentials (ssAPs, A2) from individual large GAD−, small GAD− and GAD+ cells in room temperature (gray line) and physiological temperature (black line), aligned on the AP peak and AP threshold. Inset in A2 shows in compressed timescale the presence of fAHPs in GAD− cells and their absence in GAD+ cells, even at higher temperature. B: example traces from large GAD− (top) and a GAD+ (bottom) cells showing the RD response to release from a −1.4-pA/pF hyperpolarizing current step in room temperature (left) and physiological temperature (right). Note that the general properties of the RD do not change, even though the firing frequency and RD duration can increase.
(fAHP) in <5 ms after the AP peak, whereas all GAD+ cells hyperpolarized slower, reaching their AHP peaks only about 25 ms after the AP peak. The GAD− cells often underwent a second, slower AHP (sAHP) after the fAHP that peaked with similar delays after AP peak as the GAD+ cells.

A complete biophysical explanation of the difference in AP width and AHP waveform is beyond the scope of the present study. However, it could be speculated that the differences are due to distinct expression patterns of Kv3 potassium channel subtypes that are known to affect AP duration and amplitude and that are expressed at high levels in the DCN (Goldman-Wohl et al. 1994; McMahon et al. 2004). In addition, the diversity in AHP shapes may be related to differential expression of large-conductance (BK) and small-conductance (SK) potassium currents (Sausbier et al. 2004; Shakkottai et al. 2004). Generation of the fAHP likely involves longitudinal currents between soma and dendrites (Quadroni and Knöpfel 1994) and extensive damage of dendrites during slicing can thus result in lack of clear fAHPs. This may explain why in two of nine small GAD− cells a fAHP was not clearly seen. The slow AHP is mediated, at least in part, by SK channels (Shakkottai et al. 2004) and our results suggest a higher expression level of these channels in GABAergic than in non-GABAergic DCN neurons.

Spike rate dynamics

The three populations of DCN neurons had different dynamics of AP firing evoked by a depolarizing step. Large GAD− neurons were characterized by a steep frequency-to-current (f–I) relationship and little frequency adaptation. The small GAD− cells initially increased their firing rate similarly but leveled off at a lower maximal frequency. GABAergic neurons had a shallow f–I relationship and exhibited, like small GAD− neurons, significant frequency adaptation. The steep f–I relation endows the large GAD− cells to faithfully relay spike frequency information. The shallow slope of the f–I relationship along with frequency adaptation and pronounced rebound excitation in GABAergic cells points toward a function in processing phasic spike frequency information. Thus timing of GABAergic cell activity may carry information that is more relevant than the average firing frequency. Interestingly, our results on the differences in f–I relationship and frequency adaptation fit well with predictions from modeling studies (Benda and Herz 2003; Engel et al. 1999) that implicate stronger expression of SK-type calcium-activated potassium channels in cells with spike rate dynamics of the type observed in GABAergic DCN neurons.

In agreement with the suggestion that the RD is mainly triggered by T-type Ca2+−channels (Aizenman and Linden 1999; Jahnsen 1986; Llinas and Muhlethaler 1988; Molineux et al. 2006; Muri and Knöpfel 1994; Raman et al. 2000), there was no correlation between the strength of RD and Ih (as shown in Fig. 7C1).

Electrophysiological identification of DCN neurons

Our results define criteria for reliable identification of living GABAergic and non-GABAergic DCN neurons without the need of morphological measures or genetic labeling. Identification of large GAD− cells is straightforward and partly compatible with the earlier concepts of identifying “large cells” as glutamatergic. Combining the analysis of Cm distribution (Fig. 3F) and AP width distribution (Fig. 5A2) indicates that cells with Cm > 125 pF and AP widths < 0.6 ms belong to the large GAD− neurons (in our sample only one of ten GAD− cells with Cm > 125 pF had AP width > 0.6 ms). For cells with Cm < 125 pF the most reliable identifying criterion was the presence of a fAHP during steady-state firing (in our sample, none of the 21 cells with Cm < 125 pF and expressing a clear fAHP was GAD+). However, the mere absence of a clear fAHP does not prove that the cell is GABAergic: in two of nine small GAD− cells the fAHP was not clearly seen.

GABAergic cells can be reliably identified by Cm < 50 pF, lack of a fAHP, and the presence of sAHP with amplitude > −15 mV [measured as the difference between the Vm at 2 ms before peak AP and minimal Vm during sAHP (15 to 40 ms after AP peak)].

Functional implications and future directions

The presence of GABAergic cells in the DCN has been known for decades (Chan-Palay 1977; Houser et al. 1984). However, most models of the function of the cerebellar circuitry treat the DCN as a simple relay station whose throughput is under inhibitory control of Purkinje cells and has little computational significance (e.g., Medina and Mauk 2000). However, Purkinje neurons can inhibit GABAergic DCN neurons and thereby disinhibit glutamatergic projection neurons. Furthermore, frequency adaptation and rebound excitation between the three groups of DCN neurons enrich the dynamics of the DCN circuit with time constants in the range of several milliseconds to seconds that may be relevant for computation of motor command dynamics (Lisberger and Sejnowski 1992). It is thus important to note that the GABAergic and the small cells exhibited more frequency adaptation and stronger rebound excitation than did the large GAD− cells. Large GAD− cells, conversely, act more like linear transducers of spike rate information as often assumed in cerebellar network models (Medina et al. 2001; Ohyama et al. 2002). A complete picture of the signal processing within the DCN requires additional data on cell-type–specific projection patterns, intrinsic connectivity, and dynamiic properties. The present data provide a framework for advances along these lines.

ACKNOWLEDGMENTS

We thank Y. Iwamoto, N. Horiguchi, and N. Saitoh for expert help in animal handling, genotyping, and digital imaging and all members of the Knöpfel Lab for many helpful discussions.

GRANTS

This work was supported by an intramural grant from the RIKEN Brain Science Institute.

REFERENCES

