Effects of Dopaminergic Modulation on the Integrative Properties of the Ventral Striatal Medium Spiny Neuron

Jason T. Moyer,1 John A. Wolf,2 and Leif H. Finkel1
1Department of Bioengineering and 2Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania

Submitted 26 March 2007; accepted in final form 3 October 2007

Moyer JT, Wolf JA, Finkel LH. Effects of dopaminergic modulation on the integrative properties of the ventral striatal medium spiny neuron. J Neurophysiol 98: 3731–3748, 2007. First published October 3, 2007; doi:10.1152/jn.00335.2007. Dopaminergic modulation produces a variety of functional changes in the principal cell of the striatum, the medium spiny neuron (MSN). Using a 189-compartment computational model of a ventral striatal MSN, we simulated whole cell D1- and D2-receptor–mediated modulation of both intrinsic (sodium, calcium, and potassium) and synaptic currents (AMPA and NMDA). Dopamine (DA) modulations in the model were based on a review of published experiments in both ventral and dorsal striatum. To objectively assess the net effects of DA modulation, we combined reported individual channel modulations into either D1- or D2-receptor modulation conditions and studied them separately. Contrary to previous suggestions, we found that D1 modulation had no effect on MSN nonlinearity and could not induce bistability. In agreement with previous suggestions, we found that dopaminergic modulation leads to changes in input filtering and neuronal excitability. Importantly, the changes in neuronal excitability agree with the classical model of basal ganglia function. We also found that DA modulation can alter the integration time window of the MSN. Interestingly, the effects of DA modulation of synaptic properties opposed the effects of DA modulation of intrinsic properties, with the synaptic modulations generally dominating the net effect. We interpret this lack of synergy to suggest that the regulation of whole cell integrative properties is not the primary functional purpose of DA. We suggest that D1 modulation might instead primarily regulate calcium influx to dendritic spines through NMDA and L-type calcium channels, by both direct and indirect mechanisms.

INTRODUCTION

Dysfunction in the dopamine (DA) modulatory system is involved in a number of clinical disorders, including Parkinson’s disease, drug addiction, and schizophrenia. One of the major sites of dopaminergic innervation in the brain is the striatum, consisting of the dorsal striatum (which includes the caudate and putamen) and the ventral striatum (which includes the nucleus accumbens core and shell). The principal cell of the striatum is the medium spiny projection neuron (MSN), which constitutes between 85 and 95% of the total cell population, depending on the species and relative location in the striatum (O’Donnell and Grace 1993; Tepper et al. 2004).

The effects of DA on the MSN have been extensively studied and depend on the class of receptor expressed by the cell. Most MSNs coexpress two or more species of receptors, although D1 and D2 receptors (D1R and D2R, respectively) are the most prevalent. D2, D3, and D4 receptors are pharmacologically similar, as are D1 and D5 receptors (Vallone et al. 2000). Research to date suggests that striatal MSNs express primarily either D1Rs or D2Rs (Gerfen et al. 1990; Le Moine and Bloch 1996; Maurice et al. 1999; Surmeier et al. 1996; Yung et al. 1995). The specific effects of D3-, D4-, and D5-receptor activation on MSN channels have not been extensively investigated.

DA modulates several intrinsic and synaptic channels of MSNs, including sodium, potassium, and calcium species, as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors (Nicola et al. 2000). Generally, the direction of modulation (increase or decrease of conductance) for each channel is dependent on the type of DA receptor stimulated. Presumably, the effect of DA modulation on MSN function is the result of a combination of several individual intrinsic and synaptic channel modulations. However, most studies that sought to examine the effects of net DA modulation have failed to generate consistently reproducible, widely accepted results, whereas several other studies have led to the development of hypotheses that are difficult to examine experimentally.

Using a 189-compartment computational model of the nucleus accumbens core MSN (Wolf et al. 2005b), we investigate three previously proposed effects of dopaminergic modulation on the integrative properties of striatal MSNs, as well as one novel hypothesis. The first effect we investigated is the hypothesis that D1R-mediated modulation increases the nonlinearity of MSN cell output in response to synaptic input (Gruber et al. 2003; Hernández-López et al. 1997; Nicola et al. 2000). This hypothesis is based on the observation that MSN cells in vivo anesthetized preparations oscillate between a hyperpolarized membrane potential (down-state) and a depolarized plateau potential in which the cell may generate action potentials (up-state) (Goto and O’Donnell 2001; Stern et al. 1997; Tseng et al. 2001; Wickens and Wilson 1998; Wilson and Kawaguchi 1996). In this context, DA-enhanced nonlinearity would increase the tendency for the cell to dwell in one of these two states, potentially contributing to gaiting (O’Donnell and Grace 1995), pattern recognition (Houk 1995), or credit assignment (Kerr and Plenz 2002, 2004) at the network level. The second proposed effect is that DA activation of D1Rs increases striatal output, whereas D2R activation reduces striatal output (Albin et al. 1989; Bamford et al. 2004; Cepeda and Levine 1998; Delong 1990; Gonon 1997; Rose and Grace 2005b). This hypothesis underlies an influential model of basal ganglia function, in which DA regulates the balance of the

Address for reprint requests and other correspondence: J. T. Moyer, Dept. of Bioengineering, 210 S. 33rd St., 240 Skirkanich Hall, Philadelphia, PA 19104 (E-mail: jtmoyer@seas.upenn.edu).

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
direct, D1R-expressing, movement-facilitatory pathway and
the indirect, D2R-expressing, movement-inhibitory pathway
(Albin et al. 1989; Delong 1990). In this model, loss of DA
innervation to the striatum, as in Parkinson’s disease, biases
control of the basal ganglia output toward the movement-
inhibiting indirect pathway, resulting in deficits in movement
initiation and execution. The third previously proposed effect
hypothesizes that DA acts as an input filtering mechanism,
suppressing weak inputs while permitting or even enhancing
stronger inputs (Cepeda and Levine 1998; Hjelmsstad 2004;
Nicola et al. 2000, 2004). This could enhance the signal-to-
noise ratio of MSN inputs. We also investigated a novel
hypothesis, that dopamine might affect the integration time
window of the MSN. In this scenario, dopamine could alter the
integrative behavior of striatal cells, shifting their behavior in
the direction of either integration or coincidence detection.
Such an effect could presumably modulate the overall integra-
tion of inputs in the corticostriatal network, which may affect
the behavioral output of the system.

We found that dopaminergic modulation had no effect on
nonlinearity or bistability of the MSN, except at very high,
apparently nonphysiological levels of NMDA conductance.
DA modulation was able to regulate neuronal excitability and
input filtering in the MSN and was also capable of modulating the
temporal integrative properties of the MSN. In these cases, the
synaptic effects of DA modulation counteracted and over-
came the intrinsic effects of DA modulation.

METH O DS

The model was developed in the NEURON simulation environment
(Carnevale and Hines 2005; Hines and Carnevale 1997). Simulations
were performed on a dual 2.5-GHz Power Macintosh G5 (Apple
Computers, Cupertino, CA) or in parallel on a 12-node cluster with
dual 2.8-GHz processors per node (Penguin Computing, San Francisco,
CA). Data analysis was performed using MATLAB (The MathWorks,
Natick, MA).

Morphology and physiology of the model

The MSN model has been previously described in detail (Wolf et al.
2005b), so we focus on the most salient aspects of the model in this
section. Specifics of the model, including channel parameters and cell
morphology, are described in more detail in the supplementary
material.1 Cell dimensions (dendritic length and diameter, soma size)
and passive properties were set to match published values (O’Donnell
and Grace 1993; Wilson 1992). The model consists of 189 compart-
ments and includes almost all intrinsic currents known to be expressed
in the MSN, including: fast (NaF) and persistent sodium (NaP);
fast-inactivating (KAF) and slow-inactivating (KAs) A-type, 4-aminopyri-
dine (4-AP)–resistant, persistent delayed-rectifying (KRP), and
inward-rectifying (KIR) potassium currents; large-conductance (BK)
and small-conductance (SK) calcium-dependent potassium currents;
N- (CaN), P/Q- (CaP/Q), R- (CaR), and L-type (Cav1.2) high-
voltage-activated calcium channels; and T- (CaT) and L-type
(Cav1.3) low-voltage-activated calcium channels. These channels
were distributed throughout the cell in accordance with published data
when possible. If not known, channels were assumed to be distributed
uniformly throughout the cell unless this resulted in nonphysiological
behavior (see Wolf et al. 2005b). All biophysical and kinetic proper-
ties for each channel in the model were taken directly from published
data (Wolf et al. 2005b). Channel kinetics and voltage dependencies

1 The online version of this article contains supplemental data.

from channels isolated in striatal MSN cells were used when avail-
able. Spines were not explicitly modeled, but we accounted for their
contribution to membrane area (Segev and Burke 1998). Each tertiary
dendrite consisted of 11 compartments to ensure spatial accuracy, and
inputs were placed in the middle of the appropriate compartment to
acquire second-order correct solutions (Carnevale and Hines 2005).

The internal calcium concentration in a thin shell just inside the cell
membrane was tracked for each compartment. BK and SK currents
were regulated by calcium influx by N-, P/Q-, and R-type calcium
channels, whereas the remaining calcium currents contributed to a
separate pool based on published experimental results (Vilchis et al.
2000).

High-calcium retuning of the model

The model was tuned by hand to in vitro data, changing only the
conductance and subcellular localization of each of the channels
(except for NaF activation/inactivation), which involved an extensive
exploration of the parameter space and the selection of the tunings that
best fit in vitro data. Because the level of calcium expression in MSN
cells can vary significantly (Bargas et al. 1994; Churchill and
Macvicar 1998; Hoehn et al. 1993), and DA has been shown to
modulate several calcium channels, we created a new version of the
model with approximately tenfold higher calcium channel expression
than that of the “low-calcium” version presented previously (Wolf
et al. 2005b; see Table 1 for comparison). We ran all experiments with
both tunings to more fully explore the range of effects of DA on
MSNs. The results of experiments on the high-calcium tuning are
presented in the main figures and the results using the previous,
low-calcium tuning (Wolf et al. 2005b) are included in the supple-
mental material (Supplementary Figs. 2–5) for reference.

The high-calcium tuning was modified in four ways from the
previous, low-calcium tuning (Wolf et al. 2005b). First, calcium
channel expression was increased to support calcium spiking. Second,
SK current expression was changed from uniform expression through-
out the cell to expression in the secondary and tertiary dendrites only,
in agreement with studies suggesting that SK channels are expressed
primarily in dendritic spines (Faber et al. 2005; Ngo-Anh et al. 2005;
Obermaier et al. 2003). Third, a rapidly activating, delayed rectifier
Kv1.3 (KDR) current was added at uniform conductance throughout
the cell. Fourth, the cell was retuned after these changes to match in
vitro current-clamp data, including spike shape, frequency response,
and subthreshold membrane response of a nucleus accumbens core
cell (see results). This included changing the maximum conductance
of many channels and implementing a ~2-mV shift of the fast sodium
channel (Table 1).

Calcium channel density in the cell was increased for all classes of
calcium in comparison to the low-calcium version (Wolf et al. 2005b)
(see Table 1). Our previous model was based on studies of acutely
dissociated cells (Churchill and Macvicar 1998) and represented an
estimate of whole cell calcium current levels. The fact that cellular
expression of calcium channels may be largely dendritic (Carter and
Sabatini 2004; Day et al. 2006; Kerr and Plenz 2002; Olson et al.
2005) suggests that our previous estimate may represent a cell with
relatively low levels of calcium expression. Further, at least some
striatal cells exhibit calcium spiking after 4-aminopyridine (4-AP) and
tetrodotoxin (TTX) application (O’Donnell and Grace 1993), which
was not supported in the previous model. Because cells exhibiting
calcium spikes presumably represent cells with relatively high levels
of calcium expression, we increased calcium expression approxi-
mately tenfold and retuned the rest of the model’s parameters to
support calcium spiking to verify the robustness of our results. Future
experimental work will be necessary to provide a more accurate
determination of the range of expression of calcium currents in the
adult striatal neuron.

D1 modulation decreases the SK current (by CaN and CaQ reduc-
tion) and increases the Cav1.3 calcium current; both of these modu-

J Neurophysiol • VOL 98 • DECEMBER 2007 • www.jn.org
sensitive, delayed-rectifier current in MSNs. The KDR channel was suggested that these currents may represent a portion of the TEA-mRNA assays (Shen et al. 2004). Accordingly, we implemented (Coetzee et al. 1999), which have been detected in MSN cells using et al. 1999) and behaves similarly to the Kv1.1 and Kv1.6 channels it has been well characterized in a computational model (Erisir significantly affecting subthreshold activity. We used the Kv1.3 because larized potentials, allowing it to suppress doublets without signif-
However, it activates about fivefold faster and at more hyperpo-
current (KDR) throughout the cell (Erisir et al. 1999). It is similar this, we added a Kv1.3, fast-activating delayed-rectifier potassium current (KRP) (Nisenbaum et al. 1996) in that it is a
KAs 0.0104, soma and prox 9.51 × 10^{-4}, mid and dist a = 0.996 m × [ah + (1 - a)] m × [ah + (1 - a)] a = 0.7 See Eqs. A3 and A4
KIR 1.4 × 10^{-4} m h m × [ah + (1 - a)] m × [ah + (1 - a)] h × 0.7
KDR 0.0005 m^4 See Eqs. A3 and A4
BK Kca 0.12
SK Kca 0.1885, mid and dist
Leak 11.5 × 10^{-6}

Changes in cell tuning (listed as multiples) are compared to a previous, low-calcium tuning of the model (Wolf et al. 2005).
were needed to maintain the spike threshold of this condition near that of
the unmodulated model.

Synaptic input generation

Explicit glutamatergic and GABAergic synapses were modeled
using a modified two-state synapse with time constants set to pub-
lished values (Chapman et al. 2003; Galarreta and Hestrin 1997; Gotz
et al. 1997). Each glutamatergic synapse consisted of an AMPA and
NMDA pair receiving the same input train. Glutamatergic synapses
were placed throughout the dendrites, in accordance with published
results (Gracy et al. 1999; Wilson 1992). GABAergic synapses were
distributed throughout the cell but clustered near the soma in agree-
mment with physiological data (Fujiyama et al. 2000; Pickel and Heras
1996). AMPA and NMDA channels contributed to the calcium pool
not associated with the SK/BK currents: 10% of NMDA current and
0.5% of AMPA current were designated as calcium currents as
described in previous studies (Burnashev et al. 1995). AMPA (Myme
et al. 2003), NMDA (Dalby and Mody 2003), and γ-aminobutyric
acid (GABA) (Nusser et al. 1998) conductance levels were set to
published values.

Synaptic inputs were modeled using a modified version of the
NetStim object provided in the NEURON package. Each synapse
(AMPA/NMDA or GABA) received an independent spike train gen-
erated using MATLAB. Each spike train was generated using the
following algorithm: first, a constant interspike interval (ISI) train was
generated at the desired frequency. Each spike was then pulled anew
from a Gaussian distribution centered at the original spike time. The
resulting train was then randomly shifted; this process was repeated
for each of the 168 total synapses. Input was generated by using a
large shift (one ISI) and a large SD (1/4 of the ISI). In our experience,
MSNs rarely spike at more than 10 Hz, which corresponds to a
maximum physiological input frequency of 1,350 Hz (see RESULTS).

Table 2. Summary of studies on dopaminergic modulation of MSN channels

<table>
<thead>
<tr>
<th></th>
<th>Dorsal Striatum</th>
<th></th>
<th>Ventral Striatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaF</td>
<td>D1: NaF ↓ 22–37.8%</td>
<td></td>
<td>NaF D1: NaF ↓ 25%</td>
</tr>
<tr>
<td></td>
<td>D1: NaF hV1/2 ← −5.6 mV</td>
<td>(Calabresi et al. 1987; Schiﬀman et al. 1995, 1998; Surmeier et al. 1992)</td>
<td></td>
</tr>
<tr>
<td>CaP/Q</td>
<td>D1: P/Q ↓ 16–83%</td>
<td></td>
<td>CaP/Q D1: P/Q ↓ 48%</td>
</tr>
<tr>
<td>CaN</td>
<td>D1: N ↓ 4–23.5%</td>
<td></td>
<td>CaN D1: N ↓ 80%</td>
</tr>
<tr>
<td>CaL</td>
<td>D1: L ↑ 100%</td>
<td></td>
<td>CaL Unknown</td>
</tr>
<tr>
<td>KAs</td>
<td>D1: KAs ↓ 5–20%</td>
<td></td>
<td>KAs No change</td>
</tr>
<tr>
<td></td>
<td>D1: KAs no change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIR</td>
<td>D1: KIR ↑ 25%</td>
<td></td>
<td>KIR D1: KIR ↑ 7%</td>
</tr>
<tr>
<td>NMDA</td>
<td>D1: NMDA ↑ 3–41%</td>
<td></td>
<td>NMDA D1: NMDA ↑ 71%</td>
</tr>
<tr>
<td>AMPA</td>
<td>D1: AMPA ↓ 19–30%</td>
<td></td>
<td>AMPA D1: AMPA ↓ 36–56%</td>
</tr>
<tr>
<td></td>
<td>D1: AMPA ↔</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D2: NaF ↑ 19%, hV1/2 → 3.2 mV</td>
<td>(Surmeier et al. 1992)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D2: NaF ↔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaL</td>
<td>D2: CaL ↓ 1–24%</td>
<td></td>
<td>CaL D2: CaL ↓ 25%</td>
</tr>
<tr>
<td>KAs</td>
<td>D2: KAs ↑ 4–8%</td>
<td></td>
<td>KAs D2: KAs ↑</td>
</tr>
<tr>
<td>KIR</td>
<td>Unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMDA</td>
<td>D2: NMDA ↔</td>
<td></td>
<td>NMDA Unknown</td>
</tr>
<tr>
<td>AMPA</td>
<td>D2: AMPA ↓ 15–28%</td>
<td></td>
<td>AMPA Unknown</td>
</tr>
<tr>
<td>Glu</td>
<td>D2: Glu ↓ 5–100%</td>
<td></td>
<td>Glu D2: Glu ↓ 8–60%</td>
</tr>
</tbody>
</table>

Values are percentage changes in the maximum conductance of the appropriate channel or shifts in the activation/inactivation parameters (see supplemental material).
Simulations

Calcium spiking was examined by simulating the application of 50 μM 4-AP and 2 μM TTX during a current injection of 0.6 nA (O’Donnell and Grace 1993). To do this, we multiplied the KA conductance by 0.9 (Song et al. 1998), KAs by 0.4 (Russell et al. 1994), KRP by 0.8 (Nisenbaum et al. 1996), and KDR by 0.6 (Coetzee et al. 1999). The NaF conductance was adjusted to match in vitro behavior, which required multiplying the baseline conductance by 0.25 (Fig. 1).

Nonlinearity/bistability of the model’s response to synaptic input (Fig. 2, A–C) was studied by holding the cell at a down-state input frequency (350 Hz) for 200 ms and then stepping it to evenly spaced frequencies between 350 and 1,100 Hz and holding for 500 ms. We also calculated spike frequency (Fig. 3B) from these data. Hysteresis in the model was examined by holding the model at a down-state input frequency (350 Hz) for 300 ms, increasing synaptic input smoothly to 850 Hz over 50 ms, holding it there for 600 ms, and then ramping input frequency back down at the same rate. We reflected the averaged (40 trials) cell voltage versus time on the down-slope of the ramp and plotted it against the averaged cell voltage versus time on the up-slope of the ramp for the unmodulated and D1 All conditions (Fig. 2D).

We examined the effects of DA modulation on the model’s filtering of synaptic inputs of varying strengths and locations (Fig. 4). These simulations were performed while the model was receiving synaptic input at a frequency of 1,050 Hz. Synaptic input size was changed by multiplying the maximum conductance of the appropriate glutamatergic input by weights between 0.2 and 2.2. A weight of 1.0 corresponds to previously published values for conductance (Dalby and Mody 2003; Myme et al. 2003; Nusser et al. 1998).

We examined the integration time window of the model (Figs. 5, A and B) using a sliding-window analysis of the inputs to the cell while receiving subthreshold synaptic input. The size of the window was varied between 20 and 120 ms. At each time step, the inputs in the preceding, appropriately sized time window were counted and the corresponding instantaneous input frequency was calculated. This calculation was performed over a 13-s-long experiment in which the cell received synaptic input at 800 Hz—enough to hold it near ~60 mV but not spike. The somatic voltage and the input frequency were normalized to a minimum of zero and a maximum of 1, and then the zero-lag correlation coefficient between the two was calculated using the corrcoef function in MATLAB.

We also calculated the probability that the cell would spike in response to synaptic stimulation of different intensities and different coherences. While the model was receiving synaptic input at a frequency of 800 Hz, we stimulated a given number of glutamatergic synapses, randomly distributed throughout the cell, every 200 ms (Fig. 5C). The number of spikes occurring within 40 ms after stimulation were divided by the number of stimulations during a 13-s simulation to calculate the probability of spiking. A second experiment examined how coherent these inputs needed to be to elicit a spike (Fig. 5D). In this experiment, while the model was receiving 800-Hz input, we

Table 3. Dopaminergic modulation conditions for MSN model

<table>
<thead>
<tr>
<th></th>
<th>A. D1 Intrinsic</th>
<th>A. D1 All</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaF</td>
<td>95%</td>
<td>95%</td>
</tr>
<tr>
<td>h shift</td>
<td>0 mV</td>
<td>0 mV</td>
</tr>
<tr>
<td>Ca2+</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Ca2+1.3</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>m shift</td>
<td>−10 mV</td>
<td>−10 mV</td>
</tr>
<tr>
<td>Ca2+1.2</td>
<td>200%</td>
<td>200%</td>
</tr>
<tr>
<td>KAs</td>
<td>No change</td>
<td>No change</td>
</tr>
<tr>
<td>KIR</td>
<td>125%</td>
<td>125%</td>
</tr>
<tr>
<td>NMDA</td>
<td>100%</td>
<td>130%</td>
</tr>
<tr>
<td>AMPA</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B. D2 Intrinsic</th>
<th>B. D2 All</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaF</td>
<td>110%</td>
<td>110%</td>
</tr>
<tr>
<td>h shift</td>
<td>3 mV</td>
<td>3 mV</td>
</tr>
<tr>
<td>Ca2+</td>
<td>75%</td>
<td>75%</td>
</tr>
<tr>
<td>Ca2+1.3</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>m shift</td>
<td>0 mV</td>
<td>0 mV</td>
</tr>
<tr>
<td>Ca2+1.2</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>KAs</td>
<td>110%</td>
<td>110%</td>
</tr>
<tr>
<td>KIR</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>NMDA</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>AMPA</td>
<td>100%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Values are percentages of the unmodulated conductance; i.e., 100% indicates no modulation.

The ratio of glutamatergic inputs to GABA inputs was held constant at roughly 1:1 for all simulations (Blackwell et al. 2003).

Table 3. Dopaminergic modulation conditions for MSN model

<table>
<thead>
<tr>
<th></th>
<th>A. D1 Intrinsic</th>
<th>A. D1 All</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaF</td>
<td>95%</td>
<td>95%</td>
</tr>
<tr>
<td>h shift</td>
<td>0 mV</td>
<td>0 mV</td>
</tr>
<tr>
<td>Ca2+</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Ca2+1.3</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>m shift</td>
<td>−10 mV</td>
<td>−10 mV</td>
</tr>
<tr>
<td>Ca2+1.2</td>
<td>200%</td>
<td>200%</td>
</tr>
<tr>
<td>KAs</td>
<td>No change</td>
<td>No change</td>
</tr>
<tr>
<td>KIR</td>
<td>125%</td>
<td>125%</td>
</tr>
<tr>
<td>NMDA</td>
<td>100%</td>
<td>130%</td>
</tr>
<tr>
<td>AMPA</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B. D2 Intrinsic</th>
<th>B. D2 All</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaF</td>
<td>110%</td>
<td>110%</td>
</tr>
<tr>
<td>h shift</td>
<td>3 mV</td>
<td>3 mV</td>
</tr>
<tr>
<td>Ca2+</td>
<td>75%</td>
<td>75%</td>
</tr>
<tr>
<td>Ca2+1.3</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>m shift</td>
<td>0 mV</td>
<td>0 mV</td>
</tr>
<tr>
<td>Ca2+1.2</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>KAs</td>
<td>110%</td>
<td>110%</td>
</tr>
<tr>
<td>KIR</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>NMDA</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>AMPA</td>
<td>100%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Downloaded from http://jn.physiology.org/ by 10.220.33.3 on October 29, 2016

FIG. 1. Behavior of the model. A: model morphology (inset), in vitro response of a nucleus accumbens core medium spiny neuron (MSN) to current injections of ~0.227, 0.225, and 0.271 nA (left), and the model’s response to current injections of ~0.227, 0.2375, and 0.271 nA (right). Model was retuned from a previous version (Wolf et al. 2005b) to represent an MSN with higher levels of calcium expression and used for all figures in the present study. B: calcium spikes in neonatal MSN cells (top; from O’Donnell and Grace 1993) and the model (bottom) after tetrodotoxin (TTX) and 4-aminopyridine (4-AP) application. C: current–voltage (I–V) response of the model (gray), mean of 7 in vitro MSNs (solid black), and low-calcium model tuning (dashed black). Model’s I–V response is within the SD (error bars) of the in vitro response. Inset: spiking frequency vs. current (F–I) response of the model (gray), the representative MSN cell to which it was tuned (thick black), 6 other MSN cells (thin black), and low-calcium tuning (Wolf et al. 2005b) (dashed black line). D: model’s response to 0.271-nA current injection in unmodulated state (left) and after D1-receptor (D1R)–mediated modulation (middle) and D2R-mediated modulation (right) of intrinsic channels. (Reprinted with permission of Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc.)
varied the width of the time window in which the synapses were activated. The exact times of the synaptic activations were random. Stimulation epochs were centered every 200 ms. We counted spikes that occurred during stimulation or within 40 ms following the center of the time window. The resulting spike count was divided by the number of stimulations to calculate the probability of spiking at each window width. For both experiments, the same synapses, randomly distributed throughout the cell, were activated for each stimulation. For the coincidence experiment (Fig. 5D), 15 synapses were stimulated for the unmodulated condition, 18 for the D1 Intrinsic, 14 for the D2 Intrinsic, and 18 for the D2 All; these numbers were used so that all conditions would have an approximately 90% chance of spiking in response to stimulation within a 2-ms window.

RESULTS

High-calcium version of the model

The model is a stylized representation of the nucleus accumbens core medium spiny neuron, with 189 compartments,
branched dendrites, and explicit synapses (Fig. 1A, inset). The model was tuned to match the in vitro response to current injection of a nucleus accumbens core MSN isolated from an adult rat (Fig. 1A, left). Because the level of calcium expression in MSN cells can vary significantly (Bargas et al. 1994; Churchill and Macvicar 1998; Hoehn et al. 1993), and DA has been shown to modulate several calcium channels, we created a new tuning of the model with approximately tenfold higher calcium channel expression than that of the “low-calcium” version developed previously (Wolf et al. 2005b; see Table 1 for comparison). With this increased level of calcium, the model was able to approximate reports of calcium spiking in MSN cells after TTX and 4-AP application (Fig. 1B). We ran all experiments with both tunings to more fully explore the range of effects of DA on MSNs. We found that although the effects of DA on MSNs were generally more appreciable in the high-calcium tuning, the overall results of the experiments were the same. Results of experiments on the high-calcium tuning are presented in the main figures and results using the previous, low-calcium tuning are included in the supplemental material (Supplementary Figs. 2–5) for reference.

The high-calcium tuning of the model matched the frequency–current (F–I; gray line in Fig. 1C, inset) behavior of a representative in vitro MSN (Fig. 1C, inset, thick black line). This version of the model (Fig. 1C, gray trace) is also within the SD of the averaged current–voltage (I–V) response of seven MSNs (Fig. 1C, solid black trace). Interestingly, the high-calcium tuning (Fig. 1C, inset, gray trace) matches the F–I response of the representative cell better than the low-calcium version (Fig. 1C, inset, dashed black line), but has slightly more outward rectification (Fig. 1C, gray line) at depolarized potentials than the low-calcium version (Fig. 1C, dashed black line). This is primarily the result of redistribution of the SK current from uniform expression throughout the cell to only the secondary and tertiary dendrites.

![Figure 3](https://www.jn.org/...)

FIG. 3. Effects of D1R- and D2R-mediated modulation on model’s excitability. **A:** spiking frequency vs. current injection for unmodulated (black), D1R-mediated (red: D1 Intrinsic), and D2R-mediated (solid green: D2 Intrinsic) modulation of intrinsic currents. D1R modulation increases the gain of the MSN from 203 (Unmod) to 380 Hz/nA (D1 Intrinsic). D2R-mediated (solid green: D2 Intrinsic) modulation of intrinsic properties. D1R modulation of both intrinsic and synaptic properties (D1 All) leads to excitation at all input levels (dashed red). D2R modulation of both intrinsic and synaptic properties (D2 All) leads to inhibition at all input levels (dashed green). Effects of synaptic modulations counteract the effects of intrinsic modulations on excitability in both the D1 All and D2 All conditions, and the resulting effects in these conditions agree with previous proposals regarding the effects of dopamine (DA) on MSN excitability.

![Figure 4](https://www.jn.org/...)

FIG. 4. Effects of D1R- and D2R-mediated modulation on MSN filtering of synaptic inputs. **A:** amplitude of glutamatergic excitatory postsynaptic potentials (EPSPs) measured at the soma as a function of size. Larger inputs are enhanced more than small inputs in the D1 Intrinsic (solid red), D1 All (dashed red), D2 Intrinsic (solid green), and D2 All (dashed green) modulation conditions compared with the unmodulated condition (black). **Inset:** arrow indicates stimulation site on MSN. **B:** amplitude of glutamatergic EPSPs as a function of position on tertiary dendrite. **Inset:** synaptic inputs of the same input amplitude were moved from the proximal tip to the distal tip of the tertiary dendrite. Neither D1 Intrinsic (solid red) nor D1 All (dashed red, between solid red and solid black lines) modulations significantly affect EPSP size at the soma compared with the unmodulated state (black). Both D2 Intrinsic (solid green) and D2 All (dashed green) modulation increase EPSP size at all positions. These findings agree with previous suggestions that DA modulation can preferably enhance the propagation of large synaptic inputs to the soma.
Correlation of somatic using a sliding window of 50 ms (red) in the unmodulated (black). Correlation was calculated over 13 s of subthreshold synaptic input (800 Hz). Synaptic modulations reverses this effect, with D1 All (dashed red) modulation increasing the window to 60 ms and D2 All (dashed green) modulation decreasing it to 50 ms. Correlation was calculated over 13 s of subthreshold synaptic input (800 Hz). C: probability of the model spiking vs. number of synapses activated. Synapses were activated every 200 ms while the model was receiving subthreshold synaptic input at 800 Hz, and probability was calculated based on the number of spikes occurring within 40 ms of the stimulation (inset). With the same set of active synapses per stimulation, D1 Intrinsic (solid red) modulation makes the model less likely to spike, whereas D2 Intrinsic (solid green) makes the model more likely to spike. Including synaptic modulations reverses this relationship, with D1 All (dashed red) increasing the probability of spiking and D2 All (dashed green) decreasing it. D: probability of the model spiking vs. the width of the stimulation window. For each modulation condition, a set number of synapses were activated within a given time window, centered every 200 ms, and probability was calculated based on spikes occurring during the stimulation or ≤40 ms following the center of the stimulation window (inset). In general, D1 Intrinsic (solid red) modulation decreases the ability of the model to integrate synaptic inputs over larger time windows, whereas D2 Intrinsic (solid green) modulation increases its ability to do so relative to the unmodulated condition (black). Including synaptic modulations reverses this trend, with D1 All (dashed red) modulation generally improving the ability of the cell to integrate temporally dispersed input and D2 All (dashed green) modulation impairing this ability. These experiments suggest that DA modulation can alter the temporal integration window of the MSN.

Modulation conditions

Following a review of published D1R- and D2R-mediated modulations of MSN ionic channels (Table 2), we created four modulation conditions for use in this report (Table 3). These conditions represent the expected effects of solely D1 or solely D2 modulation of MSN channels (see METHODS). As much as possible, we used maximum reported levels of modulation because this should most clearly demonstrate the effects of D1R- and D2R-mediated modulation on MSN behavior. The D1 Intrinsic and D2 Intrinsic conditions include modulations of intrinsic channels only, whereas the D1 All and D2 All conditions account for synaptic modulations as well as intrinsic modulations (Table 3).

The D1 Intrinsic condition resulted in three primary changes: a delayed first spike, a relatively short interspike interval between the first and second spikes, and a reduced number of action potentials for a given current injection (Fig. 1D, middle). These observations agree with in vitro data (Hernández-López et al. 1997). The delay to first spike was primarily the result of increasing the KIR current. The relatively short interspike interval between the first and second spikes after the start of the current injection resulted primarily from the more hyperpolarized activation of the Cav1.3 current. The D2 Intrinsic condition resulted in deeper interspike troughs (Fig. 1D, right) and increased spiking, in agreement with previous observations in vitro (Akaike et al. 1987).

D1R-mediated modulation and nonlinearity in the MSN

It was previously proposed that D1R activation enhances nonlinearity in the MSN’s response to synaptic input, perhaps even inducing bistable membrane behavior (see DISCUSSION for...
our definitions of bistability, nonlinearity, and hysteresis) (Gruber et al. 2003; Hernández-López et al. 1997; Nicola et al. 2000). We examined this hypothesis in several ways. First, we examined the model’s response to synaptic input applied at equally spaced increments from low to high frequency (Fig. 2A, inset). In this manner, we were able to examine whether the cell exhibited nonlinearity in response to the linear steps in input frequency (Fig. 2A; traces represent the average membrane potential for 18 trials). For clarity, we also plotted the average somatic potential of the model over the last 50 ms of each trace in Fig. 2A against the corresponding synaptic input frequency (Fig. 2B). Neither the unmodulated, D1 Intrinsic, or D1 All conditions exhibited any nonlinearity (Fig. 2, A and B). To see whether two distinct populations of membrane potential could be discerned across all 18 trials of 21 input frequencies, we created histograms of the membrane potential for each condition (Fig. 2C). Neither the unmodulated, D1 Intrinsic, nor the D1 All conditions appeared to express two appreciably distinct states for the membrane potential.

Following a recent study describing NMDA-dependent bistability in an MSN-like two-compartment computational model (Kepecs and Raghavachari 2007), we examined whether very high levels of NMDA might be able to induce nonlinearity or bistability (Fig. 2, A–C, bottom). We found that an NMDA:AMPA ratio >2.5:1 was required to induce two substantially distinct membrane potential states (Fig. 2C, bottom); this value appears to be outside the range of physiological ratios (see Discussion; Myme et al. 2003). NMDA:AMPA ratios between 1:1 and 2.5:1 were not capable of inducing this behavior (data not shown).

We examined the response of the model for increased hysteresis after D1R modulation. To do this we ramped the frequency of synaptic input up and back down symmetrically (Fig. 2D, left) and averaged the membrane response across 40 trials of different inputs. Plotting the averaged cell voltage versus time on the down-slope of the ramp against the averaged cell voltage versus time on the up-slope of the ramp allows the paths to be compared (Fig. 2D). A bistable cell would have a highly asymmetric response to a symmetric input ramp, staying in the up-state even after removal of the input. The model MSN exhibits a small amount of asymmetry in the unmodulated condition, indicating that it is somewhat hysteretic in this condition (Fig. 2D, middle). D1 All modulation did not noticeably enhance this asymmetry (Fig. 2D, right). We previously showed that hysteresis in response to current injection is minimal compared with hysteresis in response to synaptic input (Wolf et al. 2005b); this is also the case for the D1-modulated cell in response to current injection (data not shown).

Taken together, these data suggest that D1 modulation does not enhance nonlinearity, except at potentially nonphysiological levels of NMDA. We found no evidence supporting MSN bistability under any modulation condition.

Excitatory/inhibitory properties of DA modulation

DA has long been hypothesized to be either excitatory or inhibitory based on the type of receptor activated. We focus on the hypothesis that D1R activation increases MSN activity, whereas D2R activation decreases MSN activity because these ideas underlie the most influential model of basal ganglia function to date (Albin et al. 1989; Delong 1990). Contrary to this idea, we found that the D2 Intrinsic condition increases spiking in response to current injection at all levels (Fig. 3A, solid green line) relative to the unmodulated condition (Fig. 3A, back line). Interestingly, the D1 Intrinsic condition is neither wholly excitatory nor inhibitory, but rather increases the slope of the F–I curve (Fig. 3A, red line). A change in gain response, and possible induction of nonlinearity, has been proposed as an important effect of D1 modulation on MSN function (Gruber et al. 2003; Hernández-López et al. 1997; Nicola et al. 2000). This has specifically been proposed to be the result of increases in KIR and Cav 1.3 (Gruber et al. 2003).

We found that KIR and Cav1.3 modulations contributed to the gain change, as did the CaP/Q and CaN modulations. The effects of D2 Intrinsic modulation are critically dependent on NaF modulation. As discussed in the Appendix, D2R activation may either increase or decrease sodium current (by conductance changes and inactivation curve shifts), depending on the recording method (Surmeier et al. 1992). We used a net increase in sodium (10% increase in conductance with a +3-mV shift of the inactivation curve) to agree with previous descriptions finding D2R activation to be mildly excitatory in response to current injection (Akaike et al. 1987; Higashi et al. 1989; Yim and Mogensen 1988). However, decreasing the net sodium current can substantially decrease spiking (not shown).

Accordingly, the net effect of D2 Intrinsic modulation can be either excitatory or inhibitory, depending on the magnitude and direction of sodium modulation.

We compared the effects of DA modulation in our model to previously published reports. Hernández-López et al. (1997) reported that holding the cell at −82 mV (resting membrane potential) and activating D1 receptors (0.3-nA current injection, 300-ms duration) decreases spiking 62.5%. In our model, holding the cell at −87 mV, injecting 0.3-nA current for 300 ms, and simulating D1 modulation decreases spiking 20%. These authors also showed that holding the cell at −57 mV and activating D1 receptors increases spiking 34%, whereas in our model, holding the cell at −57 mV and simulating D1 modulation increase spiking 33%. Importantly, increasing the NaF modulation to a 17% reduction in conductance can match the 60% reduction in spiking reported by Hernández-López et al. (1997). Akaike et al. (1987) reported excitation after DA application that is sensitive to D2 receptor blockade. With a 0.3-nA current injection, they found that spiking is increased from 0 spikes per 300 ms to 5 spikes per 300 ms. In our model, D2 modulation increases spiking from 0 to 2 spikes (0.2375-nA injection). Accordingly, D1 excitation is the same in our model as in these experiments, whereas D1 inhibition and D2 excitation are somewhat more mild.

To explore the effects of D1R- and D2R-mediated modulation on the MSN response to synaptic input, we calculated the model spiking frequency versus synaptic input frequency (Fig. 3B; also see Supplementary Fig. 1 for examples of model response). We found that the model spikes in response to synaptic input frequencies in the range of 850–1,400 Hz, which corresponds very well with other reports of frequency values for “up-state generation” (806 ± 188 Hz: Blackwell et al. 2003; ≥600 Hz: Wilson 1992). As seen in the current injection experiments, the D1 Intrinsic condition induced a change in gain of the spiking response (Fig. 3B, solid red line) compared with the unmodulated response (Fig. 3B, black line) to synaptic input. At low synaptic input frequencies (<1,200 Hz),
Hz), D1 Intrinsic modulation was inhibitory, whereas at frequencies >1,200 Hz D1 Intrinsic modulation became slightly excitatory. The D1 All condition significantly increased the spike frequency at all synaptic input frequencies (Fig. 3B, dashed red line) and slightly increased the change in gain beyond that in the D1 Intrinsic condition. Analogous to the current injection experiments, the D2 Intrinsic condition increased excitability of the cell in response to synaptic input (Fig. 3B, solid green line). The D2 All condition reduced the excitability of the model in response to synaptic input (Fig. 3B, solid green line). Thus our results indicate that the net effect of D1R modulation is to excite MSN cells, whereas the net effect of D2R activation is to inhibit MSN cells in response to synaptic input.

Effects of dopamine MSN filtering of synaptic inputs

It has been suggested that DA might change the way that MSNs filter synaptic inputs, enhancing large synaptic inputs while filtering out smaller synaptic inputs (Bamford et al. 2004; Nicola et al. 2004). To investigate this possibility, we stimulated a tertiary dendrite with different-sized glutamatergic inputs while the cell was receiving synaptic input (1,050 Hz). We stimulated at a position located halfway out along the dendrite (Fig. 4A, inset). Evoked synaptic potential input sizes were expressed relative to a baseline conductance level from previous reports (Dalby and Mody 2003; Myme et al. 2003). Varying input size from 0.2- to 2.2-fold baseline revealed an approximately linear relationship between the size of the input and the measured somatic depolarization (Fig. 4A, black line). Neither D1 Intrinsic (Fig. 4A, solid red line) nor D2 Intrinsic (Fig. 4A, solid green line) modulation changed the linearity of this relationship significantly. Both conditions increased the magnitude of the depolarization measured at the soma, with larger inputs more enhanced relative to smaller inputs. Including synaptic effects diminished, but did not reverse, these relationships (D1 All, dashed red line; D2 All, dashed green line). The boost of inputs by D2 modulation was the result of an increase in sodium current; the boost by D1 modulation was mostly the result of decreased SK current (not shown).

We also examined the change in depolarization at the soma as a synaptic input was moved to progressively more distal locations on a tertiary dendrite (Fig. 4B, inset). D2 Intrinsic modulation again increased the magnitude of the depolarization measured at the soma for all distances (Fig. 4B, solid green curve) compared with the unmodulated condition (Fig. 4B, black curve), whereas D1 Intrinsic modulation appeared to have no effect (Fig. 4B, solid red curve). Including synaptic effects diminished this increase in magnitude for D2 modulation (D2 All, Fig. 4B, dashed green curve), but had no effect on D1 modulation (D1 All, Fig. 4B, dashed red curve). Based on these results, we conclude that DA modulation can preferentially enhance large inputs.

Dopamine and temporal integration properties of the MSN

Previous studies have shown that MSN somatic voltage appears to closely reflect integrated synaptic input over an approximately 50-ms timescale (Wolf et al. 2005b). We therefore investigated the possibility that DA modulation might change the integration time window of the MSN. We simulated a prolonged, nonspiking up-state and compared the resulting MSN somatic voltage (Fig. 5A, top, black trace) to the synaptic input frequency calculated using a sliding window of various widths (Fig. 5A, top, red trace). On calculating the covariance of the two (see METHODS), we found that the unmodulated MSN correlates best with input frequency binned over 50 ms (Fig. 5B, black trace). D1 Intrinsic modulation (Fig. 5A, middle) decreased the bin size with maximum correlation to 40 ms (Fig. 5B, solid red trace), whereas D2 Intrinsic modulation (Fig. 5A, bottom) increased the bin size with maximum correlation to 60 ms (Fig. 5B, solid green trace). Combining synaptic modulations with intrinsic modulations, as in the D1 and D2 All conditions, reversed this trend. D1 All modulation (Fig. 5B, dashed red trace) increased the bin size with maximum correlation to 60 ms, whereas D2 All modulation (Fig. 5B, dashed green trace) returned the bin size with maximum correlation to 50 ms.

We also investigated whether DA modulation affected the response of the model cell to inputs of different intensities and different degrees of coherence. First, we stimulated different numbers of glutamatergic synapses, randomly distributed throughout the cell, every 200 ms (Fig. 5C, inset), and calculated the probability of the stimulation eliciting a spike (see METHODS). Our results indicate that for the same stimulation (i.e., same set of synapses), D1 Intrinsic modulation (Fig. 5C, solid red trace) decreases the probability of the model spiking and D2 Intrinsic modulation (Fig. 5C, solid green trace) increases the probability of the model spiking in response to the stimulation, relative to the unmodulated condition (Fig. 5C, black trace). Combining synaptic modulations with intrinsic modulations reverses this trend. D1 All modulation (Fig. 5C, dashed red trace) increases the probability of the model spiking and D2 All modulation (Fig. 5C, dashed green trace) decreases the probability of the model spiking in response to the stimulation. Next, we examined how coherent these inputs needed to be to elicit a spike by varying the duration of the time window in which a given number of synapses was activated (Fig. 5D).

As expected, increasing the duration of the time window generally decreased the probability of the model spiking in response to the stimulation. However, in general, D2 Intrinsic modulation increased the ability of the model to spike in response to wider stimulation windows (Fig. 5D, solid green line), whereas D1 Intrinsic modulation decreased this ability (Fig. 5D, solid red line), relative to the unmodulated condition (Fig. 5D, black line). Including synaptic modulations reversed this trend, with D1 All (Fig. 5D, dashed red line) modulation generally improving the ability of the cell to integrate temporally dispersed input and D2 All (Fig. 5D, dashed green line) modulation impairing this ability. These experiments suggest that DA modulation can alter the temporal integration properties of the MSN.

DISCUSSION

Dopaminergic modulation conditions

Historically, studies of the net effects of dopamine on MSN function have yielded a variety of results that are either conflicting or difficult to combine into a unifying hypothesis for dopaminergic modulation (Nicola et al. 2000), even though studies on individual channel modulations are mostly consis-
tent (Table 2). We used three approaches with our model in an attempt to integrate previous experimental results on the net effects of DA modulation. First, we used parameters derived from maximal physiological levels of dopaminergic modulation (Table 3) based strictly on previously published results (Table 2). Second, to be as objective as possible, we used modulation conditions that included all reported channel modulations for D1 or D2 receptors, rather than subjectively selecting certain channel modulations for inclusion in each subtype. Third, we applied modulation conditions to both a low-calcium (Wolf et al. 2005b) and a high-calcium tuned version of the MSN model. These tunings represent significantly different cells, yet both give the same results, suggesting that our findings may be generally true for MSN cells. Still, it will be necessary for future studies to thoroughly and systematically examine the full range of potential modulation conditions, applied to a number of distinctly tuned MSN cells, to ensure that this is the case.

We examined DA modulation of MSNs by breaking DA action down into either D1- or D2-receptor-mediated effects. Some MSNs may coexpress D1 and D2 receptors (Aizman et al. 2000; Surmeier et al. 1992, 1996). However, because D1 and D2 receptors mediate opposite effects on nearly every MSN channel (Table 3), we studied D1R- and D2R-mediated effects in isolation to most clearly illustrate their actions. It is possible that we were not able to capture the full effects of DA on the MSN by looking at solely D1R- or D2R-mediated effects—at least one study in ventral striatum has shown that D1 and D2 receptors on MSNs must be coactivated to modulate KAs (Hopf et al. 2003). However, the relative paucity of information on coactivation-dependent modulations prevents us from further addressing this possibility.

To examine the potential effects of various modulations, we created conditions incorporating results from studies in both dorsal and ventral striatum and applied these modulations to a model of the ventral striatal medium spiny neuron. Some reports have suggested that DA modulates ventral and dorsal cells differently (Nicola et al. 2000). However, a review of the literature on dopaminergic modulation of MSNs revealed that most studies in both dorsal and ventral striatum use from further addressing this possibility.

We did not observe bistability in our model, under any modulation condition (Fig. 2). The only condition in which we observed nonlinearity or bimodality was with a very high level of NMDA conductance [fivefold the baseline NMDA conductance, or an NMDA:AMPA (N:A) ratio of 2.5:1]. This observation agrees with a recent study in a two-compartment, MSN-like model that observes bimodality with a 4:1 N:A ratio (Kepes and Raghavachari 2007). The exact N:A ratio in corticostriatal synapses can vary, but appear to remain below 1:1 in normal animals (Beurrier and Malenka 2002; Li et al. 2004; Popescu et al. 2007; Thomas et al. 2001), increasing to as high as 1:5 in cocaine-treated animals (Goto and O’Donnell 2001; Stern et al. 1997; Tseng et al. 2001; Wickens and Wilson 1998; Wilson and Kawaguchi 1996).

Bistability is the ability of a cell to remain in either of two membrane potentials indefinitely in the absence of external input. Because these states act as attractors, a bistable cell will exhibit a strongly nonlinear steady-state membrane potential profile in response to linear increases in synaptic input frequency (Fig. 2, A and B) because it will reside almost solely in these two states and switch abruptly between them. A bistable cell will also exhibit pronounced hysteresis, which is the characteristic of a cell to follow different voltage paths between two states depending on the direction of state transition (Fig. 2D)—this is caused by the tendency of the cell to maintain its current state as long as possible (Booth et al. 1997). In contrast, bimodality refers to a cell exhibiting ranges (or modes) of membrane potentials (Fig. 2C), regardless of the mechanism (intrinsic properties or synaptic input). A bimodal cell may or may not also exhibit nonlinearity and hysteresis. The concept that MSNs might be bistable has been highly influential on functional theories of the basal ganglia. Several models of striatal/basal ganglia function have been built on the idea that striatal MSNs are inherently bistable, or become bistable after D1 modulation. Two of these models posit the basal ganglia as an action-selection mechanism, in which striatal MSN bistability enables the cortico-basal ganglionic loop to function as a pattern detector (Beiser and Houk 1998) or enhances the duration and intensity of striatal activity (Gruber et al. 2003). Another important model suggests that the ventral striatal gates cortical output based on limbic input, with MSNs transmitting information in the up-state but not in the down-state (Grace 2000; O’Donnell and Grace 1995). The concept that MSNs are intrinsically bistable arose from intracellular recordings performed in vivo in anesthetized animals, in which MSNs oscillate between spiking up-states and quiescent down-states with sharp transitions (Goto and O’Donnell 2001; Stern et al. 1997; Tseng et al. 2001; Wickens and Wilson 1998; Wilson and Kawaguchi 1996).

Effects of D1R-mediated modulation on MSN nonlinearity and bistability

The results of our single-compartment study will be relevant to the basal ganglia as an action-selection mechanism, in which striatal MSN bistability enables the cortico-basal ganglionic loop to function as a pattern detector (Beiser and Houk 1998) or enhances the duration and intensity of striatal activity (Gruber et al. 2003). Another important model suggests that the ventral striatal gates cortical output based on limbic input, with MSNs transmitting information in the up-state but not in the down-state (Grace 2000; O’Donnell and Grace 1995). The concept that MSNs are intrinsically bistable arose from intracellular recordings performed in vivo in anesthetized animals, in which MSNs oscillate between spiking up-states and quiescent down-states with sharp transitions (Goto and O’Donnell 2001; Stern et al. 1997; Tseng et al. 2001; Wickens and Wilson 1998; Wilson and Kawaguchi 1996).

We did not observe bistability in our model, under any modulation condition (Fig. 2). The only condition in which we observed nonlinearity or bimodality was with a very high level of NMDA conductance [fivefold the baseline NMDA conductance, or an NMDA:AMPA (N:A) ratio of 2.5:1]. This observation agrees with a recent study in a two-compartment, MSN-like model that observes bimodality with a 4:1 N:A ratio (Kepes and Raghavachari 2007). The exact N:A ratio in corticostriatal synapses can vary, but appear to remain below 1:1 in normal animals (Beurrier and Malenka 2002; Li et al. 2004; Popescu et al. 2007; Thomas et al. 2001), increasing to as high as 1:5 in cocaine-treated animals (Thomas et al. 2001). Studies of synapses onto cortical pyramidal neurons have found N:A ratios ranging from 0.2:1 to as high as 7:1 (Myme et al. 2003). However, the authors of this review note that studies of the N:A ratio using extracellularly evoked synaptic potentials/currents reliably report higher N:A ratios (probably because of suboptimal space clamping), as do studies using younger animals (p1–p15). Upon excluding these studies, the N:A ratios range from 0.2:1 to 1.2:1 (Myme et al. 2003).
Taken together, these reports suggest that N:A ratios $\geq 1.5:1$ (which was not enough to induce bimodal behavior in our model) may not naturally occur in MSNs. We therefore suggest that NMDA-induced bistability is not likely to occur in MSNs under normal conditions. Because our model and others have suggested that the N:A ratio is extremely important in defining the behavioral response of MSNs to synaptic input and, because changes in this ratio have been hypothesized to occur in various disease states, it is crucial to further examine these ratios in adult animals in various areas of the striatum.

Although MSNs demonstrate bimodal membrane potentials under certain conditions, it is possible that this ability may not be functionally significant for striatal processing in the awake state. Recent in vivo intracellular recordings of MSNs found that although MSNs exhibited bimodal behavior during slow-wave sleep and anesthesia, the membrane potential distribution in the awake rat was clearly unimodal and centered at -61 mV (Mahon et al. 2006). In vivo studies in our lab have also indicated that in the awake state, hippocampal and cortical inputs to the accumbens sum sublinearly (Wolf et al. 2005a), not supralinearly, as would be expected if the bimodal membrane potential was responsible for a gating effect in the awake animal.

Effects of dopamine modulation on MSN excitability, filtering, and temporal integration

One influential hypothesis of basal ganglia function proposes that D1R activation excites MSN cells in the D1R-expressing, movement-facilitating, direct pathway, whereas D2R activation inhibits MSN cells in the D2R-expressing, movement-suppressing, indirect pathway (Albin et al. 1989; Delong 1990). We found that D1 modulation of intrinsic properties changed the slope of the frequency–current relationship, so that D1 intrinsic modulation could be inhibitory or excitatory, depending on the current injection amplitude (Fig. 3); simultaneous D1 modulation of both intrinsic and synaptic properties was solely excitatory. Conversely, we found that D2 modulation of intrinsic properties was excitatory, although this was dependent on the direction and magnitude of sodium modulation, which is not precisely known; including synaptic modulations caused D2 modulation to be inhibitory. Accordingly, our results demonstrate that D1R-mediated modulation increases the activity of MSNs, whereas D2R-mediated modulation decreases the activity of MSNs (primarily as the result of synaptic modulations). This agrees with the classical model of the basal ganglia and supports the suggestion that loss of DA input to the striatum, as in Parkinson’s disease, could alter the activity levels of D1- and D2-expressing MSNs and their downstream projections.

It has been suggested that dopamine acting at D1 receptors may differentially affect MSNs based on the current membrane potential, with hyperpolarized MSNs being inhibited and depolarized neurons being excited by D1R activation (Hernández-López et al. 1997; Nicola et al. 2000; Pacheco-Canó et al. 1996). We found that D1R activation changed the gain of the response of the MSN to current injection, so that at smaller current injections the MSN could be inhibited relative to the unmodulated state, whereas at larger current injections the cell could be excited (Fig. 3A). This gain change also occurred in response to synaptic input (Fig. 3B) and for both tunings of the cell (Supplementary Fig. 3). Accordingly, our findings support the possibility that D1R modulation of intrinsic properties might differentially affect the excitability of MSNs, exciting some while inhibiting others, based on the level of input to each MSN. It is important to note that simultaneous D1R modulation of both intrinsic and synaptic properties would be expected to solely cause MSN excitation, in agreement with the classical model of the basal ganglia.

It was previously proposed that dopamine may filter inputs to the MSN by enhancing the contrast between large and small synaptic inputs (Nicola et al. 2004). We found that DA modulation of intrinsic MSN properties enhanced the propagation of synaptic inputs to the soma, with larger synaptic inputs enhanced more than smaller ones (Fig. 4). However, including synaptic modulations diminished this effect. Still, the D2R-mediated up-regulation of sodium in the dendrites during D2 modulation should also increase backpropagation of action potentials into the dendrites, which would presumably affect the induction of synaptic plasticity in MSNs. However, these effects appear to be less significant than the effect of DA on MSN excitability.

We hypothesized that DA might affect the temporal integration properties of MSNs. Our results indicate that D1 modulation of intrinsic properties decreases the integration time window of the MSN, whereas D2 modulation of intrinsic properties increases this window. However, including synaptic effects again reverses this relationship, with the D1 All condition increasing the integration window and the D2 All condition returning the integration window to the unmodulated value. Regardless, the MSN appears to integrate synaptic inputs over a time window of 40 to 60 ms, suggesting that it functions more as an input integrator than as a classical coincidence detector. Given not only the very large number of glutamatergic inputs (5,000–15,000) each MSN receives, but also the ability of each MSN to respond to a minimum of 100 distinct cellular ensembles (Wolf et al. 2005b), this suggests that the MSN might function as a pattern detector, integrating and classifying patterns of cortical/subcortical inputs as part of the corticostriatal action selection mechanism. In this sense, dopaminergic modulation of the temporal integration window of MSNs might subtly regulate striatal integration of input from cortical ensembles.

Lack of synergy between intrinsic and synaptic effects

In all of the preceding cases, the synaptic effects of DA modulation counteracted the effects of DA modulation of intrinsic properties. Whether intrinsic and synaptic modulations always occur simultaneously is not known. However, it seems highly likely that both would occur at the same time because dopamine is a highly divergent signal, with one DA neuron targeting approximately 400 MSNs, 30% of DA neurons responding similarly to any given novel or salient event, and with the apparent ability of DA to diffuse out of the synaptic cleft (Arbuthnott and Wickens 2006; Hyland et al. 2002; Schultz 1998). One possibility is that the intrinsic and synaptic modulations counteract each other to maintain precisely balanced regulatory control over the MSN’s integrative properties.

Another possibility is that both tonic and phasic dopamine release differentially affect intrinsic and synaptic properties...
of the MSN. Dopamine neurons exhibit two basic activity modes—regular spiking and phasic bursting, which might initiate different downstream signaling mechanisms (Grace 1991). In this light, tonic spiking by DA neurons has been shown to maintain extrasynaptic DA levels at nanomolar concentrations, whereas bursting by DA neurons can boost DA concentration to micromolar levels, but possibly only within the synaptic cleft (Arbuthnott and Wickens 2006; Floresco et al. 2003; Phillips and Wightman 2004). Tonic, low-concentration DA levels might primarily influence intrinsic modulations at extrasynaptic sites, whereas phasic, high-concentration DA levels might control synaptic modulations. In this sense, the intrinsic effects of DA modulation could dominate during regular spiking, whereas the synaptic effects might override the intrinsic effects after short-term bursts by DA cells. Nonetheless, the intrinsic effects of DA modulation appear to be much less significant than the synaptic effects of DA modulation because the synaptic effects tended to dominate the net effect of DA modulation when the two were combined.

Possible D1-mediated regulation of calcium in dendritic spines

With the exception of its regulation of excitability, DA’s effects on the integrative properties of the MSN appear to be surprisingly weak. Specifically, although we report that dopaminergic modulation can lead to changes in input filtering and temporal integration properties of the MSN, these effects do not appear to be very significant, at least at the single-cell level. Further, given that distinct MSN cells will inevitably express different levels and combinations of intrinsic and synaptic channels, it is even possible that dopamine may affect filtering and integration in opposite ways in different cells, even with the same modulation levels. Although we thoroughly examined multiple tunings of the model in an attempt to address this possibility, we did not systematically and rigorously examine the very large number of possible tunings for the model because this was outside the scope of this report. It is also important to note that despite our best efforts, the model is a simplified representation of a real cell and, as such, our findings will need to be confirmed and further explored in real cells. However, we suggest that in general, with the possible exception of DA’s effects on MSN excitability by synaptic effects, dopamine may play only a minor role in MSN dendritic signal integration.

Rather than regulating the integrative properties of the medium spiny neuron at the whole cell or dendritic level we propose that DA modulation may function principally at spines, particularly during phasic DA release. The primary mechanism of action of this modulation may occur by D1 modulation regulating calcium influx into MSN dendritic spines. In Fig. 6, we outline a conceptual model in which the modulatory effects of D1R activation would interact to boost calcium influx through NMDA and L-type calcium channels after synaptic activation. A/D1R-mediated up-regulation of NMDA and L-type channels in the postsynaptic density would directly boost calcium influx through these channels. D1R-mediated down-regulation of CaN and CaP/Q channels would indirectly increase calcium influx through NMDA and L-type calcium channels as well, by reducing SK calcium-dependent potassium activation—permitting greater depolarization of the spine head and therefore greater activation of NMDA and L-type channels. Because calcium through NMDA and L-type calcium channels is known to be important for the induction of synaptic plasticity, this could have major implications for regulation of long-term potentiation and long-term depression in the striatum. In this light, D1R modulations of KIR and sodium could represent a mechanism to maintain MSN excitability despite ongoing changes in synaptic strengths.

and KIR channels are most likely expressed in the dendrites of MSNs (Kerr and Plenz 2002; Pruss et al. 2003; Wilson 1992). Within this framework, D1R-mediated up-regulation of NMDA and L-type calcium channels would directly increase the amount of calcium entering the spine after synaptic activation. D1R-mediated down-regulation of CaN and CaP/Q channels would indirectly increase calcium influx through NMDA and L-type calcium channels still further because the associated reduction in SK activation would permit greater depolarization (and thus larger currents) after synaptic stimulation. Calcium currents through NMDA and L-type calcium channels have been shown to contribute to the induction of synaptic plasticity (Calabresi et al. 1994; Kapur et al. 1998; Olson et al. 2005; Yasuda et al. 2003); if this is the case, KIR and NaF modulation could regulate dendritic excitability in an activity-dependent manner, analogous to the I_h current in rat hippocampal neurons (Fan et al. 2005).

If true, dopaminergic regulation of spine-level calcium by modulation of MSN channels would provide a link between the extensive documentation of dopamine’s modulatory effects at D1 receptors and its known role in controlling synaptic plasticity and guiding reinforcement learning. Should dopamine regulate synaptic plasticity in this manner, it is important to note that it could still regulate the integrative properties of the MSN as well. This control of integrative properties could entail any of the hypotheses we addressed herein. Our results suggest that dopamine most significantly affects MSN integration through its impact on excitability in the form of synaptic facilitation and inhibition.

We envision that dopamine acting at D1 receptors directly modulates NMDA channels to control synaptic facilitation.
and inhibition. This represents a short-term regulatory mechanism that can significantly affect MSN excitability in response to synaptic input. Dopamine acting at D1 receptors also modulates several intrinsic MSN channels, which we suggest act cooperatively to regulate calcium influx to dendritic spines of the MSN. The resultant calcium influx might then determine the strength and direction of long-term synaptic potentiation and depression. In this manner, dopamine could significantly regulate striatal function at multiple timescales.

In conclusion, we investigated the effects of dopaminergic modulation on a model of the ventral striatal medium spiny neuron. By modeling the combined effects of DA on MSN intrinsic and synaptic channels, we were able to test three previously proposed hypotheses of DA function: 1) that D1R activation enhances nonlinearity in the MSN; 2) that DA acting on MSN D1Rs is excitatory, whereas DA acting on MSN D2Rs is inhibitory; and 3) that DA preferably enhances the propagation of large synaptic inputs to the MSN soma. We also tested a fourth hypothesis, that DA changes the temporal integration properties of the MSN. We found that D1R-mediated modulation had no effect on nonlinearity in the MSN, nor was it able to induce bistability. Both D1 and D2 modulation affected excitability, input filtering, and the integration time window of the MSN model. However, in these cases, the effects of synaptic modulations counteracted the effects of intrinsic modulations and, in general, dominated the net effect of DA on MSN behavior. The observed lack of synergy between the intrinsic and synaptic effects led us to propose a mechanism in which all D1 modulations of MSN channels interact cooperatively to boost calcium influx through NMDA and L-type calcium channels at the spine level.

APPENDIX

As a rule, we used the maximum reported modulation level for each channel to maximize the likelihood of observing an effect on cell behavior. In some cases, however, the maximum modulation level led to unrealistic behavior (i.e., extreme changes in excitability, very wide action potentials, doublet spiking, etc.), and in these cases we used the largest modulations possible without incurring these behaviors.

D1R modulation of intrinsic channels

Although D1R activation has not been shown to directly modulate the KIR current in MSNs, D1R activation has been shown to decrease the resting input resistance 4–12% in dorsal and ventral striatum as well as to hyperpolarize the cell (Pacheco-Cano et al. 1996; Uchimura and North 1990; Uchimura et al. 1986). This is attributable to up-regulation of the inward-rectifying potassium current that is a hallmark of MSN cells (Nicola et al. 2000). Using the model, we determined that a 25% increase in the KIR current matched the reported changes in input resistance and hyperpolarization.

D1R activation was thought to modulate the KAs current (Surmeier and Kitai 1993). A later study suggested that this conductance change was the result of direct blockade of the KAs channel by SKF38393, the D1R agonist used (Nisenbaum et al. 1998). Additionally, another study found no D1R-mediated modulation of KAs (except when D2Rs were coactivated) (Hopf et al. 2003). Accordingly, we do not include D1 modulation of KAs in our study.

D1R agonists decrease ω-agatoxin (CaP/Q)– and ω-conotoxin GVIA (CaN)–sensitive currents in both dorsal and ventral striatal MSN cells (Salgado et al. 2005; Surmeier et al. 1995; Zhang et al. 2002). We calculated the approximate amount of reduction for the CaN and CaP/Q currents by assuming complete blockade of CaN channels by ω-conotoxin GVIA (CgTx) and of CaP/Q channels by ω-agatoxin (AgTx). In one study (Surmeier et al. 1995), AgTx and CgTx blocked 80% of the 70 pA (=56 pA) D1R-modulated current. CgTx alone blocked a mean of 40% of the D1R-modulated current, so the CgTx- and D1R-sensitive current is 0.4 × 70 = 28 pA. This suggests that the AgTx- and D1R-sensitive current is 56 – 28 = 28 pA. The total AgTx- and CgTx-sensitive current is reported as 90 pA; previous studies have shown that the approximate ratio of CgTx:AgTx-sensitive currents is 5:3 (Churchill and Macvicar 1998). Applying this ratio gives whole cell values of 56.3 pA for CgTx-sensitive and 33.8 pA for AgTx-sensitive currents. This gives a percentage blockade by D1R activation of 28 pA/56.3 pA = 50% for CgTx-sensitive (CaN) and 28 pA/33.8 pA = 83% for AgTx-sensitive (CaP/Q) currents. In the same manner, we calculated broadly similar values in other studies (Salgado et al. 2005; Zhang et al. 2002). We use a modulated conductance level of 20% of the unmodulated conductance for the CaP/Q and 50% for the CaN (Table 3). At least one study has shown that DA decreased the interspike interval of cells during trains of action potentials (Rutherford et al. 1988). We suggest that this reflects decreased SK current as a result of DA modulation of CaN and CaP/Q channels.

D1R agonist application has been reported to reduce the conductance of the fast sodium current by 22–37.8% (Table 2) (Calabresi et al. 1987; Schiefmann et al. 1995, 1998; Surmeier et al. 1992; Zhang et al. 1998). The NaF inactivation curve may also be shifted up to −5.6 mV (Surmeier et al. 1992). We model D1R-mediated modulation of sodium current as a 5% reduction of the total conductance, without a shift in the inactivation curve. Decreasing the conductance any further, or shifting the inactivation curve with the 5% reduction, seriously reduces spiking in response to current injection. This seems inappropriate given that D1R activation does not completely shut down cell spiking. Dopamine has also been reported to regulate persistent sodium current, although it is not known whether this is a D1R- or D2R-mediated modulation (Cepeda et al. 1995). For this reason, we do not include this modulation in our studies. Still, we did investigate the potential effects that NaP regulation would have on both D1 and D2 conditions and found that even a complete blockade of the NaP current had no effect on any of the studies described herein.

D1R agonists are known to up-regulate L-type calcium channels (Nicola et al. 2000; Song and Surmeier 1996; Surmeier et al. 1995), but the exact modulations have not been published. D1R stimulation may either increase the maximum conductance of the Cav1.3 (up to twofold) or it may shift the activation of the Cav1.3 between −5 and −15 mV (Surmeier et al. 1995). To explore these conditions, we compared a doubling of the Cav1.3 current and a −10-mV shift of the activation curve for the Cav1.3 to the unmodulated cell in response to a 0.271-nA current injection (data not shown). Doubling the whole cell Cav1.3 current has
little effect on MSN spike frequency, whereas shifting the Cav1.3 activation by $-10\, \text{mV}$ increases spike frequency. This is because in the shifted condition, the Cav1.3 is able to contribute much more significantly to the subthreshold behavior of the cell. Increasing the Cav1.3 current more than twofold resulted in aberrant spiking—spike doublets and delayed spike repolarization—as did shifting the Cav1.3 more than $-15\, \text{mV}$. Accordingly, we model D1 modulation of the Cav1.3 channel as a $-10\, \text{mV}$ shift in the activation kinetics of the channel. D1 appears to either shift Cav1.2 channels -10 to $-15\, \text{mV}$ or increase the conductance by $\approx 100\%$. Shifting the Cav1.2 is equivalent to increasing the Cav1.3 conductance; therefore we increased the conductance of the Cav1.2 instead.

D1R modulation of synaptic channels

In the following discussion, we do not differentiate between pre- and postsynaptic effects of dopamine. Presumably, because the studies that we cite are recording synaptically evoked potentials in the MSN and stimulating presynaptically, the effects reported should include both pre- and postsynaptic contributions. Five of seven studies (one in ventral striatum) found that D1 modulation enhanced NMDA current 3–41% (Cepeda et al. 1998; Flores-Hernández et al. 2002; Harvey and Lacey 1997; Levine et al. 1996; Hallett et al. 2006; Harvey and Lacey 1997; Levine et al. 1996). Two studies found decreased NMDA current with D1R stimulation. One of these was performed in fetal cells (Castro et al. 1999), in which case the expression of NMDA may not reflect adult expression levels or type. The second was performed on acutely dissociated cells (Yasuda et al. 2003). Glutamatergic input to MSNs is almost wholly located on the dendrites (Wilson 1992), so this result may not reflect NMDA modulation in the intact animal. Given these findings, it appears safe to conclude that D1R-mediated modulation increases NMDA current and to model it with a 30% increase in conductance.

D1R activation increased AMPA current in two studies in dorsal striatum (Price et al. 1999; Unemiyama and Raymon 1997), had no effect in another (Levine et al. 1996), and decreased AMPA in one study in ventral striatum (Harvey and Lacey 1996). Given these conflicting results, we assume that D1 does not significantly or consistently modulate AMPA in either direction.

D2R modulation of intrinsic channels

The results of D2R activation on sodium currents are mixed (Hu et al. 2005; Surmeier et al. 1992; White et al. 1997; Zhang et al. 1998). A study in dorsal striatum found that D2R agonists increased sodium conductance by 20% with a $+5\, \text{mV}$ shift in the inactivation curve in the whole cell recording mode (Surmeier et al. 1992). However, in the cell-attached recording mode D2R agonists did not change conductance levels but did shift the inactivation voltage $-16.9\, \text{mV}$. The authors suggest that the cell-attached mode constitutes a membrane-delimited mechanism and represents D3R modulation, whereas the whole cell mode represents D2R modulation (because D2R-mediated modulation requires second messengers). To our knowledge, this has still not been further investigated. We found that the direction of shift of the sodium inactivation curve critically determines whether D2 modulation is excitatory or inhibitory. Several groups have reported that D2R-mediated modulation of intrinsic channels results in increased excitability of the cell in response to current injection (Akaikae et al. 1987; Higashi et al. 1989; Yim and Mogenson 1988) and NaF conductance increased 25% in a ventral striatal study (Hu et al. 2005). Therefore we presume that D2R activation increases NaF conductance and model D2R modulation of sodium with a 10% increase in current and $+5\, \text{mV}$ shift in the inactivation curve. The exact modulation of NaF by D2R activation needs to be better explored, especially because this modulation dominates the effects of D2 modulation of intrinsic properties.

D2R modulation of synaptic channels

Four of four studies show no change in NMDA current after D2R stimulation (Cepeda et al. 1998; Flores-Hernández et al. 2002; Levine et al. 1996; Lin et al. 2003). Two studies found decreased AMPA current during D2 modulation (Hernández-Echeagaray et al. 2004; Levine et al. 1996) and at least five more studies found that D2 application decreased glutamatergic response (Bamford et al. 2004; Goto and Grace 2005a,b; Hsu et al. 1995; Yim and Mogenson 1988). Recent studies have indicated that D2 modulates glutamatergic response by a presynaptic mechanism (Bamford et al. 2004; Goto and Grace 2005b). Irrespective of whether the mechanism is presynaptic, it appears that D2 modulation reduces glutamatergic response and may be best modeled as a reduction in the AMPA component. This was implemented as a 20% reduction in the AMPA conductance with no change in NMDA.

Exploration of the modulation parameter space

We explored most of the modulation parameter space by hand and were unable to find modulation conditions for which the main results discussed herein changed. For example, for D1, we examined at least four different combinations of CaN and CaP/Q modulations, eight different combinations of NaF conductance and voltage shift modulations, several types of CaL modulation, at least six modulation levels with the KIR channel, at least five modulation levels with the NMDA channel, one or two modulation levels with the AMPA channel, and a few with the KAs channel. For D2, we examined the effects of NaF modulation using several combinations of conductance and voltage shift parameters, two to three modulation levels with the KAs channel, at least three or four levels with the KIR channel, and three to four levels with the AMPA channel. We also combined the modulations in several different ways to examine the effects of individual channels on the net effects of the modulation condition; for example, for D1, we tried just calcium modulations, just inhibitory modulations, just excitatory modulations, just NaF and KIR, just CaL and KIR, just intrinsic modulations, and just synaptic modulations. For D2, we examined just inhibitory modulations, just excitatory modulations, just NaF and KAs, just intrinsic modulations, and just synaptic modulations.

Acknowledgments

We thank P. O’Donnell and M. Benoit-Marand for in vitro cell recordings and W. Hopf for helpful discussion of the manuscript.
REFERENCES

