Temporal sparseness of the premotor drive is important for rapid learning in a neural network model of birdsong

Ila R. Fiete1,3,*, Richard H.R. Hahnloser4, Michale S. Fee3, H. Sebastian Seung2,3

1Department of Physics, Harvard University, Cambridge MA 02138
2Howard Hughes Medical Institute and 3Department of Brain & Cognitive Sciences, M.I.T., Cambridge MA 02139
4Institute for Neuroinformatics, UNIZH/ETHZ, 8057 Zurich Switzerland

*Corresponding author. Current address:
Ila Fiete
Kavli Institute of Theoretical Physics
Kohn Hall, UC Santa Barbara
Santa Barbara, CA 93106
email: prasad@kitp.ucsb.edu

Abbreviations:
RA: nucleus robustus archistrialis
HVC: formerly an abbreviation, but now commonly used as the proper name
Sparse neural codes have been widely observed in cortical sensory and motor areas. A striking example of sparse temporal coding is in the song-related premotor area HVC of songbirds: The motor neurons innervating avian vocal muscles are driven by premotor nucleus RA, which is in turn driven by nucleus HVC. Recent experiments reveal that RA-projecting HVC neurons fire just one burst per song motif [Hahnloser, Kozhevnikov, & Fee (2002) Nature 419, 65-70]. However, the function of this remarkable temporal sparseness has remained unclear. Since birdsong is a clear example of a learned complex motor behavior, we explore in a neural network model with the help of numerical and analytical techniques the possible role of sparse premotor neural codes in song-related motor learning. In numerical simulations with non-linear neurons, as HVC activity is made progressively less sparse, the minimum learning time increases significantly. Heuristically, this slowdown arises from increasing interference in the weight updates for different synapses. If activity in HVC is sparse, synaptic interference is reduced, and is minimized if each synapse from HVC to RA is used only once in the motif, which is the situation observed experimentally. Our numerical results are corroborated by a theoretical analysis of learning in linear networks, for which we derive a relationship between sparse activity, synaptic interference and learning time. If songbirds acquire their songs under significant pressure to learn quickly, this study predicts that HVC activity, currently only measured in adults, should also be sparse during the sensorimotor phase in the juvenile bird. We discuss the relevance of these results, linking sparse codes and learning speed, to other multilayered sensory and motor systems.
Birdsong is a complex, learned motor behavior driven by a discrete set of premotor brain nuclei with well-studied anatomy. Neural activity, too, has been characterized in these nuclei, through recordings in awake singing birds, making the birdsong circuit a uniquely rich and accessible system for the study of motor coding and learning.

Juvenile male songbirds learn their songs from adult male tutors of the same species. Singing is used for courtship and territorial displays, and in evolutionary terms is an important skill for birds to master. A zebra finch song consists of three to five identical repetitions of a \(\approx 1 \text{s}\) song-motif.

Syringeal and respiratory motoneurons responsible for song are driven by precisely executed sequences of neural activity in the premotor nucleus robustus archistriatalis (RA) \[2\] of songbirds. Activity in RA is driven by excitatory feedforward inputs from the forebrain nucleus HVC \[3, 4, 5\], whose RA-projecting neural population displays temporally sparse, precise, and stereotyped sequential activity. Individual RA-projecting HVC neurons burst just once in an entire \(\approx 1 \text{s}\) song motif (“unary” coding), and fire almost no spikes elsewhere in the motif \[1\]. Each HVC burst is of high firing rate (600–700 Hz), and typically lasts for about 6 ms. Burst onset times for different RA-projecting HVC neurons are distributed across the motif. However, each HVC neuron bursts reliably at precisely the same time-point (referenced to some acoustic landmark in the motif) in repeated renditions of the song.

Song learning is thought to involve plasticity of synapses from HVC to RA. This is because these synapses display anatomical evidence of extensive synaptic growth and redistribution \[6, 7\] and physiological evidence of synaptic change and maturation \[8, 9\] during the critical period. The temporal sparseness of HVC activity implies that the HVC–RA synapses are used in a very special manner during song. Namely, each synapse is used during only one instant in the motif. Is there any functional significance to this way of utilizing synapses? Here we investigate the possibility that it facilitates song learning.

Intuitively, the situation where each synapse participates in the production of just one short part of the motif seems ideally suited for minimizing interference between different synapses during learning. In this paper we make the intuitive argument more concrete through both computer simulations and mathematical analysis of a simple neural network model of birdsong learning.

It has been observed that interference between synapses can hinder learning in artificial recurrent neural networks \[10, 11, 12, 13\]. Because of the multilayered architecture of the song motor system, we are here motivated to study the effect in a feedforward multilayer network.

Experiments indicate that the young bird uses the mismatch or error between its own vocalizations and a desired song template (an internally stored copy of a tutor song) to iteratively modify its song to match the template \[14, 15\]. Thus, the goal of learning in our feedforward model network (of HVC, RA, and an output motor layer), is to alter the initial output sequence of motor activity by gradual adjustment of the HVC-to-RA weights, until the output sequence matches a specified desired sequence \[16, 17\].

It is not known how the brain translates goal-directed problems such as song imitation into prescriptions for synaptic change, although it is thought that if distance to the goal is quantified in a reward (error) function, neural and synaptic changes may occur in directions that increase the reward (decrease error), thus performing hill-climbing on the function. A common computational approach in modeling this phenomenon is to define such an error function, then move on the error surface toward the minimum along the gradient, or direction of steepest descent. This can be done by direct gradient calculation in single-layer networks, or by backpropagation, a simple technique for gradient descent in multilayer networks. Hill climbing can also be achieved by more biologically plausible learning algorithms that perform a stochastic approximation of gradient following without needing to explicitly compute the gradient \[18, 19, 20\]. For simplicity, we apply learning by direct gradient following (backpropagation). Since the various gradient-based learning rules described above are in a mathematically similar class, we expect sparseness arguments made in the context of one learning rule to generalize to the others in the same class.

Methods

General framework. We study a multilayer feedforward network (Fig. 1) with an HVC layer that provides
sequential inputs to the network and drives activity in the hidden layer RA; the output layer of motor units is driven by activity in RA. HVC activities are written as \(h_i(t) \), RA activities as \(r_j(t) \), and output activities as \(o_k(t) \), with

\[
 r_j(t) = f \left(\sum_{i=1}^{N_h} W_{ji} h_i(t) - \theta_j \right),
\]

and

\[
 o_k(t) = \sum_{j=1}^{N_r} A_{kj} r_j(t).
\]

\(N_h, N_r, \) and \(N_o \) are the numbers of units in the HVC, RA, and motor layers, respectively; \(f \) is the activation function of RA neurons, and \(\theta_j \) is the threshold for the \(j^{th} \) RA neuron. The plastic weights from HVC to RA are given by the matrix \(W \); since there is no direct evidence of plasticity in the connections from RA to the motor neurons, we take these weights to be fixed, and represent them by a fixed weight matrix \(A \).

Observational evidence suggests that vocal motor learning in the zebra finch segments roughly into two phases: first, a temporal motor sequence is established, and later the notes and syllables occurring in that motor sequence become more distinct, diversified, and refined [21]. Since the goal of this work is to study the effects of HVC sparseness on the learning of feedforward premotor representations, we do not deal with the formation of sequences within HVC; instead we focus on the formation and refinement of HVC–motor representations as seen in the latter phase. The sequential patterns of HVC activities and desired output activities are externally imposed (see below for numerical details) in our simulations, and do not change throughout learning; the goal of the network is to learn to match the actual outputs \(o_k(t) \) of the network, driven by HVC activity, with the desired outputs \(d_k(t) \), through adjustment of the plastic weights \(W \). In one pass through the song motif, called an epoch, the network outputs are computed from Equations (1) and (2). The total network error for that epoch is determined from the objective function

\[
 C = \int_0^T dt \sum_{k=1}^{N_o} (d_k(t) - o_k(t))^2.
\]

For learning, network weights \(W \) are adjusted after each epoch to minimize this cost function according to the backpropagation gradient-descent rule:

\[
 \Delta W_{ji} = -\eta \frac{\partial C}{\partial W_{ji}} = \eta \int_0^T dt \sum_{k=1}^{N_o} 2(d_k(t) - o_k(t)) A_{kj} f_j'(h_i(t)),
\]

where \(f_j' \) is the derivative of the activation function of RA neuron \(j \), and the parameter \(\eta \) scales the overall size of the weight update.

Numerical details of non-linear network simulations. We simulate learning in the network described above, with \(N_h = 500 \) HVC neurons, \(N_r = 800 \) RA neurons, and \(N_o = 2 \) output units. Assuming that each HVC neuron bursts \(B \) times per motif, activity for the \(i^{th} \) HVC neuron is fixed by choosing \(B \) onset times \(\{ t_1, t_2, \ldots, t_B \} \) at random from the entire time-interval, \(T \). A burst is then modeled as a simple binary pulse of duration \(\tau_b \), so that \(h_i(t) = 1 \) for \(t_1 \leq t \leq t_1 + \tau_b, t_2 \leq t \leq t_2 + \tau_b, \ldots, t_B \leq t \leq t_B + \tau_b \}, and \(h_i(t) = 0 \) otherwise (Fig. 2(a)). We use values of \(B = 1, 2, 4, 8 \), and based on experimental observations of the HVC burst length [1], use \(\tau_b = 600 \) ms. We assume a non-linear form for the RA activation function, given by the sigmoid \(f(x) = r_{\text{max}}/(1 + e^{-2x/s}) \), so \(f'(x) = f(x)(r_{\text{max}} - f(x))(2/sr_{\text{max}}) \), with \(r_{\text{max}} = 600 \) Hz and \(s = 5 \) (is a parameter that stretches the analog part of the response; large values of \(s \) produce analog neurons with a linear regime and saturation, while the \(s \to 0 \) limit produces binary neurons. In experimental current-injection studies, RA neurons show a range of linear response up to at least 100 Hz, [22], and routinely fire bursts of spikes at 500 Hz during song, motivating our choice of \(s = 5 \) and \(r_{\text{max}} = 600 \) Hz. In all simulations, the total duration of the simulated song motif is \(T = 150 \) ms, and time is discretized.
with a grain of $dt = 0.1$ ms. The initial HVC-to-RA weights W_{ij} are picked randomly from the interval $[0, 1/B]$ (scaling with B to keep the summed drive to RA fixed as the number of bursts per neuron per motif is varied in HVC), with 40% of them ($P_{dil} = 0.4$) randomly diluted to zero. The threshold for RA neurons is given by $\theta = 1.2(1 - P_{dil})N_h/\tau_b/T$, where $N_h/\tau_b/T$ is the average input received by the average RA neuron from HVC at each time in the song; the factor 1.2 is chosen to keep RA activity low initially. Each RA neuron projects to one output neuron (i.e., the RA-to-output weight matrix A is block-diagonal), and equal numbers of RA neurons project to each output. The non-zero entries of A are chosen from a Gaussian distribution with mean 1 and standard deviation 1/4. Desired sequences $d_k(t)$ for the output units are fixed by choosing a sequence of steps of 12 ms duration and random heights chosen from the interval $[0, N_o/(8N_o)]$, and are smoothed with a 2ms linear low-pass filter. The gradient-following rule, Eq.(4), is used to update the weights W after each epoch.

To study the effects of sparse HVC activity on learning speed, we performed 4 groups of simulations where B, the number of bursts per HVC neuron per song motif, was fixed at $B = 1, 2, 4, 8$, respectively. For each B, we performed several sets of learning trials with a separate, systematically varied value of the overall learning step-size η for each set (more details below). Within each set of simulations, consisting of 15 trials each with fixed η, the weights A and W were drawn randomly and independently for every trial, as described above. All other parameters, including the desired outputs $d_k(t)$, were kept fixed for all B and all η. Initially 25 evenly spaced values of η were chosen for each B, always in a range where some of the values were too large and resulted in divergence of the learning curve, while most values resulted in decreasing errors. The (15-trial) averaged learning curves for each η were judged to be rapidly or slowly converging based on the number of epochs taken to cross a pre-selected, reasonably small error value (see below); only learning curves with non-increasing error over the length of the simulation were considered. Typically, very small values of η result in very slow learning, while very large values lead to divergence. Thus, the best learning speeds could be obtained by a choice of η away from both extremes. To make sure the learning curves chosen for comparison as a function of B were reasonably close to the best possible curve for each B, we picked two values of η for each B that resulted in the two fastest averaged learning curves, and used these as endpoints in another set of learning trials with 10 values of η spaced between the endpoints. For each η, we again averaged 15 trials. By this process, a value of $\eta = \eta^* (B)$ was found that resulted in the fastest learning for each B.

The threshold error value at which we consider the network to have learned the task is when it reached an error of 0.02 or better (corresponding to $\int dt \sum_k (d_k - o_k)^2 < 1\% \int dt \sum_k d_k^2$, thin horizontal line in Fig. 3; for an example of the output performance in what we consider to be a well-learned task, see Fig. 2(c) where $\int dt \sum_k (d_k - o_k)^2 = 0.15\% \int dt \sum_k d_k^2$); learning speeds are judged by the number of epochs taken for the learning curves to reach this value.

Parameter variations and ranges: The network converged to produce outputs close to the desired outputs over a large range of parameters, so long as a sufficiently small value of the learning rate parameter, η, was used. This is expected, because with small η, the learning rule follows the gradient of the error function, and will converge to a local minimum of the error surface; more interestingly, the dependence of learning time on B (see Results) was also consistent across a large parameter range.

In simulation, we tried variations where W was drawn from a Gaussian, instead of uniform, random distribution; the initial weight dilution, P_{dil}, ranged from 0 to 0.6 (0–60% of the initial weights initially diluted to 0); half of all non-zero weights from RA to each output unit (in A) were made negative, mimicking push-pull rather than just pull control over the outputs; the numbers of HVC, RA, and output units were independently varied by factors of 0.5 and 2; the simulated song length ranged from 80–400 ms; RA unit activation functions were taken to be linear or sigmoidal. In all of these cases, it was possible to find η so that the simulations converged to the desired output, and the dependence of learning time on B was found to be qualitatively the same as for the specific parameters described in this paper.

The results shown in this paper are with parameters chosen according to the following priorities: (1) Simulate the largest network that would run in a reasonable amount of time. We used $N_h = 500$, $N_r = 800$, and $N_o = 2$, in place of $N_h \approx 20000$, $N_r \approx 7000$, and $N_o \approx 7$ in the actual bird, where N_o is taken to be the number of individual vocal muscles controlled by RA. The simulated song-length, T, had to be scaled...
down to compensate for the reduced HVC and RA model populations driving song; thus \(T = 150 \) ms instead of the \(\approx 600 - 1000 \) ms duration of a typical zebra finch song motif. (2) Initiate (before learning) the HVC–RA weights and RA neural thresholds so that the initial activity in RA is low and non-uniform. This was done because we noticed that, interestingly, if initiated in this way, the post-learning activity in the model RA neurons reliably resembles that of RA neurons in the actual songbird (see Results).

Numerical eigenvalue computation. For each of \(B = 1, 2, 4, \) or \(8 \), we randomly generated a matrix of HVC activity (as described above) with \(N_h=3000, T=300 \) ms, \(\tau_b = 6 \) ms, and \(dt = 0.1 \) ms. For each \(B \), the HVC equal-time cross-correlation matrix \(Q_{ij} = \sum_{t=0}^{T-1} h_i(t)h_j(t) \) was computed, and its eigenvalues computed numerically.

Results

Simulations.

We simulated learning by gradient following (as described in Eqs. (1) – (4) and Methods) in a feedforward network consisting of an HVC, an RA, and a motor output layer, Fig. 1. Sample input (HVC activity) and the initial and desired outputs (for one of two output units) are shown in Figs. 2(a) and 2(b), respectively. In the simulation of Fig. 2, each HVC neuron is active exactly once in the song motif. After several epochs of learning (gradient descent on the mismatch between actual and desired outputs), activity in the output units closely matches the desired outputs, Fig. 2(c). Note that in our model, the RA neurons act as hidden units and their patterns of activity are not explicitly constrained. The activities of three randomly selected RA neurons from the model network after learning is complete are shown in Figs. 2(d)–(f). It is interesting to note that with sigmoid RA activation functions, if initial connections between HVC and RA are weak and random and if initial RA activity is low, the emergent activity patterns of RA neurons in the trained network qualitatively resemble the behavior of real RA neurons recorded *in vivo* during singing [23] (also A. Leonardo & M.S. Fee, unpublished observations): for example, individual RA unit activity is not well-correlated with the outputs, the distribution of single-burst durations of RA neurons resembles that of RA neurons in the singing zebra finch, and similar patterns of output activity may be driven by rather different patterns of activity in RA.

Our goal is to examine the effects of the sparseness of HVC drive on the learning speed of the network. We repeated the learning simulations, as pictured in Fig. 2, with fixed values for the song length, single-burst duration of HVC neurons, and network size, but varied \(B \), the number of bursts fired per HVC neuron per song motif (see Methods). Fig. 3 shows the results of this study; the four learning curves correspond to simulations where the number of bursts per HVC neuron is varied to be \(B = 1, 2, 4, \) or \(8 \), respectively. Each curve in Fig. 3 is an average over fifteen trials that start with different random initial weights \(W \) and \(A \) but with a single fixed \(B \). The network is considered to have learned the task when the error drops below a pre-specified error tolerance, signified by the thin horizontal line. For each value of \(B \), the task of learning was realizable, i.e., the network could successfully learn the desired outputs. Also for each \(B \), the overall coefficient controlling the weight-update step-size was optimized to give the fastest learning possible (see Methods); thus the learning speed comparison is between the best-case multi-trial average curves for each \(B \).

In going from \(B = 1 \) burst per HVC neuron per motif to 2 bursts, we see in Fig. 3 that the learning time (number of iterations for the learning curve to intersect the learning criterion line) nearly doubles; the same happens in going from 2 bursts to 4, or 4 to 8. This apparently strong dependence of learning time on the number of HVC bursts is surprising considering that in all cases (all \(B \)) the learning task was realizable, and that the premotor HVC drive in going from \(B = 1 \) to \(B = 4 \), for example, was still relatively sparse. The effect, that increasing \(B \) leads to increased learning time, persisted over a wide range of network parameters (see note on parameter choices in Methods). To better understand the process by which more densely distributed HVC bursts per motif lead to slower learning, and why this effect is robust across a broad range of parameters, we turn to an analysis of learning in a linearized version of the network.
Linear analysis.

We found the basic effect of the slow-down of learning with temporally denser HVC codes to be present regardless of many changes in network properties, such as network size, length of simulated motif, and choice of RA activation function. To isolate the critical factors involved in the learning slow-down, we study the learning curves of a network with the same architecture and learning rule as above, but with linear RA activation functions, \(f(y) = y \). Although this is a simplification, a linear network permits us to analytically derive the dependence of the learning curves on \(B \), the number of times each HVC neuron bursts during a song motif. Moreover, linear analysis lends itself to a convenient geometric interpretation of the learning process.

Relation between learning speed and HVC activity. If RA units are linear, the error function \(C \) of Eq. (3) becomes a quadratic surface over the multi-dimensional space \(\{W\} \) of the HVC-to-RA weights (see Appendix):

\[
C = \text{Tr}\{AWQW^TA^T\}. \tag{5}
\]

In geometric terms, \(Q \) is a matrix that determines the shape of the quadratic surface, because its eigenvalues specify the overall shape (steepness or flatness) of the quadratic surface along the various directions in weight space. Large eigenvalues correspond to steep directions, and small eigenvalues to shallow ones. In terms of network activities, \(Q \) is the zero-time-lag correlation matrix of HVC activity: element \(Q_{ij} \) reflects the equal-time cross-correlations in the activity of neurons \(i \) and \(j \), summed over all times in the motif. For example, if the two neurons are always co-active, \(Q_{ij} \) is large, and if they are never co-active, \(Q_{ij} = 0 \). The importance of \(Q \) in shaping the error surface emerges from the fact that HVC activity determines which synapses \(W \) are active in driving the output, how often they are used, and thus whether and when they must be modified to reduce error.

Learning corresponds to moving downwards on the paraboloid quadratic surface by adjustment of the underlying network weights \(W \). Learning by gradient descent, Eq. (4), means that the downward movement follows the along the direction of the gradient or path steepest descent toward the minimum of the error surface. The total error may be broken down into components of error along different directions in the weight space \(\{W\} \), and it is well known that in a linear system, these component errors decrease as decaying exponentials with different decay rates; these decay rates are determined by the shape of the error surface in that direction. Specifically, with certain assumptions on the distribution of fixed weights \(A \), the optimal (leading to fastest learning) decay rates are given by ratios of the eigenvalues of \(Q \), \(\{\lambda_1, \lambda_2, \ldots, \lambda_N\} \), with the largest eigenvalue, \(\lambda_1 \) (see Appendix). The learning speed along the direction parallel to eigenvector \(\alpha \) can be defined as the decay rate along that direction:

\[
\nu_\alpha = \lambda_\alpha / \lambda_1. \tag{6}
\]

For learning to converge, all \(\nu_\alpha \) must be less than 1 and greater than 0; this is necessarily true because all eigenvalues of \(Q \) are guaranteed to be positive, and the factor of \(1/\lambda_1 \) effectively sets the maximum learning speed to be less than 1. Within these limits, the larger all the \(\nu_\alpha \), the larger the decay rate, and so the total error will decrease more rapidly. It is instructive to consider two cases: (i) all eigenvalues are essentially equal. (ii) all eigenvalues are equal but one, which is very much larger. In case (i), we see from Equation (6) that the learning speeds along all \(\alpha \) are equal and equal to 1; the geometric interpretation is that the error surface is isotropic, Fig. 4(a), and learning can proceed (equally) rapidly in all directions of the error surface. In (ii), the error surface is strongly anisotropic, Fig. 4(b). Learning will still be fast along the (steep) direction corresponding to \(\lambda_1 \), since \(\nu_1 = 1 \). However, learning along all other directions will be much slower since all remaining \(\nu_\alpha \ll 1 \). Geometrically speaking, the maximum weight-update step size is constrained by the steepest direction, since small steps in weight-space lead to large changes in error and can quickly lead to divergent error. Since the remaining directions are much shallower, the small weight-space step size constraint leads to much smaller decreases in error per epoch along all other directions, resulting in a sharp slow-down in the overall learning.
Hence, a narrowly distributed range of eigenvalues leads to faster learning, while singularly large eigenvalues that stand out from the rest broaden the range and cause a slow-down.

Mean-field derivation: learning time growth with synaptic interference. With Eq. (6), the problem of deriving learning curves is essentially reduced to the problem of computing the eigenvalues of the correlation matrix Q. Certain important features of the eigenvalue distribution can be derived from a mean-field matrix $\langle Q \rangle$, obtained by replacing each element of the correlation matrix with its ensemble-averaged expectation value (see Appendix); moreover, $\langle Q \rangle$ elucidates the relationship between features of HVC activity and features of the eigenvalue spectrum. As B is increased, the HVC auto-correlations (diagonal elements of $\langle Q \rangle$) increase as B, while the cross-correlations (off-diagonal) increase as a small factor times B^2. The cross-correlations contribute to only the largest eigenvalue of $\langle Q \rangle$, causing it to scale as B^2, while all remaining eigenvalues scale as B. Therefore, the largest eigenvalue of $\langle Q \rangle$ is a direct reflection of cross-correlations in HVC activity. Since cross-correlations in HVC activity lead to interference or cross-correlations in the use of different HVC–RA synapses in driving the song motif, the size of the largest eigenvalue equivalently reflects the degree of synaptic interference in the HVC-RA synapses. Let $\nu_\alpha(B)$ designate the learning speed along the α^{th} eigenvector of Q as a function of B. The mean-field eigenvalue calculation yields (see Appendix):

$$
\nu_1(B) = \nu_1(1) \quad \text{in steepest direction} \ (\alpha = 1)
$$

$$
\nu_\alpha(B) = \frac{\nu_\alpha(1)}{B} \quad \text{all other directions} \ (\alpha > 1)
$$

In other words, as B is increased, the optimal learning speeds decrease as $1/B$ along all directions in weight space except along the direction corresponding to λ_1, whose optimal learning speed remains unchanged. Since the cumulative initial error will generically have significant error components in several directions, the cumulative learning speeds will noticeably decrease as B is increased. According to the mean-field results above, the learning time with $B = 2$ will be approximately twice as long as for $B = 1$, because of synaptic interference. It is important to note, also, that the effects of increasing B on learning speed should be noticeable soon after learning has begun and the first transients (corresponding to learning along the first eigenvector) have passed, and not just toward the end of learning, where only fine features remain to be learned. That is, the effects of multiple bursts on learning speed are manifest whether the output is learned relatively crudely or to great final precision.

This is all in good agreement with the overall decrease in learning speeds observed in the non-linear network simulations of the last section. In the linear analysis, we see moreover that the scaling of learning time with B is an essential one (see Appendix): given a fixed network size, motif length, and HVC single-burst duration, increasing the number of bursts per HVC neuron per motif necessarily leads to a reduction in the optimal learning speed for the network, with no adjustable parameters to remove this dependence. In other words: learning with multiple bursts per HVC neuron per motif will be slower than learning with fewer bursts, independent of the HVC–RA network size, the motif length, and the single-burst duration, so long as these parameters are kept fixed while the number of bursts is varied in the comparison of learning time.

The mean-field analysis also sheds light on the identity of the eigenvector with the largest eigenvalue λ_1: it is the common mode eigenvector, with all positive entries, that corresponds to a simultaneous increase or decrease, for all parts of the motif, in the summed drive from HVC to the motor outputs. It is intuitive that this is the most “volatile” mode, leading to explosive growth of network activity. The remaining modes are differential, allowing rearrangements of the motor drive from moment to moment in the song without a large net change in the mean strength of the drive.

Numerical verification of mean-field calculation. The vastly simplified mean-field derivation of the scaling of learning speed with B (from the eigenvalues of $\langle Q \rangle$) neglected variance and other higher-order statistics of Q. To check the results of the analysis, therefore, we numerically compute the eigenvalues of Q from randomly generated HVC activity matrices (see Methods). The results are shown in Fig. 5, and agree well with the mean-field analysis. In Fig. 5(a), we plot the top 300 $B = 1$ eigenvalues, together with the
top 300 $B = 8$ eigenvalues scaled by $1/8$. All the eigenvalues for $B = 1$ form a continuum, and the scaled $B = 8$ eigenvalues sit on the same continuum, except for the top eigenvalue, which is much larger than the rest. The gap between the topmost eigenvalue and all the rest for $B > 1$ is better seen in the inset of Fig. 5(a), where the largest eigenvalue scales as B^2, while the second-largest scales as B. This causes learning speeds to scale as $1/B$ (Fig. 6), as derived in Eq. (8).

The numerical computation shows that there is a spread in the eigenvalue continuum even when $B = 1$: due to the small but non-negligible HVC single-burst duration, and continuous spread of burst-onset times, the activities of different HVC neurons have partial overlaps with each other. This already leads to slower learning than if bursts were completely non-overlapping. However, as we have seen in the preceding analysis, increasing the number of bursts per HVC neuron leads to larger correlations in HVC activity and a considerably greater spread of eigenvalues, and thus to slower descent on the error surface.

Discussion.

Summary. We have built a simplified framework to analyze the learning of premotor representations in the songbird premotor circuit, given a sparse premotor drive from HVC, a set of plastic connections between HVC and RA, and a gradient learning rule that minimizes the mismatch between the tutor and pupil songs. Within this framework, we have demonstrated how temporally sparse activity allows the fast learning of premotor representations, and quantified, in a network of linear neurons, the dependence of learning rate on the number of times an HVC neuron is active during a motif. Sparsely active HVC neurons have small cross-correlations: increasing the number of HVC bursts per motif increases cross-correlations in HVC activity, which leads to correlated changes of synaptic weights. To keep network activity from diverging due to the correlated weight changes, the maximum allowable weight-update size must be constrained; this normalization decreases the step-size for other, uncorrelated weight changes that are required for learning. Hence, the overall learning speed decreases with increasing numbers of HVC bursts per motif. Although our analytical description is based on linear units, the simulations (Fig. 3) of learning in nonlinear units and the heuristic explanation of increased synaptic interference with increased numbers of bursts point to a broader relevance of this analysis to networks with more realistic neurons.

Relation to past work. Several motor and sensory brain areas display sparse neural codes. This work augments other theoretical studies that argue in favor of the utility of sparse codes in various contexts, such as information theory, coding fidelity, decoding ease, and learning efficiency [24]. We have presented a quantitative analysis of the relationship between sparse representations in layers coding high-level activity (in this case, abstract sequential activity in HVC) and learning speed in a multilayer feedforward network.

Questions about training time in networks such as this one have been studied in the machine learning community, resulting in prescriptions to speed up learning by rescaling the learning rate parameter (overall weight update step size) differently along the different eigenvectors, or by re-parameterizing neuronal activities to make the error surface more isotropic. In a closely related work to this one, LeCun et al. [25] in particular recommend that the eigenvector associated with the largest eigenvalue be subtracted from the learning updates, or that symmetrically active $\{-1, 1\}$ neuronal units be used in the input layer instead of asymmetric $\{0, 1\}$ units, thus reducing the anisotropy of the error surface by reducing the mean of the off-diagonal entries of the input-unit correlation matrix and so bringing the largest eigenvalue closer to the remaining ones. Since neural firing rates are zero or positive, the activity of individual neurons in biological networks is necessarily asymmetric. Furthermore, although the learning rate parameter (overall step size) may easily be tuned at the individual synaptic level, it is not obvious how to apply separate learning rates to separate eigenvectors in a biologically plausible way, since individual synapses participate in multiple eigenvectors. Therefore, we suggest that with the use of unary HVC activity, biology may have found its own solution to these very problems in the case of birdsong learning.

Different learning rules. We have also performed simulations of learning by stochastic weight perturbation, a reinforcement algorithm that drives learning by making stochastic estimates of the gradient without...
explicitly computing it; we obtain preliminary results from simulation that are qualitatively similar to the ones stated for direct gradient learning in this paper, finding that learning is faster when the number of HVC bursts is small. In fact, if biology does indeed make use of stochastic reinforcement algorithms to perform goal-related learning, the impetus to increase learning speed through sparse coding may be considerably greater because such stochastic gradient algorithms are typically much slower overall than algorithms that can directly compute gradients and move along them.

Correlations in HVC activity. In this work, each HVC model neuron can equivalently be viewed as a subpopulation of perfectly correlated (i.e., always coactive) neurons. We studied the case where each strongly self-correlated subpopulation bursts one or multiple times, but where the individual subpopulations are independent of each other. This picture is fully consistent both with the HVC data on RA-projecting neurons [1], and with recurrent synfire chain-like models for the generation of sequential activity in populations of neurons. Nevertheless, it is possible to imagine a case where the subpopulations are correlated with each other: if for example, the simultaneous bursting of two subpopulations in one part of the motif makes it more likely that, when they each burst again in other parts of the motif, they will burst together. Such correlations between neural subpopulations would enhance the correlations in the overall population activity at different times in the song, increasing synaptic interference compared to the independent subpopulation case, and increasing the overall anisotropy of the error surface. In this case, the qualitative results of this paper, on the advantage of sparse coding for learning, would be the same; in detail, the slow-down resulting from non-sparse coding would be more pronounced, from the additional contribution of inter-group cross-correlations, than described for the independent subpopulation case.

Juvenile HVC activity. Single-unit HVC recordings have only been made in adult birds, where the coding is seen to be unary (single burst of activity per neuron per motif). We wondered what the role of such extreme sparseness in HVC might be if it were present during the learning process, and found that it could confer a great advantage in terms of learning speed. On this basis, we predict that if songbirds acquire their songs under pressure to learn quickly, then sparseness of HVC activity could be integral to the learning process and should thus already be present in the HVC of juvenile birds in the early and mid sensorimotor period, instead of arising as an emergent property late in song learning.

Relevance to other sensory and motor systems. The aspect of motor learning we have explored in this paper is the mapping of a set of sparse, high-level neural (HVC) patterns onto a denser set of low-level motor activations, in a multilayer feedforward network model of song generation. Since biological sensory and motor processing areas tend to be multilayered with important feedforward components, these results relating sparseness to learning speed in the formation of feedforward maps should be relevant in a broad range of systems. Examples of sparse coding can be seen in rat auditory cortex neurons responding to tone pips [26]; temporally and spatially sparse responses to natural scenes in ferret visual cortex [27]; sparse representations of location in hippocampal place cells; highly selective corticostriatal activity in macaque motor cortex [28]; and sparse coding of odor identity in Kenyon cells of the locust mushroom body [29, 30]. The results of our study suggest that such sparse sensory and motor codes may facilitate the learning of feedforward representations.

On the other hand, one might wonder why, if sparse coding confers a significant advantage in terms of learning speed, are not most neural representations ultra-sparse or unary? One reason is that sparse coding carries a cost: the representational capacity of a very sparsely coded network is low. Thus, the advantages of sparse coding must be balanced against capacity constraints. Such capacity constraints may dominate, or at least play a more important role, in systems other than the zebra finch HVC. For example, songbirds that memorize much larger song repertoires may be subject to HVC volume constraints, and in these cases, we expect the coding to be sparse, for fast learning, but not necessarily unary, as in the finch.

Other implications of sparse coding. We do not intend to imply that the only role of sparse coding in the zebra finch HVC is the reduction of synaptic interference in the learning of feedforward HVC-to-RA weights. Temporally sparse coding could play an important role in mitigating the problem of temporal credit assignment in learning, which is encountered when feedback about a performance arrives significantly later than the neural activities that generated it. Moreover, sparse codes in HVC may play an important role not just in motor aspects of song learning and production but in song recognition as well [31, 32, 33, 34].
Acknowledgments.

We are grateful to Russ Tedrake for help in setting up a system to run parallel simulations, to Mayank Mehta and Justin Werfel for comments on the manuscript, to Xiaohui Xie and Matt Tresch for helpful discussions, and to the referees for their suggestions.
References

APPENDIX

Learning curve With linear RA neurons, we define the network equations to be $r = Wh$, $o = AWWh \equiv Xh$, where h is the $N_h \times N_s$ matrix of HVC activity, r is the $N_r \times N_s$ matrix of RA activity, A is the matrix of fixed weights from RA to the outputs, and W is the matrix of plastic weights from HVC to RA. $N_x = T/dt$ is the number of discrete time bins in the motif, where T is the motif length and dt is the grain size. With a change of variables $Q \equiv hh^T$ and $x = X - X^*$, where X^* is defined by $X^*h = d (X^* \text{ exists if a solution exists, i.e., if the learning task is realizable})$, the cost-function is $C = \frac{1}{2} \text{Tr} \{xQx^T \}$. Applying a gradient descent update, Eq.(4), on C, we have that $x \rightarrow (x - \eta AA^T xQ)$, where η is a positive scalar that scales the overall learning step size. If each RA neuron projects to one output unit, and if the summed synaptic weights to each output are approximately equal, AA^T becomes a scalar matrix that can be absorbed into η. Thus, the multilayer perceptron problem with two layers of weights becomes effectively a single-layer perceptron, and we have that after n iterations $x^{(n)} = x^{(0)}(1 - \eta Q)^n$, so

$$C^{(n)} = \frac{1}{2} \text{Tr} \{x^{(0)}(1 - \eta Q)^n Q(1 - \eta Q^T)^n x^{(0)T} \}.$$ (9)

In the eigenvector basis of the Hessian matrix Q (eigenvalues $\lambda_{\alpha=1,\ldots,N_h}$) arranged in non-increasing order, $\lambda_1 \geq \ldots \geq \lambda_{N_h}$, with projection of the k^{th} row of $x^{(0)}$ along the α^{th} eigenvector given by $\chi_{k\alpha}$, the error after n learning iterations is given by

$$C^{(n)} = \frac{1}{2} \sum_{\alpha,k} (1 - \eta \lambda_\alpha)^{2n} \lambda_\alpha |\chi_{k\alpha}|^2.$$ (10)

Let $c_\alpha \equiv \lambda_\alpha \sum_k |\chi_{k\alpha}|^2$ represent the initial error along the α^{th} eigenvector. The total error evolves iteratively via multiplication of the initial errors c_α by a factor $(1 - \eta \lambda_\alpha)^2$ per iteration; η must be chosen small enough so that $|1 - \eta \lambda_\alpha| < 1$ for each α, to allow error to decrease and for the learning curve of Equation (10) to converge. Hence, η must be less than $2/\lambda_1$, and it is easy to see that the optimal choice for η is $\eta^* = 1/\lambda_1$ ($\eta < 1/\lambda_1$ leads to over-damped convergence, while $1/\lambda_1 < \eta < 2/\lambda_1$ displays under-damped oscillatory convergence).

Analysis of eigenvalues The mean-field matrix $\langle Q \rangle$ is formed by replacing all elements of Q by their ensemble-averaged expectation values (i.e., generate Q and average, element by element, over several trials). Therefore, $\langle Q \rangle = BN_h \mathbb{I} + (B^2 N_h^2 / N_s) 11^T$, where $N_b \equiv \tau / dt$. There are only two distinct eigenvalues, $\lambda_1 = BN_h + B^2 N_h^2 ((N_h - 1) / N_s) \approx B^2 N_h N_h (\tau / T)$ (provided $N_h \tau / T \gg 1$) corresponding to the common mode eigenvector, and $\lambda_2 = BN_h - B^2 N_h^2 / N_s \approx BN_h$ (provided $T \gg \tau_b$) corresponding to the $N_h - 1$ differential modes. (This effect of an eigenvalue spectrum with one ‘large’ eigenvalue, is generic for $N \times N$ matrices with random entries of mean a on the diagonal and b on the off-diagonal, if $b \gg a/N$ [35].) Hence the learning rate for all modes $\alpha > 1$ is given by $\nu_\alpha = (1/B) (T / N_h \tau_b) \sim 1/B$, as in Eq. (8), Figure 6.
Figure 1: HVC, RA, and the output layer are arranged with feed-forward plastic weights W from HVC to RA, and fixed weights A from RA to the output. HVC activities provide sequential inputs to the network, and the output units are the read-outs. The RA neurons form a “hidden” layer.

Figure 2: (a) Activity of RA-projecting HVC neurons as a function of time, shown for 20 of the 500 neurons in the simulation. Black bars indicate that the neuron is bursting at that time, while otherwise the neuron is silent. (b) Desired (thick line) and actual (thin line) output activity for one of the two output units, before learning begins. (c) Desired (thick line) and actual (thin line) activity of the same output unit after learning. The second output behaves similarly. (d–f) An example of the activities of three RA units, after learning (see text for further discussion).
Figure 3: The four curves track error as a function of epoch while learning with $B = 1, 2, 4,$ and 8 bursts per HVC neuron per simulated song segment. For each B, the overall weight update step size was optimized to give the fastest possible monotonic convergence toward zero error. The number of epochs taken to reach a pre-specified learning criterion (thin horizontal line) grows sharply with B, nearly doubling each time B doubles.

Figure 4: The ellipses are contours of equal-error, and a varying density of these contours corresponds to varying steepness on the error surface (higher density = steeper). (a) Starting from a given error, the maximum allowable step-size in weight-space is the same regardless of the direction from which the minimum is approached. (b) On an anisotropic surface, the steepest direction (corresponding to the eigenvector with largest eigenvalue, and designated here by λ_1) dictates the maximum allowable step-size in weight space, and constrains learning in all other directions (λ_α) as well.
Figure 5: The top 300 eigenvalues of the correlation matrix Q, divided by B, for $B = 1$ bursts per HVC neuron per song segment (Black ○), and for $B = 8$ (Grey ○). *Inset:* The scaling of λ_1 (∇) and λ_2 (\triangle) with B, from numerical calculations. We see that $\lambda_1/B \sim B$, while $\lambda_2/B \sim \text{const}$. Solid lines show the same scaling, derived from $\langle Q \rangle$.
Figure 6: The scaling of learning speed as a function of B, normalized by the learning speed for the case $B = 1$ ($\nu_{\alpha}(B) / \nu_{\alpha}(1)$ vs B), plotted for learning along two directions (eigenvectors) in the space of weights: modes $\alpha = 2$ (\triangle) and $\alpha = 200$ (\square). These points are obtained from the numerical calculation of the eigenvalues of Q. **Solid line:** the predicted scaling of learning speed with B, for all $\alpha > 1$, from the mean-field correlation matrix (Q).
