Dynamics of Orientation Tuning in Macaque V1: the Role of Global and Tuned Suppression

Dario L. Ringach1, Michael J. Hawken2 and Robert Shapley2

1Departments of Neurobiology and Psychology
Jules Stein Eye Institute
Brain Research Institute
University of California, Los Angeles
Los Angeles, California 90095, USA

2Center for Neural Science, New York University,
New York, New York 10003, USA
The temporal development of neural selectivity to physical attributes of a visual stimulus, such as its orientation and spatial frequency, can provide important clues about mechanisms of cortical tuning. We measured the dynamics of orientation tuning in macaque primary visual cortex (V1) and found several dynamical features in the data: changes in global enhancement and suppression; narrowing of orientation bandwidth; small but significant shifts in preferred orientation; and “Mexican hat” tuning curves. The dynamics data were analyzed with a model that sums two fixed, tuned components (enhancement and suppression) and one global (untuned) component. The analysis suggests that there is early global enhancement followed by global and tuned suppression. Tuned suppression accounts for the dynamical reduction of orientation bandwidth and for the generation of Mexican-hat tuning profiles. Our findings imply that global and tuned suppression are important factors that determine the selectivity and dynamics of V1 responses to orientation.
The temporal development of neural selectivity to stimulus attributes can provide important clues about the underlying circuitry (Pei et al. 1994; Volgushev et al. 1995; Ringach et al. 1997b; Bredfeldt and Ringach 2002). Cortical excitation and inhibition onto a neuron is expected to be delayed with respect to the monosynaptic input from the Lateral Geniculate Nucleus (LGN). Suppose one measures responses of a cortical neuron at different delay times with respect to stimulus onset. The early response would be dominated by excitation from the LGN input, while the late response would correspond to a combination of both LGN input and intracortical interactions. For orientation tuning dynamics, some groups report dynamical changes in the shape of the tuning curves (Pei, Vidyasagar, Volgushev, and Creutzfeldt 1994; Volgushev, Vidyasagar, and Pei 1995; Ringach, Hawken, and Shapley 1997b) while others observe a scaling of its magnitude and no significant changes in its shape (Gillespie et al. 2001; Sharon and Grinvald 2002; Mazer et al. 2002; Celebrini et al. 1993; Muller et al. 2001).

In our earlier study (Ringach et al, 1997b) on the timing of the development of orientation tuning we found that there were, in many cells, significant dynamical changes in shape of the orientation tuning curves. In particular, we suggested that the development of Mexican-hat tuning curves in the response could be accounted for by the presence of a tuned suppressive component centered on the preferred orientation of the cell. In more recent studies we have concluded that, in addition to a tuned suppressive component, there is a global suppressive component involved in the tuning for orientation and spatial frequency (Ringach et al, 2002a; Bredfeldt & Ringach, 2002). However, up until now, we only reported results about these global components at a fixed delay time.
(the peak) in the time evolution of the response. In this paper we bring together these concepts to study both the time evolution of the global components in the dynamical response and the relationship of the global to the tuned components. This brings new insights into the cortical processes that are responsible for the generation of orientation tuning.

Here we re-examine the dynamics of orientation tuning in macaque V1 using an improved version of the reverse correlation method, where in addition to oriented patterns, “blank” frames of uniform luminance appear within the stimulation sequence (Ringach et al. 1997a). The blanks provide a baseline that allows direct detection of response enhancement and suppression by an oriented pattern. This modified reverse correlation technique allowed us for the first time to measure enhancement and suppression components that are un-tuned for orientation. Previous techniques used by us and others (Mazer et al., 2002) do not allow the measurement of such global effects of oriented dynamical stimuli. These new measurements reveal important new phenomena, as shown in detail in the Results. One new phenomenon is global excitation early in the response of most neurons. The second new phenomenon is global suppression, also observed in most neurons. What is remarkable is the rapid time course of global suppression, and its strength. In many neurons we also observed the phenomenon of orientation-tuned suppression that was evident in our earlier data (Ringach et al., 1997b). Because of the overlap in time of enhancement and suppression, we attempted to gauge the strength of the
global and the tuned suppression relative to that of excitation through analysis with a descriptive model.

The dynamics data were analyzed in the context of a model in which, at each time, the tuning curve is obtained as a linear combination of two fixed, tuned components (enhancement and suppression) and one global (untuned) component. Data analysis with this model suggests that early global enhancement causes the cell to respond to all orientations. Then, global and tuned suppression develop rapidly and are comparable in magnitude to the tuned enhancement the cells receive. The suppressive components appear responsible for increasing the “modulation depth” of the tuning curve, for the dynamical narrowing of orientation bandwidth, for the generation of Mexican-hat tuning profiles, and for producing small shifts in the preferred orientation over the time-course of the response. This leads to the conclusion that global and tuned suppression are important factors that determine the selectivity and dynamics of V1 responses to orientation.

Methods

Animal preparation and experimental protocol

Acute experiments were performed on adult old-world monkeys (M. fascicularis) in compliance with NIH and NYU/UCLA guidelines. Animal preparation and recording were done as described in Ringach et al. (2002a, b). Each cell was stimulated monocularly through the dominant eye and characterized by measuring its steady-state response to conventional drifting gratings (the non-dominant eye was occluded). Using this method we recorded basic attributes of the cell, including spatial and temporal frequency tuning, orientation tuning, contrast and color sensitivity,
as well as area summation curves. Receptive fields were located at eccentricities between 1 and 6 deg. The mean luminance of the screen was 50 cd/m², the viewing distance 90-120 cm, and the refresh rate was 60 Hz.

Reverse correlation in the orientation domain

A modified version of reverse correlation in the orientation domain was used to measure the time evolution of orientation tuning. For each cell, a set S of sinusoidal gratings of a fixed spatial frequency (optimal for the cell) and contrast (in the range 80-99%) but different orientations and spatial phases was generated and stored in the computer’s memory. The orientation domain was sampled in equal steps ranging from 3 to 12 deg. For most cells the angular step was fixed at 10 deg. For each orientation, sinusoidal gratings at eight equally spaced spatial phases, spanning the entire 360 deg range, were included in the set. Eight “blank” (uniform) images, of the same luminance as the mean of the gratings' luminance, were included in the set as well. In a typical experiment the total number of images in S was 152 (18 orientations times 8 spatial phases, plus 8 blanks). The responses of neurons were measured under a constant level of contrast gain control.

The stimulus was generated by randomly selecting, at each video refresh frame, a new image from S with replacement. The stimulus was presented in 30 sec long trials with approximately 1-2 sec inter-stimulus intervals. A total of 30 trials were presented to each cell, making the total experimental time 15 min. The specific image sequence was saved by the computer and action potentials recorded and time-stamped by the data acquisition system. The radius of the stimulus was 2-4 times the radius of classical RF defined by the peak or saturation point of an area summation curve (Sceniak et al. 1999). Thus, both the classical RF of the cell and its surround were stimulated. We reasoned that under these conditions both feed-forward and intracortical
mechanisms of orientation tuning may be engaged, while stimuli restricted to the classical receptive field may bias the results to the direct contribution of the LGN inputs. In addition, natural images are spatially extended and contours tend to have long-range structure. Large stimuli covering both the receptive field and the surround approximate the natural situation closer than a stimulus restricted to the classical receptive field of the neuron.

The time course of orientation tuning was determined according to the following algorithm. First, an array of counters corresponding each to the orientations present in the stimulus, and one separate counter representing the blanks, were zeroed. A fixed value of a time-delay parameter τ was selected. For each nerve impulse we went back τ ms and determined the frame that was last present in the image sequence. If the stimulus was a grating, the counter corresponding to its orientation was incremented by one. If the stimulus was a blank, the counter corresponding to the blanks was incremented by one. Gratings of different spatial phases but the same orientations contributed to the same counter. Thus, this procedure averages across spatial phase at each orientation. At the end of this procedure all the spikes recorded end up being distributed in the counters. Thus, the sum of all the counts in the counters equal the total number of spikes collected. This is the case irrespective of the time delay chosen. The resulting counts were normalized by the actual number of times each orientation (or blank) appeared in the sequence. This provides an estimate of the probability that the cell will fire in a window $(\tau, \tau + T)$ ms after a stimulus is shown (where T is the duration of one frame). This function is identical, up to a scaling factor, to the probability that a stimulus preceded a spike by τ ms. In previous work we described our results in terms of the probability of a stimulus preceding a spike, but in recent years we realized that our colleagues find it more intuitive to think about the “forward” interpretation, which we now adopt. These two interpretations are equivalent if the “forward” cross-correlation is smoothed in time with a T ms box window. Once the probability of firing in
response to an oriented pattern, \(p(\theta, \tau) \), and the blank, \(p(\text{blank}, \tau) \), were estimated we calculated \(R(\theta, \tau) = \log_{10}(p(\theta, \tau)/p(\text{blank}, \tau)) \), which we refer to as the tuning curve at a time lag \(\tau \). Oriented patterns that generate responses identical to the “blank” are mapped to \(R(\theta, \tau) = 0 \), stimuli that enhance cell’s response are mapped to \(R(\theta, \tau) > 0 \), while stimuli that suppress the cell’s response are mapped to \(R(\theta, \tau) < 0 \). A statistical justification for the log transform in the definition of \(R(\theta, \tau) \) was provided in Ringach et al (2002). Furthermore, one can view this transformation as providing an estimation of a log-linear model of \(p(\theta, \tau) \) based on the stimuli assuming that the weight of the “blank” stimulus is zero. A log-linear model for the probability of firing is more appropriate than simply linear regression as the latter can generate predictions outside the \([0,1]\) range.

Non-parametric analysis of orientation dynamics

Consider a hypothetical tuning curve at a fixed time lag (Fig 1). Using non-parametric methods we estimate a number of features of the curve. These include: (a) the orientation angle of the peak response, \(\theta_{\max} \), and its magnitude \(R_{\max} \), (b) the orientation angle and magnitude of the minimum response, \(\theta_{\min} \) and \(R_{\min} \), (c) the angle orthogonal to \(\theta_{\max} \), denoted here by \(\theta_{\text{orth}} \), and the magnitude attained by the tuning curve there, \(R_{\text{orth}} \), (d) the “modulation depth” of the tuning curve, defined by \(A = R_{\max} - R_{\min} \), and (e) the dynamic half-bandwidth \(B_d \) defined by half the width of the tuning curve at a criterion level of \(R_{\text{orth}} + (R_{\max} - R_{\text{orth}})/2 \).
Parametric analysis

The parametric analysis was performed by fitting \(R(\theta, \tau) = \alpha(\tau)E(\theta) + \beta(\tau)S(\theta) + \gamma(\tau) \) to the data, where

\[
E(\theta) = \frac{\exp(\kappa_e \cos(2(\theta - \theta_e))) - \exp(-\kappa_e)}{(\exp(\kappa_e) - \exp(-\kappa_e))}
\]

is a von Mises “distribution” (Mardia, 1972) normalized between zero and one. The von Mises distribution has been shown to provide very good fits to empirical data (Swindale, 1998). The parameter \(\theta_e \) determines the center of the component and \(\kappa_e \) its width. Similarly, the suppressive component was parameterized by

\[
S(\theta) = \frac{\exp(\kappa_s \cos(2(\theta - \theta_s))) - \exp(-\kappa_s)}{(\exp(\kappa_s) - \exp(-\kappa_s))}
\]

The centers of the two tuned components are not constrained to be equal. This allows the model to fit asymmetric tuning curves as well. Fitting of \(R(\theta, \tau) \) was done by a fixed-point algorithm defined by the repeated interaction of two steps. In the first step, we assumed the parameters of the \(E(\theta) \) and \(S(\theta) \) were known (and fixed) and found the best fitting coefficients at each time delay independently (under the constraints \(\alpha, \beta > 0 \)). In the second step, we found the best fitting values of \((\theta_e, \kappa_e, \theta_s, \kappa_s) \) using the coefficients from the first step. The process was repeated until there was less than 0.1% change in the parameters from one interaction to the next. While we do not have a proof that this algorithm is guaranteed to converge in all situations, it worked remarkably well in nearly every single instance we tried.

Confidence intervals
Confidence intervals for the estimated parameters were determined by bootstrap simulation as follows (Efron and Tibshirani 1993). For each time delay the algorithm provides a distribution of N spikes into M bins. These multinomial data were resampled to generate different tuning curves, and the parameters estimated from the resampled data. A total of 500 simulations were performed at τ_{dev} and τ_{dec} to determine 95% confidence intervals for each parameter and their differences. For each data set, non-parametric estimates were obtained after linearly interpolating the raw data with 0.1deg resolution and smoothing the tuning curve with a von Mises distribution with a parameter $\kappa = 14$, which corresponds to a half-bandwidth at half-height of 10 deg.

Results

Nonparametric analysis

The behavior of $A(\tau)$, $R_{min}(\tau)$ and $R_{orth}(\tau)$ for four representative neurons is depicted in Fig 2, left column. The modulation depth, $A(\tau)$, normally increases to reach a peak and then declines back to baseline. We used the time course of the modulation depth to define three time lags at which the orientation tuning curves were subsequently analyzed (Fig 2, middle and right panels). These correspond to the points at which the modulation depth achieved its maximum value (τ_{pk}), and the points at which it achieved half its maximum value during the development (τ_{dev}) and decay (τ_{dec}) phases of the response (vertical dashed lines in Fig 2, left panels). The distribution of $\tau_{dec} - \tau_{dev}$ over the V1 population had a mean of 22.3 ± 6.6 ms (1 SD) and the dynamical changes described below occur over this time scale.

The middle and right hand columns of Fig 2 depict orientation tuning curves for these four representative neurons at τ_{dev} (red, middle panels), τ_{dec} (blue, middle panels), and τ_{pk} (right
panels). The changes with time in the height of these curves compared to the baseline, and the changes in their shapes, show that orientation selectivity varies dynamically in some V1 neurons in a very clear way.

The dynamic behavior of \(R_{\text{min}}(\tau) \) shows a number of important features. In all four examples \(R_{\text{min}}(\tau_{\text{dev}}) > 0 \), as the red curves in the middle panel of Figure 2 are above zero for all four neurons. This means that during the development of the response all orientations induced the cell to fire more than to a blank stimulus. In contrast, \(R_{\text{min}}(\tau_{\text{dev}}) < 0 \), indicated by the blue curves in the middle column of Figure 2 being below zero. Thus, during the decay phase of the response, some orientations suppressed spike firing. In some V1 neurons, this effect appears to be mediated by global suppression (Fig 2a,b, middle and right panels). In other cells, however, there is also evidence of tuned suppression developing over the time course of the response, which causes the shape of the tuning curve to develop into a Mexican-hat profile during the decay phase (Fig 2c,d). For the cells in Fig. 2c,d, \(R_{\text{min}}(\tau) \) and \(R_{\text{orth}}(\tau) \) begin to diverge around the time of the peak response, implying that after \(\tau_{\text{pk}} \) the minimum response occurs at a location other than the orthogonal – the signature of a Mexican hat profile.

Average dynamics in V1

The average dynamics of \(A \), \(R_{\text{min}} \) and \(R_{\text{orth}} \) in our population of \(n = 178 \) V1 cells are shown in Figure 3. An important feature of the data is the sharp downward change in time course of \(R_{\text{min}}(\tau) \) and \(R_{\text{orth}}(\tau) \) before \(\tau_{\text{pk}} \). This suggests that the mechanism of
suppression is rapid and contributes to the modulation depth at the peak time. Another important feature is the positive sign of R_{min} and R_{orth} early in the response, indicating that, on average, V1 cells tend to respond to all orientations at this time.

Population analysis

The dynamics of R_{min} across the population are analyzed in Figure 4. There is an initial tendency for cells to respond to all orientations during the development phase of the tuning curve – the sample mean of $R_{\text{min}}(\tau_{\text{dev}})$ is significantly greater than zero (t-test, $p < 3 \times 10^{-6}$) (Fig 4a, bottom histogram). However, most cells tend to be suppressed at some orientations during response decay, since the sample mean of $R_{\text{min}}(\tau_{\text{dec}})$ is significantly less than zero (t-test, $p < 1 \times 10^{-10}$) (Fig 4, left histogram). Thus, R_{min} decreases from the development to the decay phases of the response, as illustrated by the difference histogram along the diagonal (Fig. 4a). The average difference $R_{\text{min}}(\tau_{\text{dev}}) - R_{\text{min}}(\tau_{\text{dec}})$ is significantly greater than zero (t-test, $p < 1 \times 10^{-10}$). These results on the dynamics of $R_{\text{min}}(\tau)$ depend on being able to have a baseline against which to measure the early enhancement and later suppression. They indicate a major qualitative change in orientation tuning curves with time across the V1 population of the kind seen in the representative neurons in Fig. 2.

It is possible to establish a correlation between orientation selectivity and suppression by examining the natural variability across the V1 population. There is a correlation
between the maximum modulation depth $A(\tau_{\text{pk}})$ and $R_{\text{min}}(\tau_{\text{dec}})$ (Fig 4b). The larger the suppression observed during response decay, the larger the modulation depth of the tuning curves at their peak. This result indicates that cortical suppression may be needed for high orientation selectivity in V1.

The shape of the tuning curves changes over the response period in many neurons (Fig 5). A common pattern we observe is the transition from a Gaussian-like tuning curve to a Mexican-hat shaped one (Fig 2c,d). To quantify this effect we compared the minimum response to the response at the orthogonal orientation. Fig 5a shows a scatter-plot for $R_{\text{orth}} - R_{\text{min}}$ at the development and decay times. When the minimum response in the tuning curve occurs at the orthogonal orientation, $R_{\text{orth}} - R_{\text{min}} = 0$. For a Mexican-hat shaped tuning curve this difference will be positive, as the minimum occurs at an orientation other than the orthogonal. The population data in Fig 5a show that most cells have a minimum response near the orthogonal orientation both during the development and the decay of the response, but that during the decay phase a significant number of cells have $R_{\text{orth}} > R_{\text{min}}$, implying a Mexican-hat shape for the tuning curve of these neurons.

The location of the minimum response relative to the peak orientation correlates with the bandwidth of the cell (Fig 5b). Cells that are broadly tuned tend to have their minimum response at locations near the orthogonal orientation, while cells that are more sharply tuned tend to have a minimal response at flanking orientations (less than 90 deg away). This graph in Fig. 5b illustrates the point that, whenever the bandwidth during the decay
phase was small (indicating the cell was sharply tuned), flank suppression was invariably observed.

The bandwidth can change dynamically over time (Fig 6). A scatter-plot of $B_d(\tau_{dev})$ versus $B_d(\tau_{dec})$ shows that the bandwidths of some cells narrow (points below the unit line) and others broaden (points above the unit line) (Fig.6a). Figure 6b depicts the percent decrease in bandwidth versus the bandwidth of the tuning curve at τ_{dev}. A summary of the data is provided in the form of two histograms showing the percent decrease in bandwidth for cells that achieve a small bandwidth ($B_d(\tau_{dev}) < 30\text{deg}$) and those which do not ($B_d(\tau_{dev}) \geq 30\text{deg}$) (Fig 6c). Sharply tuned cells sharpen over time (Fig 6c, top histogram, t-test, $p < 10^{-10}$) while there is a tendency for cells that are initially moderately or broadly tuned to broaden over time (Fig 6c, bottom histogram, t-test, $p < 0.015$).

To investigate if the changes in bandwidth occur preferentially during the rising or decay phase of the response we plotted the relative change in bandwidth, as a function of the initial bandwidth, in the time periods (τ_{dev}, τ_{pk}) and (τ_{pk}, τ_{dec}) (Fig 7). The scatter plots have the same overall structure as the one in Fig 6b. Sharply tuned cells (with bandwidths $< 30\text{deg}$) tend to show a decrease in bandwidth in both periods, with a slighter larger decrease during the decay phase (mean of 4.6% decrease in the raising phase and 6.3% in the falling phase). The situation appears to be more complex for
broadly tuned cells which also show a decrease in bandwidth during the rising phase but appear to broaden during the decay. The net effect is a slight broadening (Fig 6a,b).

The preferred orientation of neurons usually remained relatively constant within the \((\tau_{\text{dev}}, \tau_{\text{dec}})\) window, but significant changes in the order of 5-15 deg were observed in some neurons (Fig 8). We note that the present analysis of orientation shifts was restricted to the time window defined by \(\tau_{\text{dev}}\) and \(\tau_{\text{dec}}\). As reported by us previously, if we were to look at times larger than \(\tau_{\text{dec}}\) many of the tuning curves that develop into Mexican hat profiles at \(\tau_{\text{dec}}\) will evolve into a tuning curve that appears “inverted” at a later time and where the maximum is at the orthogonal orientation (Ringach et al, 1997b). We define a response to be inseparable in orientation and time if either the bandwidth or the peak orientation showed significant changes between \(\tau_{\text{dev}}\) and \(\tau_{\text{dec}}\). With this criterion, 123 out of 178 cells (69\%) showed inseparable responses.

Model-based interpretation of orientation dynamics

The empirical results presented in Figures 2 and 3 indicate that there are at least three different kinds of processes leading to orientation selectivity and that they overlap in time in the dynamical responses. In order to explore the mechanisms of suppression, we fitted a three-component model to the data. One component was tuned excitation; one was tuned suppression; and the third component was untuned (or global) excitation or suppression (depending on the sign of the global term). The three-component model is described by
\[R(\theta, \tau) = \alpha(\tau)E(\theta) + \beta(\tau)S(\theta) + \gamma(\tau). \]

Here, \(E(\theta) > 0 \) and \(S(\theta) < 0 \) represent tuned enhancement and suppression components, and their shapes are parameterized by (normalized) von Mises functions with different centers and widths (see Methods). At each point in time, the response \(R(\theta, \tau) \) is approximated as a linear combination of these two tuned components plus the flat (global) component. The coefficients \(\alpha(\tau), \beta(\tau) \) and \(\gamma(\tau) \) represent the coefficients for tuned enhancement, tuned suppression, and the global component, respectively. While \(\alpha(\tau) \) and \(\beta(\tau) \) were constrained to be positive, \(\gamma(\tau) \) was free to be either positive or negative. The model provided very good fits to the data (in 90% of the neurons the residual variance was less than 10%). Fig 9a shows an example of how dynamics data in Fig 2d (open circles) were fit by the model (solid curves) at \(\tau_{\text{dev}} \) and \(\tau_{\text{dec}} \) by linear combination of the fixed components shown in the right panel.

Global and local suppression develop during the time course of the response (Fig 9b). We define the “strength” of each component by the area under it. Specifically, the area bounded between the orientation axis and \(\alpha(\tau)E(\theta) \) is denoted by \(a(\tau) \), the area bounded by \(\beta(\tau)S(\theta) \) is denoted by \(b(\tau) \), and the area bounded by the constant component \(\gamma(\tau) \). To compare the relative weight of each component we define

\[
\alpha'(\tau) = \frac{a(\tau)}{(a(\tau) + b(\tau) + |\gamma(\tau)|)}, \quad \beta'(\tau) = \frac{b(\tau)}{(a(\tau) + b(\tau) + |\gamma(\tau)|)} \quad \text{and} \quad \gamma'(\tau) = \frac{\gamma(\tau)}{(a(\tau) + b(\tau) + |\gamma(\tau)|)}.
\]

Notice that \(\alpha' \) and \(\beta' \) are always positive, but that
\(\gamma'\) can be either positive or negative. Because \(a' + b' + |\gamma'| = 1\) we can visualize the points \((a', b', \gamma')\) in barycentric coordinates (Fig 9b). The coordinates of each point are graphed as distance from the sides of two abutting equilateral triangles. Distance from the right hand side of each triangle is the relative weight of tuned excitation, \(a'\). Distance from the left hand side is the relative weight of tuned suppression, \(b'\). Distance above and below the common base of the triangles is the signed weight of the global component, \(\gamma'\) (if \(\gamma'\) is positive the point is plotted in the upper triangle, if it is negative in the lower triangle).

The left panel of Fig 8b shows that the responses at \(\tau_{dev}\) are mainly located in the upper triangle near the left hand side. This implies that average relative weight of tuned enhancement, \(a'(\tau_{dev})\), was much greater than the weight of tuned suppression, \(b'(\tau_{dev})\), and the global component was net positive -- meaning global enhancement was fairly strong in most cells at \(\tau_{dev}\). Relative to the distribution of points at \(\tau_{dev}\), the distribution of the relative component weights later in the response, at \(\tau_{dec}\), is shifted down and to the right (Fig 9b, right panel). The shift downwards implies that, during the decay phase, the global component's sign \(\gamma'(\tau_{dec})\) shifts from positive to negative; the shift rightwards implies that a tuned suppressive component must be included to fit the tuning curves at \(\tau_{dec}\). Early in the response, the tuned suppressive component is weaker than the enhancement component (points clustered to the left of the diagram). But later, tuned suppression and enhancement are more nearly equal (points near the vertical axis of the diamond).
The modeling also reveals that global suppression grows stronger with time, and for many neurons is also comparable in strength to tuned enhancement -- as seen by the cluster of neurons that lie near the middle of the lower triangle in the right hand barycentric plot of Fig. 9b. Furthermore, the results show that the relative strengths of tuned excitation, tuned suppression, and global excitation and suppression vary dynamically. Within this model, the changes in bandwidth, the development of Mexican-hat profiles, and changes in preferred orientation are explained by the development of the tuned suppressive component over time. While in some cases the suppression may appear smaller than the excitation in the plots of $R(\theta)$ this does not mean necessarily that the neural mechanisms of suppression are weak. Overlap in time and orientation of excitation and suppression can mask the true strength of the suppressive signals. The results of the descriptive model presented in Fig 9 supports this reasoning.

Discussion

We re-examined the dynamics of orientation tuning using a modification of the reverse correlation method that permits the detection of global excitation and suppression. This is an advantage over previous methods that only yield, at each time lag, the relative probability of firing for each orientation. Using this older methodology, we indirectly inferred the presence of a tuned suppressive component based on the changes in shape of the probability $p(\theta, \tau)$ (Ringach, Hawken, and Shapley 1997b). The present technique makes global and tuned suppression evident by the inclusion of “blank” images in the sequence. Both global and tuned suppression contribute to the development of
orientation selectivity by enhancing the overall “modulation depth” of the tuning curve. In addition, tuned suppression is responsible for dynamic decreases in orientation bandwidth and for the generation of Mexican-hat-shaped tuning profiles, especially in cells that are very well tuned. These results are in general agreement with two recent reports from our group that showed (a) the association of suppression and tuning selectivity using a different kind of dynamical stimuli (Ringach et al. 2002a) and (b) the diversity of steady state orientation selectivity and the association of high selectivity with suppression below spontaneous firing at off-peak locations (Ringach et al. 2002b). All of these recent results, together with previous work (Blakemore and Tobin 1972; Benevento et al. 1972; Nelson and Frost 1978; Nelson 1991; Sillito et al. 1980; Bonds 1989; Monier et al. 2000; Pei, Vidyasagar, Volgushev, and Creutzfeldt 1994; Crook et al. 1998; Crook et al. 1997) point to the important role of suppression in generating high selectivity for orientation angle.

The results of these experiments indicate that orientation tuning in V1 is a dynamic process driven by rapid excitation and sculpted by almost equally rapid inhibitory processes. The early broad excitation that could be caused by LGN input is expected on theoretical grounds to show a response at all orientations (Troyer et al. 2002; Troyer et al. 1998; Wieland et al. 2001; McLaughlin et al. 2000). Our experimental data are consistent with this theoretical prediction, as evident in the presence of early enhancement at all orientations. A number of investigators have proposed that this global excitation from the LGN must be cancelled, later in time, by intra-cortical inhibition to obtain sharp tuning (Troyer, Krukowski, and Miller 2002; Troyer,
Krukowski, Priebe, and Miller 1998; Shelley et al. 2002; Wielaard, Shelley, McLaughlin, and Shapley 2001; McLaughlin, Shapley, Shelley, and Wielaard 2000). Our results also support the notion of such “canceling” process. However, detailed cortical network models have so far only accounted for global inhibition that would suppress the responses at all angles including the orthogonal. Tuned suppression, of the kind we have observed causes narrowing of bandwidth in the most highly tuned cells, has not been accounted for in these models yet, but has been incorporated in more abstract “ring models” (Ben-Yishai et al. 1995; Somers et al. 1995; Pugh et al. 2000; Carandini and Ringach 1997). Future theoretical research has as a challenge to explain how tuned suppression arises in a model based on a realistic cortical architecture.

Comparison with results of previous studies

Gillespie et al (2001) studied the dynamics of orientation tuning of the membrane potential in 20 cells of cat area 17. The behavior of their offset parameter (which is analogous to our global component $\gamma(\tau)$) showed an early depolarization and a late hyperpolarization that is consistent with the global effects that we find (Fig 9). Thus, global excitation and suppression are evident in their intracellular data. However Gillespie et al (2001) did not observe the dynamic changes in bandwidth and preferred orientation that we observed. One major methodological difference that could explain the differences in results is that their stimuli were flashed at a relatively low temporal frequency (10 Hz) which means that the orientation of the pattern in their stimuli change every 100ms. Because the orientation is constant throughout the integration time of the neurons the response of the cell will represent an integrated response -- or “step
response” -- to the constant presence of the stimulus. In contrast, if the orientations change on a faster time scale than the integration time of the cell the result of the experiment will represent the “impulse response” of the cell to a briefly flashed orientation. We believe most of the features we observe at late times in our “impulse response” data are likely to be blurred by time-averaging, which is what effectively is done by calculating a step-response. Another important methodological difference is stimulus size. Gillespie et al (2001) used small stimuli restricted to the “classical RF” of the cell, while we used stimuli that were 2 to 4 times the size of the receptive field. It is possible that some of the suppressive effects we observe originate in the surround, which means they would have not been present when stimulating with small stimuli.

Mazer et al (2002) measured the dynamics of orientation and spatial frequency tuning of single neurons in awake, fixating monkeys using methods similar to those in our 1997 paper (see also refs (Ringach et al. 1997c; Bredfeldt and Ringach 2002)). Their stimuli did not include blanks within the sequence and, therefore, Mazer et al. could not have measured the dynamically changing global effects (early global enhancement and later global suppression) we describe in the present paper. To address the issue of dynamic changes in the shape of the tuning curve Mazer et al (2002) applied a singular value decomposition (SVD) of \(p(\theta, \tau) \) and calculated the amount of variance accounted for by the first component. Their data were described as being largely separable in orientation/time and spatial-frequency/time because a single component could account for a large percentage (about 90%) of the overall variance. Separability in orientation/time means that there are no dynamical changes in the shape of the tuning
curve. A possible reason for this discrepancy is that an SVD analysis will be mainly dominated by the large values of $p(\theta, \tau)$ and any possible changes in the small probabilities at off-optimal orientations will be largely ignored. We performed a SVD analysis of $p(\theta, \tau)$ in some of the cells that showed large and statistically significant changes in our population. We assume that the minimum response across all orientations was subtracted for each time slice before the SVD calculation was performed. Even when changes were obvious, such as the cell in Figure 2d, the amount of variance accounted for by a single component was large (93% in this case). Thus, we think that because the variance of the signal in $p(\theta, \tau)$ is dominated strongly by the central peak, the SVD analysis might not be sensitive enough to detect clear geometric changes in the shape of the tuning curve that, nevertheless, contribute moderately to the overall energy of the signal. Our analysis, instead, is based on the logarithm of the probability, which will tend to emphasize the structure of the tuning curve at off-peak locations. Therefore, the differences between our results and those of Mazer et al. are likely due to the combination of insensitivity of their analysis method and a low signal to noise in their data.

Mazer et al (2002) also criticized our previous work stating that (a) the dynamical features we observed could have been caused by temporal smoothing of noise because of the temporal autocorrelation of the frames, (b) that artifacts can arise when calculating cross-correlations at 1ms time-scales, (c) that the statistical significance of the smoothed data cannot be assessed, and (d) that our normalization of the distribution of spikes counts across bins is inappropriate. We answer these criticisms as follows. First, the
stimulus is not a constant frame that changes instantaneously from one pattern to the next in the sequence. In a typical situation the entire computer screen, at a viewing distance of 114cm, spans about 15 deg of visual angle in both vertical and horizontal axes. The size of a typical receptive field in parafoveal V1 is about 1 deg in diameter. Thus, it takes the raster less than 2 ms to stimulate the area corresponding to the receptive field. From the point of view of the cell, the stimulus resembles a sequence of short pulses with no stimulation in-between. The autocorrelation of the input is then a very sharp peak about 3ms wide and can be considered effectively white – there are no long temporal autocorrelations in the stimulus as Mazer et al (2002) suggest. Nevertheless, our data are indeed smoothed in time with a box window of width T. This is a consequence of the algorithm used, which assigns a spike to the orientation that was presented last when looking back τ ms into the stimulus. This smoothing was done to increase the signal to noise of the measurements at the expense of losing some temporal resolution. Smoothing will only blur any features present in the data and cannot create new ones. Clearly a Mexican-hat profile cannot be generated by smoothing a family of Gaussian-shaped tuning curves. Mazer et al (2002) also suggested that a smooth change in the preferred orientation may result simply from temporal smoothing of a noisy signal. This is indeed correct and can happen if the total number of spikes to be distributed in the orientation bins is small. However, the statistical significance of such a shift can be assessed in the way we propose here using bootstrapping methods and our data show statistically significant shifts in many cells. Finally, we do not think there is any difference in the normalization procedure used by us versus that used by Mazer et al. Each time slice in our data gets normalized by the same number, which also corresponds to a simple scaling
operation as in Mazer et al (2002) (see Methods). We also point out that scaling of the data is irrelevant for the analysis in the present study which is based on the ratio between the tuning curve at one orientation and a blank. Scaling, as long as it is identical at each time frame, will not change any of the results reported here.

In another recent study, Sharon and Grinvald measured the average dynamics of orientation tuning in cat area 17 using optical imaging with voltage-sensitive dyes (Sharon and Grinvald 2002). Similar to the findings of Gillespie et al (2001), these authors report the “step response” of the optical signal and found no major changes in its bandwidth during the time course of the response. They interpreted their results as implying that the bandwidth of orientation tuned neurons in V1 was constant with time. However, given the data presented here and the above considerations about step response measurements, it is likely that Sharon and Grinvald could not have resolved the sharpening in bandwidth we observed. Also, it is important to realize that narrowing of the orientation bandwidth does not occur in every cell but tends to be most prominent in sharply tuned neurons (Fig 6c), which are a minority of the population. Second, broadening (of the tuning curves of more broadly tuned neurons) is also seen in our data (Fig 6c). This suggests that the optical signal, which represents an average of the population, might have missed the effects seen when recording individual neurons.

Two other groups have measured the step response of macaque V1 neurons to a flashed bar or grating at different orientations and built dynamical orientation tuning curves by temporal slicing of these data (Celebrini, Thorpe, Trotter, and Imbert 1993; Muller,
Metha, Krauskopf, and Lennie 2001). In examples shown by Celebrini et al (1993) there is evidence of fast suppression at off-optimal orientation, which is consistent with our results. We think the failure of both groups to observe dynamic changes in bandwidth could be due to the coarser time resolution of their measurements (10 ms and 50ms, respectively) and the fact that they are analyzing step responses and not impulse responses. Furthermore, in some cells, threshold effects (flashing gratings when the spontaneous firing rate of the cell is near or at zero) probably prevented the measurement of sub-threshold orientation tuning dynamics. Celebrini et al (1993) interpreted the fast emergence of a well-tuned response as evidence for a feed-forward theory of orientation selectivity. However, this interpretation was based on the assumption that intracortical inhibition is a slow process, taking hundreds of milliseconds, contrary to the evidence we supply here and to their own published examples. In addition, recent theoretical work (Jin and Seung 2002) shows that in the context of a cortical network model with rapid inhibition, one should actually expect the fast emergence of a tuned response.
Reference List

Crook, J. M., Kisvarday, Z. F., and Eysel, U. T. GABA-induced inactivation of functionally characterized sites in cat striate cortex: effects on orientation tuning and

McLaughlin, D., Shapley, R., Shelley, M., and Wielaard, D. J. A neuronal network model

Shelley, M., McLaughlin, D., Shapley, R., and Wielaaard, J. States of high conductance in

Figure Legends

Figure 1. Shape analysis of \(R(\theta, \tau) \). The curve illustrates an orientation tuning curve at a fixed value of \(\tau \) and several parameters extracted to analyze its shape. We measured (a) the orientation angle of the peak response, \(\theta_{\text{max}} \), and its magnitude \(R_{\text{max}} \), (b) the orientation angle and magnitude of the minimum response, \(\theta_{\text{min}} \) and \(R_{\text{min}} \), (c) the angle orthogonal to \(\theta_{\text{max}} \), denoted here by \(\theta_{\text{orth}} \), and the magnitude attained by the tuning curve there by \(R_{\text{orth}} \), (d) the “modulation depth” of the response, defined by \(A = R_{\text{max}} - R_{\text{min}} \), and (e) the dynamic half-bandwidth \(B_d \) defined by half the width of the tuning curve at a criterion level of \(R_{\text{orth}} + (R_{\text{max}} - R_{\text{orth}})/2 \).

Figure 2. Dynamics of orientation tuning in macaque V1 in four representative neurons. Each row represents a different cell. The left panel depicts the dynamics of \(A(\tau) \) (red), \(R_{\text{min}}(\tau) \) (blue) and \(R_{\text{orth}}(\tau) \) (green). In (a) and (b) the green and blue curves are nearly identical. The horizontal dashed line represents the criterion level of \(A(\tau_{pk})/2 \), and the vertical dashed lines indicate \(\tau_{\text{dev}} \) and \(\tau_{\text{dec}} \). The middle panel shows \(R(\theta, \tau_{\text{dev}}) \) (red) and \(R(\theta, \tau_{\text{dec}}) \) (blue). To avoid clutter, \(R(\theta, \tau_{pk}) \) is shown in the right panel.

Figure 3. Average dynamics of \(A(\tau) \) (red), \(R_{\text{min}}(\tau) \) (blue) and \(R_{\text{orth}}(\tau) \) (green) in the population of V1 neurons we studied (\(n = 178 \)). Curves from different cells were aligned at \(\tau_{pk} \) and averaged. Light shaded regions represent \(\pm 1 \text{s.e.m.} \).

Figure 4. Population analysis of the dynamics of the minimum response, \(R_{\text{min}} \). (a) Scatter plot of \(R_{\text{min}}(\tau_{\text{dev}}) \) versus \(R_{\text{min}}(\tau_{\text{dec}}) \). Points for which \(R_{\text{min}}(\tau_{\text{dev}}) - R_{\text{min}}(\tau_{\text{dec}}) \) is significantly different than zero are plotted with open circles, while statistically insignificant changes are shown by crosses. (b) Scatter plot of the modulation depth of
the tuning curve at its peak, $A(\tau_{pk})$, versus the minimum response during response decay, $R_{\text{min}}(\tau_{\text{dec}})$.

Figure 5. Dynamical changes in the shape of the orientation tuning curves. (a) Scatter plot of the difference $R_{\text{orth}} - R_{\text{min}}$ at the development and decay of the response. Many cells during the decay have $R_{\text{orth}} - R_{\text{min}} > 0$, implying that the minimum response occurs at a location other than the orthogonal – which implies a Mexican-hat profile. Points for which $R_{\text{orth}} - R_{\text{min}}$ differ significantly at τ_{dev} and τ_{dec} are plotted with open circles, while crosses show statistically insignificant changes. (b) Scatter plot of the minimum orientation angle (relative to the peak) versus the bandwidth of the cell during the decay phase. The smaller the bandwidth the closer to the peak the minimum angle occurs.

Figure 6. Dynamical changes in bandwidth. (a) Scatter plot of the dynamic bandwidth at the response development and decay. Points below the unit line indicate narrowing of the cell’s bandwidth, points above the unit line indicate broadening. Points for which $B_{d}(\tau_{\text{dec}}) - B_{d}(\tau_{\text{dev}})$ differs significantly from zero are plotted with open circles, while statistically insignificant changes are shown by crosses. (b) Percent decrease in bandwidth as a function of the dynamical bandwidth at τ_{dev}. (c) Percent change in a subset of well-tuned cells $B_{d}(\tau_{\text{dec}}) \leq 30\deg$ versus a set of broadly-tuned cells $B_{d}(\tau_{\text{dec}}) > 30\deg$.

Figure 7. Dynamical changes in bandwidth during (a) the rising phase of the response from τ_{dev} to τ_{pk} and (b) during the decay phase of the response from τ_{pk} to τ_{dec}. The scatter plots show the percent decrease in bandwidth as a function of the initial bandwidth in each period.

Figure 8. Dynamic changes in preferred orientation. Dark areas indicate statistically significant changes, gray areas indicate statistically insignificant changes.
Figure 9. Model based interpretation of orientation tuning dynamics.
(a) Left and middle panels show the data in Fig 2a (open circles) and the corresponding fits of a three-component model with a tuned enhancement component (right panel, solid line), a tuned suppressive component (right panel, thin line), and a constant (global) component. Each of the curves on the left and middle panels are obtained as a linear combination of these components with the coefficients listed at the inset.
(b) Relative strength of the components in the population at τ_{dev} and τ_{dec}.
Ringach et al, Fig 1
Ringach et al, Fig 2
Ringach et al, Fig 3
Ringach et al, Fig 5