Melanopsin Ganglion Cells Use a Membrane-Associated Rhabdomeric Phototransduction Cascade

Dustin M. Graham, Kwoon Y. Wong, Peter Shapiro, Courtney Frederick, Kartik Pattabiraman, and David M. Berson
Department of Neuroscience, Brown University, Providence, Rhode Island

Submitted 25 September 2007; accepted in final form 22 February 2008

Graham DM, Wong KY, Shapiro P, Frederick C, Pattabiraman K, Berson DM. Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. J Neurophysiol 99: 2522–2532, 2008. First published February 27, 2008; doi:10.1152/jn.01066.2007. Intrinsically photosensitive retinal ganglion cells (ipRGCs) are photoreceptors of the mammalian eye that drive pupillary responses, synchronization of circadian rhythms, and other reflexive responses to daylight. Melanopsin is the ipRGC photopigment, but the signaling cascade through which this invertebrate-like opsin triggers the phototransduction in these cells is unknown. Here, using patch-clamp recordings from dissociated ipRGCs in culture, we show that a membrane-associated phosphoinositide cascade lies at the heart of the ipRGC phototransduction mechanism, similar to the cascade in rhabdomeric photoreceptors of invertebrate eyes. When ipRGCs were illuminated, melanopsin activated a G protein of the Go11 class, stimulating the effector enzyme phospholipase C. The presence of these signaling components in ipRGCs was confirmed by single-cell RT-PCR and immunofluorescence. The photopresponse was fully functional in excised inside-out patches of ipRGC membrane, indicating that all core signaling components are within or tightly coupled to the plasma membrane. The striking similarity of phototransduction in ipRGCs and invertebrate rhabdomeric photoreceptors reinforces the emerging view that these cells have a common evolutionary origin.

INTRODUCTION

All animal photoreceptors apparently share a common evolutionary origin and belong to one of two parallel lineages that can be traced back ≥600 million years to the last common ancestor of bilaterally symmetric animals (Arendt 2003; Plachetzký et al. 2005). One photoreceptor lineage, now most common in invertebrate eyes, localizes its phototransduction apparatus in microvilli, which are often tightly packed to form a rhabdomere. The other lineage, of which vertebrate rods and cones are the most familiar members, carries out phototransduction in specialized cilia. Rhabdomeric and ciliary photoreceptors coexist in some extant invertebrates, but vertebrates might represent a homologue of rhabdomeric photoreceptors (Arendt 2003; Contin et al. 2006; Isoldi et al. 2005; Koyanagi et al. 2005; Panda et al. 2005; Provencio et al. 2000). Photoreceptors of the mammalian eye that drive pupillary responses, synchronization of circadian rhythms, and other reflexive responses to daylight. Melanopsin is the ipRGC photopigment, but the signaling cascade through which this invertebrate-like opsin triggers the phototransduction in these cells is unknown. Here, using patch-clamp recordings from dissociated ipRGCs in culture, we show that a membrane-associated phosphoinositide cascade lies at the heart of the ipRGC phototransduction mechanism, similar to the cascade in rhabdomeric photoreceptors of invertebrate eyes. When ipRGCs were illuminated, melanopsin activated a G protein of the Go11 class, stimulating the effector enzyme phospholipase C. The presence of these signaling components in ipRGCs was confirmed by single-cell RT-PCR and immunofluorescence. The photopresponse was fully functional in excised inside-out patches of ipRGC membrane, indicating that all core signaling components are within or tightly coupled to the plasma membrane. The striking similarity of phototransduction in ipRGCs and invertebrate rhabdomeric photoreceptors reinforces the emerging view that these cells have a common evolutionary origin.

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
the diffusible cytoplasmic signaling components IP$_3$ and Ca$^{2+}$. The other, involving lipophilic constituents such as diacylglycerol (DAG) and polyunsaturated fatty acids, is localized to the membrane. Both have been implicated in phototransduction in various rhabdomeric receptors. It is unclear, however, which might play a central role in ipRGC phototransduction, and a second goal of this study was thus to address this issue. We show that photocurrents persist in excised inside-out patches of ipRGC plasma membrane, suggesting that all critical signaling components are within the membrane or are tightly coupled to it.

METHODS

Retrograde labeling, retinal dissociation, and culture

All procedures were conducted in accordance with National Institutes of Health guidelines and approved by the Institutional Animal Care and Use Committee of Brown University. Adult Sprague-Dawley rats were anesthetized with ketamine (60 mg/kg ip) and medetomidine (0.4 mg/kg ip). Rhodamine-labeled fluorescent latex microspheres were deposited unilaterally into the suprachiasmatic nucleus through glass pipettes tilted 10° from vertical (Berson et al. 2002). At least 48 h after tracer injection, retinas were isolated and briefly inspected by epifluorescence microscopy; only those exhibiting an appropriately sparse distribution of labeled ganglion cells were processed further. Two or three such retinas were pooled and dissociated according to the method of Meyer-Franke et al. (1995). Briefly, retinas were digested in a solution of papain, dissociated by gentle trituration and plated onto 36 poly-L-lysine-coated coverslips (BD Biosciences). Cells were incubated in Neurobasal-A supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin, 1 mM sodium pyruvate and 1 μM glutamine. Medium (2 ml/min; 33°C) as described previously (Wong et al. 2005). Whole cell recordings of retrolabeled isolated ganglion cells were mounted in a chamber and superfused with carbogenated Ames’ medium (2 ml/min; 33°C) as described previously (Wong et al. 2005). Whole cell recordings of retrolabeled isolated ganglion cells were established under visual control using an upright epifluorescence microscope equipped with a water immersion lens (Wong et al. 2005). Pipettes were pulled from thick-walled borosilicate tubing (tip resistances: 3–7 MΩ) on a Flaming/Brown P-97 puller (Sutter Instruments, Novato, CA). Recordings were made in voltage- or current-clamp mode with a Multiclamp 700A amplifier (Axon Instruments/Molecular Devices; Sunnyvale, CA). Seal resistances were 1.5–10 GΩ. Recordings were discarded if series resistance exceeded 30 MΩ at any point during the recording. For voltage-clamp recordings, all cells were held at −74 mV. PClamp 9 (Axon Instruments/Molecular Devices) was used for data acquisition. Signals were low-pass filtered at between 200 Hz and 4 kHz, and the sampling frequency was at least four times higher than the low-pass filter cutoff. Amplifier was set at a signal gain of 2. Liquid junction potentials (14 mV for the K$^+$–based internal) were corrected for whole cell recordings. Internal solutions contained the following (in mM): 120 K-gluconate, 5 NaCl, 4 KCl, 10 HEPES, 2 EGTA, 4 ATP-Mg, 0.3 GTP-Tris, and 7 phosphocholine-Tris. pH was adjusted to 7.3 with KOH. Photic stimulation was delivered from below and calibrated as described elsewhere (Wong et al. 2005). Briefly, a 100-W tungsten-halogen lamp delivered unfiltered broad-band full-field light stimuli. The irradiance of this stimulus, assessed by passing it through narrow band spectral filters, was (in photons s$^{-1}$ cm$^{-2}$): 4 × 1012 at 400 nm, 6 × 1013 at 500 nm, and 1 × 1014 at 600 nm. Photoreponses persisted for >1 h in whole cell recordings.

Excised patch recordings were established by forming a gigohm seal on a dissociated ipRGC soma as in the preceding text and then withdrawing the pipette from the cell either immediately without rupturing the patch (for inside-out patches) or within a few minutes of establishing a whole cell recording (for outside-out patches). All n values described in RESULTS represent an excised patch from a different ipRGC. Such patches were always recorded ≥500 μm from the donor cell and typically much farther. For outside-out patch recordings, the internal solution was identical to that used for whole cell recordings. For inside-out patch recordings, the pipette and bath solutions were symmetrical and consisted of Ames’ medium. Photoreponses persisted for ≤30 min in excised patches. For current-clamp recordings from excised patches, we used a gain of 1,000 and AC-coupling to accentuate spikes and filter out slow fluctuations in membrane potential. Filter settings and sampling frequencies were the same as stated above for whole cell recordings.

Pharmacological studies

We introduced individual pharmacological agents in one of three ways. Most lipophilic drugs [U73122, U73343, thapsigargin, 1-oleoyl-2-acetylsn-glycerol (OAG)] were initially dissolved in DMSO, diluted to their final concentration in Ames’ medium, and introduced into the bath by superfusion as previously described (Wong et al. 2007). DMSO did not affect photoreponses when applied alone at the working concentration (≤0.1%). Pertussis and cholera toxin were added to the culture medium 24–48 h before recording. All other drugs were introduced intracellularly by including them in the pipette solution. In most cases, this solution filled the pipette to its tip. However, because the peptides GPar-2 and GPar-2a impaired seal formation, pipettes were tip-filled with control internal solution before backfilling the rest of the pipette with peptide-containing solution. U73122, GPar-2a, GPar-2, and thapsigargin were from Tocris, guanosine 5’-[β-thio]diphosphate (GDPβS) from Biomol, and all other agents from Sigma.

Unless otherwise stated, drug effects are expressed as the mean percentage reduction (±SD) relative to the control in the peak light-evoked inward current as measured after 10 min of drug exposure in darkness. Control currents were measured just before bath application (extracellular agents) or immediately after break-in (intracellular agents). The 10-min time point was chosen because it was sufficient for the drugs to produce stable steady-state effects but not so long that nonspecific reductions in cell health or recording quality would be likely to affect the response. In control recordings, without drug application, although light responses could often be recorded for up to an hour, they gradually became more sluggish and less robust. Statistical significance of drug effects was assessed using a dependent Student’s t-test with a one-tailed probability.

Single-cell RT-PCR analysis

WHOLE-RETINAL LIBRARY. Whole retinal RNA was used as a positive control for RT-PCR and for primer optimization. Retinas were removed from eye cups in Hibernate A solution (BrainBits) and total RNA extracted from whole retinas using an Rneasy Kit column (Qiagen). Total RNA was then primed with oligo(ddT)$_{12-18}$ (Invitrogen), and reverse transcribed using SuperScript III reverse polymerase (Invitrogen). Incubation times were as follows: 65°C for 5 min, 4°C for 2 min, 50°C for 60 min, 70°C for 15 min.

CELL HARVESTING AND RT-PCR. Primary cultures prepared as in the preceding text were scanned using the same microscope and chamber as in recording experiments. Single retrolabeled ganglion cells that were well isolated from other cells and debris were aspirated whole.
into a micropipette, expelled into a PCR tubes containing 20 mM DTT/20 units RNaseOUT (Invitrogen), immediately flash frozen on dry ice and stored at −80°C overnight. Cells were lysed on thawing and subsequent incubation at 65°C during reverse transcription.

REVERSE TRANSCRIPTION OF SINGLE CELLS. Reverse transcription and subsequent in vitro transcription (IVT) were performed using the MessageBooster cDNA synthesis kit for qPCR (Epicienter Biotechnologies). SuperScript III (Invitrogen) was used as the reverse transcriptase. Approximately 6 μl cDNA was obtained from each RT reaction; 1 μl cDNA was used for each PCR reaction to probe for candidate genes. Only cells in which we detected melanopsin transcripts were subjected to further analysis. Bath solution was used as a negative control for RT-PCR contamination. Bath solution (1 μl), approximately the volume of an aspirated cell, was processed in parallel with single-cell material using identical methods. Only GAPDH was detected in this negative control sample.

PRIMER DESIGN. Primers for polymerase chain reaction were designed through Integrated DNA Technologies using PrimerQuest software. Primers targeted the 3′ portion of the NCBI reference sequence, the last 300 bp whenever possible. Whole retina cDNA was used as a template to test primer specificity and efficiency using real-time PCR. Primers subsequently used to probe for candidate transcripts had amplification efficiencies of >85% as determined by constructing a standard curve from serial dilutions of the whole-retina cDNA library. PCR products were run on a gel to confirm that the amplicon was of the predicted size.

QUANTITATIVE PCR. PCR amplification was performed using the Platinum SYBR Green qPCR system (Invitrogen) with an incubation of 50°C for 2 min, an initial denaturation of 95°C for 2 min, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. Melting curve analysis was performed after every run. Final primer concentrations were 0.2 μM. Thermalcycling was performed using Applied Biosystems 7300 Real-Time PCR system. Fluorescent threshold values were set automatically by 7300 System SDS software. The maximum Ct value for detection was set at 40 cycles. Representative amplicons were run on a 2% agarose gel containing 0.5 μg/ml ethidium bromide to confirm amplicon size.

HEK293 cell culture and transfection with PKC biosensor construct. T-cell surface antigen HEK293 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM; with 4.5 g/l D glucose, l-glutamine, 110 mg/l sodium pyruvate; Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum, and 100 μg/ml streptomycin at 37°C in the presence of 5% CO2 and exchanged twice weekly. Both HEK293 and PC12 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM; with 4.5 g/l D glucose, l-glutamine, 110 mg/l sodium pyruvate; Invitrogen) supplemented with 10% fetal bovine serum, and 100 units/ml penicillin, 100 μg/ml streptomycin at 37°C in the presence of 5% CO2 and exchanged twice weekly. Both HEK293 and PC12 cells were plated separately onto poly-α-lysine-coated glass coverslips the night before experiments to enhance cell attachment for imaging. For all imaging experiments, cells had their media exchanged with 1 ml DMEM containing 5 μM of the nonratiometric calcium indicator Oregon-Green bis-(α-aminophenoxy)-N,N,N',N'-tetracetic acid acetoxymethyl ester (BAPTA-AM; Invitrogen), and were incubated for 30–60 min for loading. Cells were imaged on a fixed-stage upright epifluorescence microscope (Nikon E600FN; Melville, NY) equipped with a CCD camera (Dage-MTI). Images were acquired using a frame-grabber card (Scion) and Scion image software. Frames were acquired at 0.5 Hz, and averages of five frames were used as data points for plotting change in fluorescence intensity over time. For each cell, we acquired five frames immediately before applying any stimulus and used the average image as the baseline resting fluorescence level. National Institutes of Health Image J software was used for off-line analysis of changes in fluorescence intensity over time. Regions of interest (ROIs) were outlined by hand for cell bodies in each field of view for every image, and gray scale profiles were constructed for each prestimulus ROI, and each ROI at time points during stimulus application. The peak of each ROI gray scale profile was then used to calculate the percent change in fluorescence intensity at each time point. For all experiments, HEK293 and PC12 cells were continuously superfused with AMES solution to mimic recording conditions of ipRGCs. Carbamol, pertussis toxin, cholaera toxin, GTP, 70 mM potassium were all dissolved in water. Thapsigargin and CGS21680 were dissolved in DMSO before being diluted in AMES to their working concentration. The working concentration of DMSO was kept at 0.1%. DMSO alone did not affect the cells at this concentration.

RESULTS

Injections of fluorescent retrograde tracer into the suprachiasmatic nucleus but sparing the optic chiasm labeled a few dozen to several hundred ganglion cells scattered across both
rupting signaling through Gi/o (pertussis toxin) or Gs (cholera toxin) completely suppressed the light response (Fig. 1A, red trace; 98.3 ± 3% mean reduction from initial peak photocurrent ± SD measured 10 min after break-in; n = 4; P < 0.05 t-test). Thus melanopsin appears to signal through G proteins in ipRGCs as expected from the fact that opsins are G-protein-coupled receptors. To determine which G proteins might be responsible, we introduced into ipRGCs the peptide GPAnt-2a, which blocks G proteins of the Gα11 class but not those of the Gα10 or Gβγ classes. This eliminated ipRGC photoresponses (Fig. 1B; 95.4 ± 2.3% reduction; 10 μM; n = 6; P < 0.05 t-test), whereas a closely related peptide antagonist of Gα10 (GPAnt-2; 10 μM) had no effect (5.0 ± 2.4% reduction; n = 4; P > 0.05 t-test; data not shown). Similarly, robust light responses persisted after prolonged incubation with toxins specifically disrupting signaling through Gα10 (pertussis toxin) or Gβγ (cholera toxin) (250 ng/ml, n = 4 for each toxin; Fig. 1, C and D). The efficacy of these toxins in blocking their associated G proteins were confirmed in positive control experiments using calcium imaging in PC12 cells (Fig. 2).

The effector enzyme for Gα11-class G proteins is PLCβ. Bath application of the PLC antagonist U73122 abolished ipRGC light responses during whole cell recordings (98.4 ± 0.8% reduction; 5 μM; n = 8; P < 0.05 t-test; Fig. 1E), while the inactive analogue U73343 had no effect (5.8 ± 2.1% reduction; 5 μM; n = 3; P > 0.05 t-test; Fig. 1F). The pharmacological manipulations just shown to block photoreponses in dissociated ipRGCs failed to do so in ipRGCs in intact isolated retinas (S. Carlson and D. Berson, unpublished observations). We suspect that this reflects limited access of bath-applied and intracellular agents to all transduction sites in situ, which are widely distributed throughout an extensive arbor of fine dendrites deeply buried within the retina (Berson 2003).

Molecular and immunohistochemical evidence on G protein and PLC expression

The foregoing results implicate Gαq11 family G proteins and PLCβ in the phototransduction cascade of ipRGCs. To test for the presence of these signaling components in ipRGCs, we conducted single-cell RT-PCR and immunohistochemical studies. Seventeen well-isolated retrolabeled ganglion cells were harvested from the cultures, and each was confirmed to be an ipRGC by detection of melanopsin transcript OPN4. 76% of these cells (13/17) expressed at least one G protein of the Gαq11 family (Fig. 3). Of these, the most commonly detected was Gαq4 (13/17 cells; 76%), followed by Gαq1 (9/17; 53%), Gα1 (5/17; 29%; Fig. 3), and Gα15 (3/13; 23%). The only other Gαq11 family G protein in mice is Gα15. This G protein was undetectable in whole retinal extracts and thus presumably absent in ipRGCs, although we did not test this directly. Positive control experiments confirmed the efficacy of these primers by detection of Gα15 transcripts in spleen (Wilkie et al. 1991).

We also used single-cell RT-PCR to test for the presence of the four known PLCβ isozymes in ipRGCs. Every ipRGC examined by single-cell RT-PCR tested positive for at least one of these enzymes (Fig. 3). All of them (13/13; 100%) expressed the PLCβ4 isoform, while the remaining three isozymes were expressed in at least a minority of ipRGCs. The most frequently detected of these was PLCβ1 (5/13; 38%) followed by PLCβ3 (4/13; 30%) and PLCβ2 (2/13; 15%; Fig. 3).

We confirmed the presence of PLCβ4 protein by immunofluorescence microscopy. Vertical sections of rat retina were double labeled using primary antibodies against PLCβ4 and

![Image](http://jn.physiology.org/lookup/doi/10.1152/jn.00651.2007)
melanopsin (see METHODS). The two anti-PLCβ4 antibodies used produced comparable staining patterns with strong and relatively uniform labeling of the outer and inner plexiform layers as well as the ganglion cell layer (Fig. 4). Somata of ganglion cells stained by the anti-melanopsin antibody were PLCβ4 immunopositive, primarily near their plasma membranes (Fig. 4). Their dendrites were not discernable in the inner plexiform layer presumably because of the uniformly high immunofluorescence in this layer. Other retinal neurons were also PLCβ4 immunopositive, especially horizontal cells, a subset of amacrine cells and some melanopsin immunonegative ganglion cells (Fig. 4). To summarize, these molecular and immunohistochemical data support the implication of the electrophysiological and pharmacological findings that ipRGCs express members of the Gq/11 family as well as one or more PLCβ isoforms and that these signaling molecules couple melanopsin to the light-gated channel in ipRGCs.

Evidence for a membrane-associated signaling cascade

Activated PLC hydrolyzes phosphatidylinositol (4,5)-bisphosphate (PIP2), generating two second-messengers: diacylglycerol (DAG), which remains in the membrane; and inositol 1,4,5-trisphosphate (IP3), which enters the cytosol and binds to IP3 receptors, triggering Ca2+ release from intracellular stores. Our data indicate that the cytosolic branch of this cascade may play a modulatory role but is apparently not essential for ipRGC phototransduction (Figs. 5 and 6).

Substantial photoresponses remained >10 min after application of agents disrupting IP3-mediated Ca2+ mobilization (Fig. 5, A–D, red traces). Application of thapsigargin to deplete intracellular calcium stores had almost no effect on the amplitude of the light response (11.7 ± 1.9% reduction after 10 min; 4 μM; n = 5; P > 0.05 t-test; Fig. 5B). Positive control experiments, using calcium imaging in HEK293 cells, confirmed that this dose and duration of applied thapsigargin, sufficed to effectively deplete intracellular calcium stores (Fig. 5F). Other drugs that interfere with IP3-mediated Ca2+ mobilization also failed to abolish the light response. We bath-applied heparin to block IP3 receptors (10.3 ± 7.3% reduction; 1 mg/ml; n = 5; P > 0.05 t-test; Fig. 5A) and also introduced IP3 into the cell through the pipette to occupy the receptors and
blunt the effects of any light-induced IP$_3$ production (18.3 ± 1.2% reduction; 100 μM; n = 4; P < 0.05 t-test; Fig. 5D). Nor did we observe a current after break-in with pipettes containing IP$_3$ as would be expected if it were a key second messenger in the phototransduction cascade (Fig. 5E). The preceding drug effects on response amplitude were assessed 10 min after application. We think it very likely that this was sufficient time for the agents to reach and affect their intended targets. However, even more prolonged exposure of these agents (>30 min) failed to block light responses although gradual response rundown was typical, just as it was in control recordings. Taken together, the minimal effects of heparin, thapsigargin, and IP$_3$ suggest that Ca$^{2+}$ mobilization from IP$_3$-sensitive stores is unnecessary for phototransduction. To further test for a role of Ca$^{2+}$ as a second messenger in this cascade, we applied a high concentration of BAPTA (10 mM) through the pipette to chelate intracellular Ca$^{2+}$. After 10 min, this treatment significantly reduced the light response (70.6 ± 5.4% reduction; n = 5; P < 0.05 t-test; Fig. 5C, red trace), and largely abolished it after 20 min (Fig. 5C, blue trace). Nonetheless given the high mobility of this chelator and the small and compact volume of the recorded cells, one would expect extremely strong and rapid Ca$^{2+}$ buffering to be in place throughout the cytoplasm within a few minutes. From this perspective, the persistence of substantial photoresponses 10 min after break-in bolsters the earlier evidence against an essential role for IP$_3$-mediated Ca$^{2+}$ mobilization in ipRGC phototransduction. As discussed in the following text, the more pronounced suppression by BAPTA may reflect its broader-spectrum effects, including its ability to suppress increases in [Ca$^{2+}$], resulting from Ca$^{2+}$ entry or other IP$_3$-independent mechanisms and to drive intracellular free calcium to such low levels.

![Image](https://example.com/image.png)

FIG. 4. Immunohistochemical evidence for colocalization of PLCβ4 and melanopsin in ipRGCs. A–D: multiple views of the same vertical section of rat retina illustrating cell layers as viewed in Nomarski optics (A); PLCβ4-like immunofluorescence (green; antibody: sc269662; B); melanopsin-like immunoreactivity (red; antibody: SC-404; C), and merge of B and C (D). Arrowheads mark a melanopsin-positive ipRGC. E and F: enlarged views of the melanopsin-positive cells in B–D. Scale bar in B equals 50 μm for A–D; scale bar in G equals 10 μm for E–G.

FIG. 5. Whole cell voltage-clamp recordings from melanopsin ganglion cells showing effects on photocurrent of agents altering IP$_3$-mediated Ca$^{2+}$ mobilization including a blocker of IP$_3$ receptors (A), an agent depleting intracellular Ca$^{2+}$ stores (B), a chelator of intracellular Ca$^{2+}$ (C), and the native ligand of IP$_3$ receptors (D). ■, light stimulus for all traces above it. E: example trace of an ipRGC recorded with IP$_3$ in the pipette immediately following break-in (*). Note the lack of response. F: positive control for thapsigargin: HEK293 cells were loaded with the calcium indicator Oregon Green BAPTA-AM and their responses to bath-applied 100 μM carbachol (●), a muscarinic receptor agonist that causes release of calcium from intracellular stores (Luo et al. 2001), were monitored by fluorescent imaging. Ten-minute incubation in 4 μM thapsigargin completely abolished the response to carbachol, indicating that the calcium stores had been completely depleted (n = 10; error bars indicated SD). Gap in recording between angled lines indicates 10 min. Calibration: A–E, 10 s, 100 pA; F, 60 s, 5%.
concentrations that PLC activity is disrupted (Hardie 2005; Horowitz et al. 2005).

By weighing against an essential role for IP$_3$-mediated calcium mobilization in ipRGC phototransduction, the foregoing evidence lends credence to the alternative hypothesis that PLC activation is coupled to gating of the light-activated channel through a membrane-associated signaling cascade. Other key transduction components, such as melanopsin, G proteins, PIP$_2$, and the light-gated channels, are also localized to the plasma membrane. We therefore suspected that excised patches of ipRGC membrane might be autonomously photosensitive. This proved to be true. In inside-out patches excised from isolated ipRGCs, light triggered prominent transmembrane currents under voltage clamp (n = 3; Fig. 6A) and trains of fast action potentials in current clamp, even when heparin was included in the recording pipette (n = 5; Fig. 6D). Outside-out patches of membrane were likewise photosensitive. They exhibited light-induced action potentials that were blocked when TTX was applied through a nearby puffer pipette (n = 5; Fig. 6C). They also exhibited photocurrents under voltage clamp, even when heparin was included in the recording pipette (1 mg/ml) and thapsigargin (4 μM) added to the bath (n = 5; Fig. 6D).

Identity of membrane-associated signaling components

Together, the data strongly suggest that neither calcium released from intracellular stores nor any other highly diffusible cytosolic signaling component is essential for phototransduction in ipRGCs. The most straightforward alternative hypothesis is that DAG, the membrane-associated product of PIP$_2$ hydrolysis, represents the key second messenger in this cascade. However, bath or pipette puffer application of the membrane-permeant and constitutively active DAG analogue OAG failed to induce a current in isolated ipRGCs recorded in whole cell mode (Fig. 7A). Nor did OAG block light responses, even after a 10-min application at a high concentration (100 μM; n = 8; Fig. 7B). Similar negative results were obtained when another DAG analogue, 1,2-dioctanoyl-sn-glycerol (DOG), was applied in whole cell recordings and also when OAG or DOG were applied to light-responsive excised patches (data not shown).

In *Drosophila* photoreceptors, which are thought to use a membrane-associated phosphoinositide cascade for phototransduction, DAG analogues likewise fail to induce a current or to block photoresponses (Minke and Parnas 2006), but polyunsaturated fatty acids (PUFAs), which are metabolites of DAG, activate robust currents through light-gated transient receptor potential (TRP) channels (Chyb et al. 1999). We could not reproduce this result in ipRGCs. Exposing ipRGCs to the PUFAs arachidonic acid (AA) through a puffer pipette or by fast bath application induced no current (Fig. 7C) nor was there any block of the light response even when applied for 10 min at a high concentration (100 μM; n = 7; Fig. 7D). Similar negative results were obtained when another PUF, linolenic acid, was applied during whole cell recordings and when arachidonic or linolenic acid were applied to light-responsive excised patches (data not shown).

To confirm the efficacy of the DAG analogues and PUFAs used, we conducted positive control experiments in HEK293 cells using a heterologously expressed

FIG. 6. Photoresponses from excised patches of ipRGC membrane.

A: inward photocurrent recorded under voltage clamp (+74 mV) from the inside-out patch illustrated in left inset (scale: 10 μm). *B:* light-evoked voltage response from inside-out patch recorded in AC coupled current-clamp mode.

C: blockade by tetrodotoxin of light-evoked spikes from an outside-out patch of ipRGC membrane.

D: photocurrent from an outside-out patch recorded under voltage clamp (−74 mV) with heparin in pipette and thapsigargin in bath. Right inset: extended x axis view of spikes from an outside-out patch of ipRGC membrane responding to light. Calibration: *A* and *D,* 6 s and 10 pA; *B* and *C,* 6 s and 0.2 mV; right inset, 50 ms and 0.2 mV. ■, light stimulus for all traces above it.
fluorescent fusion protein that serves as a biosensor for DAG in the plasma membrane (Fig. 7, F and G). We expressed a construct, kindly provided by Dr. Tobias Meyer, that codes for green fluorescent protein fused to the cys1 domain of phosphokinase C. This protein translocates to the cell surface when DAG levels in the plasma membrane increase; this response can be blocked by preincubation with AA (Oancea et al. 1998). Using this system, we confirmed that the DAG-related agents used in the preceding text in studies of ipRGCs were pharmacologically effective. As shown in Fig. 7F, OAG (a DAG analogue) triggered the expected translocation of the fusion protein in HEK293T cells (Fig. 7F) and pretreatment with AA blocked this movement (Fig. 7G). These control studies bolster the significance of the failure of OAG and AA to affect ipRGC phototransduction by ruling out the possibility that they are simply artifacts of poor pharmacological reagents or technique.

The foregoing results suggest that PLC triggers the opening of the light-gated channels by a membrane-associated but DAG-independent mechanism. A plausible candidate for such a mechanism is a direct interaction between PIP2 and the channel that maintains the channel in a closed state in darkness. Light would stimulate PLC to hydrolyze PIP2, reducing its abundance and thus releasing the channels into an open state. There is evidence that PIP2 can either open or close a variety of ion channels, including the light-gated channels in Drosophila (Hardie 2003). A recent groundbreaking paper used sophisticated constructs to show that changes in PIP2 levels can open channels even when DAG, IP3, or Ca2+ levels are not affected (Suh et al. 2006). Until we develop methods for exploiting such constructs in ipRGCs, a definitive test of this hypothesized signaling mechanism is beyond our means. As a preliminary test of this hypothesis, however, we pharmacologically interfered with PIP2 synthesis using wortmannin. This drug inhibits phosphoinositide 4-kinase (PI4-K), the synthetic enzyme for phosphatidylinositol 4-phosphate (PIP), which is an essential precursor of PIP2. According to the hypothesis, wortmannin should slow the termination of the photocurrent at light offset by delaying the restoration of resting levels of PIP2 and thus the closure of the light gated channels. Indeed when wortmannin was included in the pipette solution (15 μM), response shutoff was dramatically delayed (Fig. 7E). In wortmannin-treated cells tested 10 min after break-in, it took more than a minute after light offset for the persistent poststimulus current to decay to half of peak response amplitude [72 ± 12 (SD) s; n = 5, Fig. 7E], whereas in control cells such recovery occurred in less than a second (0.8 ± 0.2 s; n = 5, Fig. 7E). Wortmannin had other effects on phototransduction as well; ipRGCs exposed to the drug exhibited an increase in latency to peak (Fig. 7E, red trace), failed to recover back to their prestimulus baseline, and were usually unable to generate a second light response (4 of 5 cells). These data are consistent with the hypothesis that the phototransduction process depletes basal levels of PIP2, triggering channel opening, and that wortmannin blocks restoration of the closed state by inhibiting PIP2 re-synthesis. However, these results should be interpreted cautiously because disrupting PI4-K function could affect the transduction cascade in other ways (Kanaho and Suzuki 2002) and because wortmannin affects a variety of enzymes other than PI4-K (Wipf and Halter 2005).
DISCUSSION

The central finding of this study is that phototransduction in intrinsically photosensitive retinal ganglion cells is based on a phosphoinositide signaling cascade largely or completely localized to the plasma membrane. It had been well established that melanopsin is the photopigment of ipRGCs, but the downstream signaling cascade in these cells had remained elusive. Melanopsin has been suggested to signal through a phosphoinositide cascade in several native cellular environments (Contin et al. 2006; Isoldi et al. 2005; Koyanagi et al. 2005) and in two heterologous expression systems (Panda et al. 2005; Qiu et al. 2005). On the other hand, melanopsin, like many G-protein-coupled receptors (Hermans 2003), can couple to G proteins of more than one class under some conditions (Melyan et al. 2005; Newman et al. 2003). Thus the cognate G protein for melanopsin in ipRGCs, although widely suspected to belong to the G_{11} family, has never been conclusively established.

The present pharmacological data strongly support the hypothesis that one or more G proteins of the G_{11} family are essential for ipRGC phototransduction. Our molecular evidence implicates Go_{14} as the most likely family member to serve this role because it was detectable in a clear majority of ipRGCs while other family members were found less frequently. However, we failed to detect Go_{14} in a minority of sampled ipRGCs. We suspect that this is attributable to the vulnerability of the single-cell RT-PCR method to false negatives (Roepers and Liss 2004), but convergent evidence from complementary methods is needed on this point. The obligate effector enzyme for G_{11}-class G proteins is PLCβ. The present pharmacological and electrophysiological data confirm the essential role of this enzyme in phototransduction, whereas the molecular and immunohistochemical findings point to PLCβ4 as the specific isozyme most likely to serve this function.

The reliance of ipRGCs on phosphoinositide signaling for phototransduction distinguishes them from vertebrate rods and cones and underscores their similarity to invertebrate rhodomorphic photoreceptors (Fein and Cavar 2000). The “rhodomorphic” signaling cascade of ipRGCs is congruent with their other invertebrate-like features, including the amino-acid sequence and bistability of their photopigment (melanopsin), the polarity of their light response, and their direct axonal projections to the brain (e.g., Berson 2007; Koyanagi et al. 2005; Melyan et al. 2005; Panda et al. 2005; Provenzio et al. 2000). These features support the view that ipRGCs are homologous to invertebrate rhodomorphic photoreceptors, sharing an evolutionary origin in the eyes of a common ancestor of extant invertebrates and vertebrates (Arendt 2003; Plachetzk et al. 2005).

Evidence is emerging for substantial diversity among rhodomorphic photoreceptors in phototransduction mechanisms downstream of PLC, especially in the identity of signaling components and light-gated channels and whether diffusible cytosolic second messengers are required (Dorlochter and Sistere 1997; Fein and Cavar 2000; Hardie and Raghu 2001). In ipRGCs, the key signaling components downstream of PLCβ appear to be within or closely associated with the plasma membrane. The most compelling evidence for this is the persistence of photosensitivity in isolated inside-out patches of ipRGC membrane. Of course, cytoplasmic constituents tightly linked to the membrane may be retained during patch excision, but readily diffusible constituents such as free Ca^{2+} are presumably precluded from playing a key signaling role under these recording conditions. This implies that the cytosolic branch of the phosphoinositide signaling cascade, mediated by IP_{3}, is not required for ipRGC phototransduction. This view is reinforced by the fact that light responses persist for hours in whole cell recordings of ipRGCs, including isolated ipRGC somas lacking dendrites, a recording configuration in which the dialysis of diffusible cell constituents is presumably very intensive. Further, such responses persist when IP_{3} receptors are blocked or flooded with their ligand, calcium stores are depleted, or (at least over the short term) when intracellular calcium is chelated (Fig. 4). Highly diffusible cytosolic components thus appear unnecessary for basic phototransduction in ipRGCs, although they undoubtedly play important modulatory roles under physiological conditions, such as adaptation, gain control, and response termination.

The data of Fig. 5C may suggest to some readers that Ca^{2+} could serve as an essential second messenger in ipRGC phototransduction. When intracellular free calcium in ipRGCs was thoroughly chelated by BAPTA, the light response was significantly attenuated after 10 min and largely abolished after 20 min. It is important to recognize, however, that chelating all intracellular free calcium is a drastic manipulation that affects Ca^{2+} derived from all sources. This can be expected to alter countless proteins and physiological processes that depend on some minimal level of basal-free Ca^{2+}. It is of particular relevance that PLC activity is Ca^{2+} dependent (Hardie 2005; Horowitz et al. 2005) because our data identify this as the essential effector enzyme for ipRGC phototransduction. Further, if Ca^{2+} served as an essential intracellular second messenger for the core melanopsin signaling cascade, one would expect the photoreponse to be abolished within seconds as BAPTA, a fast Ca^{2+} chelator, diffuses throughout the cytosol of these small, compact cultured cells. Because the complete loss of the response takes orders of magnitude longer than this, the evidence suggests that Ca^{2+} seems to play a permissive, and perhaps modulatory role in ipRGC phototransduction, not an instructive one.

A very recent study by Peirson et al. (2007) may also be viewed as arguing against a purely membrane-associated phototransduction cascade in ipRGCs. They provided intriguing evidence that a particular isoform of protein kinase C (PKCzeta) may play an important role in the generation of ipRGC photoresponses. They showed that this enzyme is expressed in ipRGCs and that its transcription in the retina is upregulated by light, ostensibly through a melanopsin-dependent process. They further showed that PKCzeta knockout mice exhibit a behavioral phenotype mimicking that of melanopsin knockout animals. At this point, it is unclear whether the behavioral phenotype in PKCzeta knockouts results from disruption of ipRGC phototransduction per se because it could also be explained by defects in axon outgrowth, pathfinding, synaptogenesis, or presynaptic release. If these animals do indeed have a phototransduction defect, it would still be uncertain that PKCzeta plays a crucial signaling (instructive) role in the cascade. It might, instead, play a permissive role, for example by enabling the proper development or maintenance of the transduction machinery. Even if a key signaling role for PKCzeta in the phototransduction cascade can be established, this need not conflict with the present evidence for a mem-
brane-associated cascade. Although PKC isozymes are often found within the cytosol, they can be recruited to the membrane. In fact, Peirson et al. (2007) localized PKCζ to the ipRGC plasma membrane. Thus it could have been retained during our excision of isolated patches.

The phototransduction cascade in ipRGCs bears a particularly strong resemblance to that in *Drosophila* photoreceptors (Hardie and Raghu 2001) in that it appears membrane-associated and does not require IP3. The similarities are extended by the present evidence implicating PLCβ4 as the most likely effector enzyme in ipRGCs because this is the mammalian PLCβ isozyme most closely related to the PLC-norpA effector enzyme in *Drosophila* photoreceptors (Lee et al. 1993). The similarities between ipRGCs and *Drosophila* photoreceptors may extend even to the general form of the light-gated channel. In ipRGCs, available evidence has raised the possibility that photocurrents may be carried by members of the canonical subfamily of transient receptor potential (TRP) channels (Berson 2007; Sekaran et al. 2007; Warren et al. 2006), the closest mammalian homologs of the light-gated TRP and TRPL channels in *Drosophila* photoreceptors. The present evidence is in keeping with this view because both ipRGC light-operated channels and TRPC channels can be gated by G-protein-stimulated phosphoinositide signaling, at least in part by a membrane-delimited pathway (Chyb et al. 1999). However, our data may also pose a problem for the hypothesis that TRPCs are the light-gated channel in ipRGCs. DAG analogues and metabolites, which activate both *Drosophila* TRP channels and many mammalian TRPC channels, failed to induce a current in ipRGCs or to occlude the light-evoked current. It seems safe to say that uncertainty about the identity of the light-gated channels in ipRGCs remains the most glaring gap in our understanding of phototransduction mechanisms in these neurons.

Acknowledgments

We thank A. Hartwick for advice on retinal dissociation, A. Zimmerman, J. Kauer, B. Connors, and D. Clapham for helpful discussions, D. Boghossian for technical help, K. Derby, and R. Masui for preliminary work on G protein mRNA, and T. Meyer for the eGFP-PKCζC12 construct.

Grants

This work was supported by separate Ruth L. Kirschstein National Research Service Awards to D. M. Graham and K. Y. Wang and by National Eye Institute Grants RO1 EY-12793 and EY-17137 to D. M. Berson.

References

Hardie RC. Inhibition of phospholipase C activity in *Drosophila* photoreceptors by 1,2-bis(2-aminophenoxy)ethane N,N,N'-N'-tetraacetic acid (BAPTA) and di-bromo BAPTA. *Cell Calcium* 38: 547–556, 2005.

