Spatial overlap of ‘on’ and ‘off’ subregions and its relation to response modulation ratio in macaque primary visual cortex

Mario L. Mata* and Dario L. Ringach†

1Department of Neurobiology,
David Geffen School of Medicine at UCLA
University of California, Los Angeles
Los Angeles, CA 90095

2Departments of Neurobiology and Psychology,
Biomedical Engineering Interdepartmental Program,
Brain Research Institute,
Jules Stein Eye Institute,
David Geffen School of Medicine at UCLA
University of California, Los Angeles
Los Angeles, CA 90095

Running title: Subregion overlap and modulation ratio in V1

Figures: 4
Tables: 0
Pages: 18
Total number of words: 3650 (Abstract, 225; Introduction, 362; Discussion, 750)

Corresponding author:

Dr. Dario Ringach
Dept of Psychology
Franz Hall, Rm 7613
University of California, Los Angeles
Los Angeles, CA 90095-1563
Email: dario@ucla.edu
Fax: (310) 206-5895
Phone: (310) 206-5461

Keywords: Simple cells, complex cells, classification, taxonomy, overlap, subregion

Copyright © 2004 by the American Physiological Society.
We studied the spatial overlap of ‘on’ and ‘off’ subregions in macaque primary visual cortex and its relation to the response modulation ratio (the F_i/F_0 ratio). Spatial maps of ‘on’ and ‘off’ subregions were obtained by reverse correlation with a dynamic noise pattern of bright and dark spots. Two spatial maps, ‘on’ and ‘off’, were produced by cross-correlating the spike train with the location of bright and dark spots in the stimulus respectively. Several measures were used to assess the degree of overlap between subregions. In a subset of neurons, we also computed the F_i/F_0 ratio in response to drifting sinusoidal gratings. Significant correlations were found among all the overlap measures and the F_i/F_0 ratio. Most overlap indices considered, and the F_i/F_0 measure, had bimodal distributions. In contrast, the distance between ‘on’ and ‘off’ subregions normalized by their size was unimodal. Surprisingly, a simple model that additively combines ‘on’ and ‘off’ subregions with spatial separations drawn from a unimodal distribution, can readily explain the data. These analyses clarify the relationship between subregion overlap and the F_i/F_0 ratio in macaque primary visual cortex, and a simple model provides a parsimonious explanation for the co-existence of bimodal distributions of overlap indices and a unimodal distribution of the normalized distance between subregions.
Hubel and Wiesel defined simple and complex cells in primary visual cortex based, in part, on the spatial segregation between ‘on’ and ‘off’ subregions assessed in hand-mapped receptive fields (Hubel and Wiesel 1962; Hubel and Wiesel 1968). A more quantitative classification technique was later introduced based on the ratio between the amplitude of the first harmonic and the mean of the response – the F_1/F_0 ratio – when cells are stimulated with drifting sinusoidal gratings (Maffei and Fiorentini 1973; Movshon et al. 1978b; De Valois et al. 1982; Skottun et al. 1991). The distribution of F_1/F_0 in primary visual cortex is bimodal, a finding that has been considered proof of the existence of discrete cell classes (Skottun, De Valois, Grosof, Movshon, Albrecht, and Bonds 1991). However, it has been proposed (Mechler and Ringach 2002) and recently confirmed (Priebe et al. 2004), that the bimodality of F_1/F_0 arises due to the spike threshold nonlinearity in an otherwise unimodal population of cells.

These findings weaken the idea that primary visual cortex is populated by discrete populations of simple and complex cells (Mechler and Ringach 2002) (but see (Abbott and Chance 2002) for a different viewpoint). It could be argued, however, that the F_1/F_0 ratio does not represent a direct measure of the overlap between subregions. This is a valid concern because recent data seem to indicate that the F_1/F_0 ratio does not correlate well with subregion overlap in the primary visual cortex of awake animals (Kagan et al. 2003). Perhaps, as proposed originally, discrete cell classes are best revealed by direct measurement of the spatial separation between ‘on’ and ‘off’ subregions (Hubel and Wiesel 1962; Hubel and Wiesel 1968; Schiller et al. 1976a; Schiller, Finlay, and Volman 1976a; Schiller et al. 1976b; Dean and Tolhurst 1983; Maske et al. 1985; Hegelund 1986a; Kagan, Gur, and Snodderly 2003). Our aim in this study was to address this issue and, in doing so, to gain a better understanding of the spatial arrangement between ‘on’ and ‘off’ maps and their relation to the F_1/F_0 ratio.
Methods

Acute experiments were performed on adult Old-World monkeys (*Macaca fascicularis*) weighing between 2.5 and 3.2 kg. The methods of preparation and single-cell recording are the same as those described elsewhere (Ringach et al. 2002a). Briefly, animals were tranquilized with i.m. acepromazine (50µg/kg) then anesthetized with i.m. ketamine (30 mg/kg) and maintained on i.v. opioid anaesthetic (sufentanil citrate, 6µg/kg/hr) for the surgery. For recording, anaesthesia was continued with sufentanil (6µg/kg/hr) and paralysis induced with pancuronium bromide (0.1 - 0.2 mg/kg/hr). Electrocardiogram, EEG, and end-tidal CO₂ were continuously monitored. Blood pressure was measured non-invasively at 5 min intervals. Body temperature was maintained near 37°C via a heating blanket. All procedures have been approved by the UCLA Animal Research Committee and follow USDA regulations and the NIH Guideline for the Care and Use of Laboratory Animals.

We recorded from $n=300$ cells in macaque V1. $n=146$ neurons were recorded using a system of four independently movable electrodes (Alpha-Omega, Israel), arranged at the corners of a 800µm square. The rest of the dataset was obtained using 10x10 electrode arrays (Bionic Systems LLC, Salt Lake City, USA), with grid separation of 400µm and electrode lengths of 1.0 and 1.5 mm. Electrical signals were amplified and sampled by a Bionics Technologies (Salt Lake City, USA) Cerebus system. The resulting data were transferred via a fiber optic to a computer that performed spike sorting in real-time. Spikes were labelled with their time of arrival (relative to the beginning of the stimulus) with 1ms accuracy. Single spikes were sorted off-line using custom software displaying the projection of the spike waveforms on the first three principal components axes. A Photo Research Model 703-PC spectro-radiometer was used to calibrate the display. Fixation rings made from titanium (Duckworth and Kent, UK) were employed to stabilize the globe of the eye and minimize eye movements. An ophthalmic antibiotic
and steroid combination (TobraDex, Alcon) was employed to prevent an inflammatory response to the fixation rings. Eyes were protected with (neutral) gas permeable contact lenses which were cleaned regularly. Initially, the eyes were refracted by direct ophthalmoscopy to bring the retinal image into focus for a stimulus one meter away from the eyes. Once neural responses were isolated, we measured spatial frequency tuning curves for the dominant eye and maximized the response at high spatial frequencies. This procedure was performed independently for both eyes. In all experiments stimulation was monocular through the dominant eye (the other eye was occluded). The eccentricity of the measured receptive fields ranged between 1 and 8 deg. At the conclusion of the acute experiments, the animal was killed with an overdose of sodium pentothal (60–100µg/kg) in accordance with AVMA guidelines.

Stimulus display and calculation of the ‘on’ and ‘off’ maps

The stimulus consisted of a sequence of small bright and dark ‘dots’ flashed over the receptive field of the neuron. The dots had a contrast of 99%, and were presented on top of a mean background of 56 cd/m². To maximize spatial resolution, the radii of the dots were chosen to be as small as possible while still generating a measurable map. We normally started with a radius equal to one-fifth the period of the optimal grating and adjusted accordingly. In some cases, when recording from a population of cells, we employed a fixed radius of 0.1 deg which proved adequate in these situations when recording at 1-8 deg eccentricity. Each dot was presented for 20ms (two frames at 100Hz refresh rate) and then repositioned at random in a different location. The density of the dots ranged from 1 to 10 dots/deg², and on average it was 6 dots/deg². Receptive field sizes at the eccentricities we recorded from were on average 0.6 x 0.6 deg². Thus, in any one stimulus frame, we had an average of 2.2 dots within the classical receptive field. The linear size of the stimulus patch was large enough to cover the receptive fields being recorded, and it ranged from 0.7 to 3deg. The numbers of bright and dark
dots on each frame were the same, so there were no variations in average luminance.

The total experimental time was between 15 and 30 min. Neurons responded to the stimulus with mean spike rates ranging from 2 to 60 spikes/sec. A few cells that were very directional selective did not respond at all to the stimulus and could not be studied.

Given a fixed time-lag, τ, we separately calculated the cross-correlation between the neural response and the location of bright and dark dots τ ms before the spikes (Jones and Palmer 1987). The resulting spatial maps, computed on a pixel-size resolution, were smoothed with a Gaussian kernel with a standard deviation equal to the radius of the dots. Next, we computed the variance of the maps at each time lag. We defined the optimal delay time as the time at which the map that achieved the largest variance peaked. The maps at the optimal delay time were then normalized by subtracting the baseline corresponding to the mean value of locations in the map away from the receptive field (obtained from the boundary of the stimulus), and dividing by the standard deviation of the noise estimated by randomly shuffling the trials and responses. The resulting (z-scored) maps are denoted by h_{ON} and h_{OFF} (our findings, however, do not depend on this normalization, as nearly identical results were obtained when the raw maps were analyzed instead). The maps may contain both positive and negative values. Positive regions in the h_{ON} map (shown by red hues in Figs 2 and 4) indicate a location in the receptive field where flashing a bright dot induced the cell to increase its firing rate above its mean. Negative regions in the h_{ON} map (shown by blue hues in Figs 2 and 4) indicate locations in the receptive field where flashing a bright dot induced the cell to reduce its firing rate below its mean. A similar description applies to h_{OFF}. We define the ‘on’ subregion by the locations where a bright dot induce the cell to increase its firing rate (where h_{ON} is significantly higher than zero by requiring $h_{ON} > 3$). To select the dominant subregion we only took the largest connected component of the binary image $h_{ON} > 3$. The largest connected component of a binary image is the largest set of connected pixels with a logical value of ‘1’ (Haralick and Shapiro 1992).
Two pixels were considered connected if they were next to each other horizontally or vertically (also called a 4-neighborhood). Similarly, the dominant ‘off’ subregion was computed as the largest connected component of the locations where a dark dot induced the cell to increase its firing rate, \(h_{\text{OFF}} > 3 \). The area of a subregion is defined as the area of the pixels contained in the largest connected component. If only one subregion exists, we say the cell is ‘monocontrast’, as it responds by increasing its firing rate only to one particular sign of contrast (Kagan et al, 2003). We also defined a region-of-interest, intended to represent locations in the maps with a large signal-to-noise, by finding those pixels such that either \(|h_{\text{ON}}| > 3 \) or \(|h_{\text{OFF}}| > 3 \). As described below, the computation of the overlap measures were performed using the map values restricted to this region-of-interest.

Analysis of the spatial relationship between \(h_{\text{ON}} \) and \(h_{\text{OFF}} \).

We computed five different measures to analyze the spatial relationship between \(h_{\text{ON}} \) and \(h_{\text{OFF}} \). First, we computed a measure of ‘discreteness’ as used by Dean and Tolhurst (1983) in cat area 17. We denote this measure by \(\alpha \), which is defined mathematically by:

\[
\alpha = \frac{\sum |h_{\text{ON}} - h_{\text{OFF}}|}{\sum |h_{\text{ON}}| + \sum |h_{\text{OFF}}|}
\]

For a complex cell, one expects the cell’s response to be independent of contrast polarity, in which case \(h_{\text{ON}} \approx h_{\text{OFF}} \), making \(\alpha \approx 0 \). A simple cell would show antagonistic responses to bright and dark bars, meaning that \(h_{\text{ON}} \approx -h_{\text{OFF}} \) (Palmer and Davis 1981; Ferster 1988; Hirsch et al. 2002; Hirsch 2003). In this case, the measure \(\alpha \) is expected to be near one. The summation above is restricted to the region of interest.

Second, we computed the *correlation coefficient* between \(h_{\text{ON}} \) and \(h_{\text{OFF}} \). We consider the spatial maps as vectors, and denote by \(\| h \| = \sqrt{\langle h, h \rangle} \) the norm of the vector \(h \) and
by \(\langle h_{ON}, h_{OFF} \rangle \) the inner product between two vectors. Then, the correlation coefficient can be written as,

\[
\rho = \frac{\langle h_{ON}, h_{OFF} \rangle}{\|h_{ON}\| \|h_{OFF}\|}
\]

which equals the cosine of the angle between the two vectors. In complex cells \(h_{ON} \) and \(h_{OFF} \) have similar shapes, and we expect \(\rho \approx +1 \). A simple cell would show antagonistic responses to bright and dark bars resulting in a value \(\rho \approx -1 \). The calculation is again restricted to the region of interest (including pixels with ‘noise’ in this calculation rapidly biases the correlation coefficient to zero.)

Third, we computed the ‘normalized distance’ as the ratio between the separation between the center of mass of the ‘on’ and ‘off’ subregions and the mean square root of their areas:

\[
\delta = \frac{\|\vec{h}_{ON} - \vec{h}_{OFF}\|}{\frac{1}{2}\left(\sqrt{A(h_{ON})} + \sqrt{A(h_{OFF})}\right)}
\]

Here, \(\vec{h}_{ON} \) is the center of mass of the ‘on’ subregion and \(A(h_{ON}) \) is its area, with similar definitions for \(h_{OFF} \). \(\|\vec{h}_{ON} - \vec{h}_{OFF}\| \) is the distance between the center-of mass of the subregions. The idea is to measure the distance between the sub-regions normalized by their mean (linear) size. A complex cell is expected to have a small separation between the subregions relative to their size, resulting in values of \(\delta \approx 0 \). Simple cells are expected to have large separations between the subregions relative to their size, meaning \(\delta \gg 0 \). Monocontrast cells are excluded from this analysis, as they only have one significant subregion. An analysis was also done normalizing by the mean “width” of the subregions computed through a 1D slice of the maps (see below). The resulting distribution was very similar and is not shown.
The next two measures were defined by first taking a one-dimensional slice through both maps. The slice was selected so that it passed through the center of mass of the ‘on’ subregion and the center of mass of the ‘off’ subregion, as shown in the examples of Fig 2. Mono-contrasts cells have to be necessarily excluded from these analyses. We define the slice through h_{ON} by g_{ON} and the slice through h_{OFF} by g_{OFF}. Given these one dimensional spatial profiles we computed the following two additional measures.

Our fourth measure was obtained by fitting Gaussian functions to the profiles of g_{ON} and g_{OFF}, resulting in two different mean locations, m_{ON} and m_{OFF}, and standard deviations representing their widths, σ_{ON} and σ_{OFF}. Following the work of (Schiller et al. 1976c) we defined the ‘overlap index’ by

$$\omega = \frac{(\sigma_{ON} + \sigma_{OFF}) - |m_{ON} - m_{OFF}|}{(\sigma_{ON} + \sigma_{OFF}) + |m_{ON} - m_{OFF}|}$$

For a complex cell where the separation is small relative to the width of the profiles we expect $\omega \approx 1$, while for simple cells we expect the separation to be large relative to the widths and $\omega < 0$. Again, mono-contrasts cells must be excluded from this analysis.

The fifth measure we considered was the relative phase measure defined by Conway and Livingstone (2003). The first step in the calculation involves the simultaneously fitting of sinusoidal functions of the form $A\sin(2\pi f x + \phi)$ to g_{ON} and g_{OFF}, where the spatial frequency is constrained to be the same for both maps. The relative phase measure is the difference between the fitted phases, $\Delta\phi = |\phi_{ON} - \phi_{OFF}|$ modulo 180 degrees. If the peaks of g_{ON} and g_{OFF} occur in similar locations (as expected in complex cells), then one expects $\Delta\phi \approx 0^\circ$. If the maps tend to be in anti-phase (simple cells), then $\Delta\phi \approx 180^\circ$. In practice, to make the measure less sensitive to noise, the sinusoidal functions are windowed by a Gaussian and the center is constrained to be the
same for both maps as well (see Conway and Livingstone (2003) for a discussion). We implemented their method in our calculations.

Measurement of the F_1/F_0 ratio

After measuring h_{ON} and h_{OFF}, the F_1/F_0 ratio was obtained in a subset of $n=98$ neurons recording with 10x10 electrode arrays. We measured the response of the neurons to all combinations of 24 possible directions (15 deg spacing), and spatial frequencies ranging from 0.1 to 10 cycles/deg, in 10 logarithmic steps. The temporal frequency was fixed at 3 Hz and the trial duration was 4 sec. The stimulus was large enough to cover all the receptive fields in the array (usually 2 x 2 deg). For each cell, we used the orientation and spatial frequency that produced the maximal response to compute the F_1/F_0 ratio. Due the nature of the array experiments, the temporal frequency and the size of the stimuli were not optimized for each individual cell as we have done previously (Ringach et al. 2002b). In addition, the relatively coarse sampling of orientation and spatial frequency means that in some cases we might be slightly off the optimal value. The response at the optimal combination of orientation and spatial frequency was further required to be at least 10 spikes/sec above the spontaneous rate (otherwise the data were not included.) The DC response, F_0, represents the elevation of the mean spike rate above the spontaneous firing of the cell measured during the presentation of ‘blank’ trials where the screen had a uniform mean luminance value. A database containing the experimental values of the overlap indices and the F_1/F_0 ratio can be obtained from http://manuelita.psych.ucla.edu/~dario/neurodata.htm.

A descriptive model

We put forward a descriptive model of our data which assumes that the ‘on’ and ‘off’ maps result from the linear combination of two subregions of opposite sign a distance d apart (Fig 1), where d is distributed unimodally and generated by re-sampling the
distribution of normalized distance in our data (Fig 3; distribution of δ). Further, we assume that each subregion is organized in an antagonistic (push-pull) fashion. These two assumptions alone are sufficient to replicate the main features of our data set, including the bimodality of overlap measures and their correlations. Thus, it is possible that a single mechanism could underlie the generation of the measured receptive fields.

To describe the model in more detail, let us denote the hypothetical (one dimensional) map of the putative ‘on’ subunit obtained by cross-correlating the response with the location of bright dots by h^+_{ON} (red solid lines) and that obtained with dark dots by h^-_{ON} (red dashed lines) (Fig 1a). The fact that they overlap in space but have opposite signature is a reflection of a push-pull organization. Similarly, we denote the hypothetical map of the ‘off’ subunit obtained by correlating with the location of dark dots by h^+_{OFF} (blue solid lines) and its bright map by h^-_{OFF} (blue dashed lines). The kernels h^+_{ON} and h^+_{OFF} were selected to be two-dimensional Gaussians with unit variance and unit height (only their 1D profiles are shown in the Fig 1). In each simulated receptive field, h^-_{ON} and h^-_{OFF} had the same shape with amplitude of -0.4. Thus, the absolute magnitude of the ‘push’ was larger than the absolute magnitude of the ‘pull’.

We now assume that the receptive field of a cell is a linear combination of these maps with weights w^+ and w^- so that the resulting ‘on’ map for the cell is given by $h_{ON} = w^+ h^+_{ON} + w^- h^-_{OFF}$, and the ‘off’ map is $h_{OFF} = w^+ h^+_{OFF} + w^- h^-_{ON}$ (Fig 1b). In other words, the ‘on’ map of the cell is a linear combination of the ‘push’ provided by the ‘on’ subunit and the ‘pull’ provided by the ‘off’ subunit (with a similar description for the ‘off’ map). The weights w^+ and w^- were jointly normal, both with a mean of 2.5 and a standard deviation of 1. The weights were correlated with a coefficient of +0.6. Finally, additive white noise with zero mean and a standard deviation of 0.3 was added to the maps (see Fig 4 for some examples of the simulated maps). This was done to generate simulated maps with signal-to-noise ratios comparable to the measured ones.
The reason is that the computation of overlap measures involves the determination of a region-of-interest, and adding noise in the simulated maps ensures the data processing is identical for both cases. We have also verified that the results reported here do not depend strongly on the level of the noise.

Results

We measured the spatio-temporal receptive fields of \(n = 300 \) cells in macaque primary visual cortex (area V1) using reverse correlation with a dynamic stimulus of bright and dark ‘dots’ on top of a grey background (see Methods). For each cell, two receptive field maps were obtained by cross-correlating the spike train of the neuron with the location of the bright dots (the ‘on’ map) or with the location of the dark dots (the ‘off’ map) (Jones et al. 1987; Cai et al. 1997). The calculations were performed at time lags, \(\tau \), ranging from 0 to 200ms. The relationship between the maps was analyzed at the optimal time-lag, defined as the point at which the map with the largest variance peaked (Methods). We denote by \(h_{ON} \) the map obtained with bright dots and by \(h_{OFF} \) the map obtained with dark dots.

Examples of the measured maps in macaque primary visual cortex are illustrated in Fig 2. In each case, we show \(h_{ON} \), \(h_{OFF} \), and a plot of the one-dimensional slices that pass through the center-of-mass of both subregions (see Methods). The numeric measures listed to the right of the panels represent the numeric value of the overlap indices in each case and they will be discussed in detail below. As expected from the classical definition of simple cells, we observed maps with two subregions and antagonistic responses to bright and dark stimuli (Fig 2a, b, c). The degree of antagonism varied and it could be large (Fig 2a) or small (Fig 2c). We also observed cells that showed only one effective ‘subregion’ with antagonistic responses (Fig 2d, e, f). Again, the degree of antagonism varied from large (Fig 2d) to small (Fig 2f). In some cases,
the relationship between the maps was not so clear. Some cells appeared to have maps where there was antagonism in one of the subregions but not the other (Fig 2h,i). Finally, as expected from the classical description of complex cells, we observed cases where the responses to bright and dark stimuli overlapped strongly (Fig 2g,j). The degree to which the responses to bright and dark stimuli were of similar amplitude varied across the population. While in some cases the responses were nearly equal (Fig 2j), in others one of the contrasts was clearly dominant (Fig 2g).

The distribution of our five measures of sub-region overlap and the F_i/F_o ratio in our V1 population is shown in the main diagonal of graphs in Fig 3. The scatter plots among all these variables are plotted off the main diagonal. The distribution of Dean and Tolhurst’s discreteness measure, α, and the correlation coefficient, ρ, are clearly bimodal (Hartigan’s dip test, $p < 0.001$). The distributions of Schiller et al’s overlap index, ω; Conway and Livingstone’s relative phase, $\Delta\phi$; and the F_i/F_o ratio show a trend towards bimodality (Hartigan’s dip test, $p < 0.1$). The one measure that cannot be ruled out to be unimodal is the normalized distance, δ (Hartigan’s dip test, $p = 0.99$).

The scatter-plots between the overlap measures show that they tend to be well correlated (all correlation values are significant at the 0.01 level). The correlation values varied, ranging in absolute value from 0.41 (between δ and ρ) to 0.93 (between ω and ρ). The F_i/F_o response modulation ratio was most correlated with the discreteness measure ρ ($r = -0.61$), and least correlated with the normalized distance δ ($r = +0.27$). Interestingly, we find a reasonably good correlation between the overlap index ω and the F_i/F_o ratio ($r = -0.55$), which contrasts with a recent report that finds no statistical correlation between these measures in awake monkeys (Kagan, Gur, and Snodderly 2003). All the signs of the correlation coefficients are as expected,
meaning that simple cells in one measure tended to be simple cells in another measure and the same for complex cells.

Relationship between overlap and modulation ratio in a simple model

While some of the overlap measures show a bimodal distribution, the normalized distance, which is perhaps the most direct interpretation of the classic description of subregion overlap, is unimodal. In addition, all the measures studied showed a significant degree of correlation, suggesting that a single underlying mechanism could be sufficient to explain the structure of ‘on’ and ‘off’ maps. In this section we explore the possibility that a simple model could explain both the unimodal distribution of normalized distance and the bimodality of the various subregion overlap measures.

There are two key assumptions in the model. First, we assume that receptive fields are the result of the combination of ‘on’ and ‘off’ subunits a distance d apart (Fig 1a). Second, we assume that these subunits already show antagonistic responses to bright and dark stimuli (a push-pull arrangement). The distance between the subunits, d, was generated by re-sampling from the empirical distribution of the normalized distance (Fig 3; distribution of δ).

Representative maps generated by the model, together with their respective one-dimensional profiles and the resulting measures of overlap are illustrated in Fig 4. Receptive fields with well segregated ‘on’ and ‘off’ subregions showing antagonistic responses to bright and dark stimuli are generated when the two units are weighted nearly equally and the separation d is large (Fig 4a). Receptive fields with similar responses to bright and dark dots are generated when the two units are weighted nearly equally and the separation d is small (Fig 4f). If only one subunit is dominant, because it is weighted more strongly than the other, the result is a receptive field with only one
subregion with push-pull organization (Fig 4c). The model also generates intermediate cases resembling those in the experimental data (Fig 4b,d,e).

The distribution of the five measures of sub-region overlap in the model is shown in the main diagonal of graphs in Fig 5. The scatter plots among all these variables are plotted off the main diagonal. The distribution of all the measures, except for the normalized distance, are statistically bimodal (Hartigan's dip test, $p < 0.05$). Furthermore, it can be seen that the joint distribution of the scatter plots replicates well the one observed experimentally. This demonstrates that a unimodal distribution of normalized distance and the bimodality of the overlap indices could potentially be generated by a simple mechanism. The model provides a reasonable explanation for the shape of the marginal distributions and their correlations.

The origin of bimodal distributions

The reason for the bimodality in the distributions can be traced back to a type of ‘nonlinear ruler’ effect (Mechler and Ringach 2002). This means that under certain conditions, the measure changes its numeric value very rapidly when the maps are changed very little. We think such highly nonlinear behavior results from two main reasons. One is the fact that the relative magnitude of the maps is ignored by these measures. Another contributor to this effect, that occurs in experiments that measure the subregions using flashing or drifting bars in neurons with low spontaneous activity (Hubel and Wiesel 1962) (Hubel and Wiesel 1968;Schiller, Finlay, and Volman 1976b) is the thresholding involved in spike generation (Mechler and Ringach 2002;Priebe, Mechler, Carandini, and Ferster 2004).

To understand how insensitivity to the magnitude of the maps contributes to the bimodality of the distributions consider the behavior of the correlation coefficient in the
maps shown in Fig 2f and 2g. The two cells are dominated by an ‘off’ subregion, and the response to bright dots was weak. The overlap between the two is significant in both cases, however, in one case the ‘on’ map tends to be slightly negative (Fig 2f) and in the other case positive (Fig 2g). It can readily be seen that a small change in sign in the weak response can have a large effect in the resulting correlation coefficient. The example in Fig 2f has \(\rho = -0.56 \) (suggesting one should classify this cell as ‘simple’) and the example in Fig 2g has \(\rho = +0.18 \) (suggesting one should classify this cell as ‘complex’). In general, if we assume the two maps have identical shapes, \(h_{ON} = h \) and \(h_{OFF} = \varepsilon h \), then \(\rho = +1 \) if \(\varepsilon > 0 \), and \(\rho = -1 \) if \(\varepsilon < 0 \), no matter how small \(\varepsilon \) is. This is because the correlation coefficient is insensitive to the magnitude of the maps and only measures the similarity between their shapes as the cosine of the angle between the vectors. Any measure that shows such nonlinear behavior with respect to small changes in the maps should be considered potentially problematic. It is easy to see that a similar behavior applies to the relative phase measure, as \(\Delta \phi = 0^\circ \) if \(\varepsilon > 0 \) and \(\Delta \phi = 180^\circ \) if \(\varepsilon < 0 \). Thus, relative phase is also a very nonlinear function of the maps. The discreteness measure \(\alpha \) is insensitive to the magnitude of the maps as long as they have different signs at each location. For example, even though the examples in Fig 2d and 2f could be considered to be rather different map pairs, both cases achieve \(\alpha \approx 1 \) (suggesting both neurons should be classified as ‘simple’). If the maps tend to have the same sign, the resulting measure will be much lower even though one of the maps is weak. For comparison, the example of Fig 2g has \(\alpha = 0.64 \). Finally, the overlap index proposed by Schiller et al is insensitive to the magnitude of the maps as well. This is because only the distance between the ‘on’ and ‘off’ subregions, and their widths, are used in the calculation of the overlap index. The amplitudes of the maps are ignored. As an example, Fig 2g and 2h show maps where the magnitudes are rather different and the overlap index is \(\approx 0.4 \) for both.

A measure sensitive to the magnitude of the maps
Prompted by the realization that the measures showing bimodal distributions are all insensitive to the relative magnitude of the maps, we decided to investigate a measurement that does take this factor into account. We define the relative amplitude as:

$$\mu = \frac{\min\left(\|h_{ON}\|,\|h_{OFF}\|\right)}{\max\left(\|h_{ON}\|,\|h_{OFF}\|\right)} \cos \theta$$

where θ is the angle between the two maps. This measure has a straightforward geometric interpretation (Fig 6a). It represents the relative amplitude of the map with the smaller norm after its projection onto the map with the larger norm. Complex cells, whose response is invariant to contrast sign, are expected to yield values of μ close to $+1$. Simple cells (obeying perfect linearity) are expected to yield values of μ near -1.

The distribution of relative amplitude in primary visual cortex is unimodal (Fig 6b, Hartigan’s dip test, $p>0.9$), broad, and has a mean slightly above zero (0.15 ± 0.025 s.e.m.). The distribution of relative overlap generated by the model is shown in Fig 6c. The empirical and simulated distributions are not statistically different (Kolmogorov-Smirnov test, $p=0.47$). Thus, a measure that takes into account the relative amplitudes of the maps does not show any obvious sign for the presence of discrete neuronal populations.

The relative amplitude measure is not without pitfalls. One problem is that the amplitudes of the kernels might depend on the density of the dots (Simoncelli et al. 2004). If a small number of dots are present within the receptive field at any one time (sparse noise), it is possible that the measurements indicating ‘response enhancement’ are over-emphasized compared to those showing ‘response suppression’. In other words, with sparse noise, an accelerating output nonlinearity involved in spike generation could distort the actual magnitudes of the maps. However, in a few cases, we have obtained maps at various levels of dot density and observed little change in the
maps (data not shown). Thus, it is possible that in practice this is not a serious problem, but more data are needed to carefully establish the dependence of map amplitude as a function of dot density. Recording the intracellular membrane potential instead of extracellular data may be one route to obtain more accurate estimates of the magnitudes (Hirsch 2003; Priebe, Mechler, Carandini, and Ferster 2004). However, one must be aware that in such experiments the relative magnitudes of the ‘push’ and ‘pull’ will depend on the resting membrane potential the cell is being held to. Thus, while there are certain complications in the measurement of the relative size of the ‘push’ and ‘pull’, ignoring their magnitudes appears not to be an appropriate solution as it generates a family of measures with highly nonlinear behavior.

Discussion

In a seminal paper, Dean and Tolhurst (1983) provided an early critique of the classification of simple and complex cells (see also the discussion in (Henry 1977)). They also showed, for the first time, that there was a good correlation between subregion overlap (the discreteness measure) and the F_i/F_0 ratio in cat primary visual cortex. Efforts by Spitzer and Hochstein showed that accounting for the shape of response histograms to drifting and contrast reversal gratings appeared to require more than two discrete classes of neurons, and that “intermediate” behavior could be observed in numerous situations (Spitzer and Hochstein 1985a; Spitzer and Hochstein 1985b; Spitzer and Hochstein 1988). Some of these concerns subsided after the publication of Skottun et al (1991), which demonstrated a consistent bimodal distribution of the F_i/F_0 ratio in both monkey and cat, using data from various laboratories. These investigators also showed that classifying neurons using the F_i/F_0, or by the classic method of manually mapping the neurons with flashing bars, agreed very well. The bimodal distribution of the F_i/F_0 ratio alone was considered sufficient to demonstrate the existence of distinct simple and complex cell populations. However,
the recent proposal (Mechler and Ringach 2002) and its experimental verification (Priebe, Mechler, Carandini, and Ferster 2004) that the bimodality of the F_i/F_o ratio arises as a consequence of spike thresholding in an otherwise unimodal population of neurons has prompted a re-evaluation of the distinctness of simple and complex classes. One possibility is that, as proposed originally by Hubel and Wiesel, discrete cell classes are best revealed by the analysis of the spatial organization of ‘on’ and ‘off’ subregions (Hubel and Wiesel 1962; Hubel and Wiesel 1968; Schiller, Finlay, and Volman 1976a; Schiller, Finlay, and Volman 1976b; Dean and Tolhurst 1983; Maske, Yamane, and Bishop 1985; Heggelund 1986a; Heggelund 1986a; Heggelund 1986b; Kagan, Gur, and Snodderly 2003). This possibility was the motivation behind the present study where we analyzed subregion overlap and the F_i/F_o ratio in macaque V1 using modern mapping techniques.

Our findings indicate that, consistent with previous reports, some measures of subregion overlap are bimodal. These include the discreteness measure of Dean & Tolhurst (1983), the correlation coefficient (DeAngelis et al. 1999; Priebe, Mechler, Carandini, and Ferster 2004), the relative phase measure (Conway and Livingstone 2003) and the overlap index (Schiller, Finlay, and Volman 1976a; Kagan, Gur, and Snodderly 2003). The modulation ratio also shows a tendency for bimodality, as already established in previous studies (Skottun, De Valois, Grosof, Movshon, Albrecht, and Bonds 1991; Ringach, Shapley, and Hawken 2002b). In contrast to our previous study (Ringach et al 2002b), the bimodality in the F_i/F_o distribution of the present population failed to achieve statistical significance. This is most likely a consequence of the fact that we measured it under conditions that were not optimized for each individual cell (see Methods) (Movshon et al. 1978a; Movshon et al. 1978c; Skottun, De Valois, Grosof, Movshon, Albrecht, and Bonds 1991). We also found that the distribution of the normalized distance between the ‘on’ and ‘off’ subregions, is unimodal. This was somewhat curious since the normalized distance is, arguably, the most direct
implementation of the classic definition of subregion overlap. If simple and complex cells were distinct classes one would expect to see a bimodal distribution of normalized distance, but we did not.

We demonstrated that a unimodal distribution of normalized distance and the bimodal distribution of various overlap measures can co-exist in a simple model where two subregions, one ‘on’ and one ‘off’, by themselves organized in a push-pull manner, are linearly combined. The model is admittedly too simplistic. Nevertheless, it does a good job at approximating the measured distributions and their correlations. The model resembles, to some extent, the haphazard connectivity model between the LGN and V1 (Ringach, 2004), where simple cells in cat layer 4 are postulated to result from the statistical pooling of thalamic afferents. Perhaps, extending the haphazard connectivity model one more “layer”, by having ‘superficial layer’ neurons statistically pool from layer 4 neurons, may generate an entire population of receptive fields with maps similar to the ones we observed here. Nevertheless, in its present form, the model provides only a description of subregion overlap across the V1 population and should not be taken to imply a particular organization of the underlying circuitry. We note that more detailed computational models than the one considered here have already shown that simple and complex cells can arise as the ends of the spectrum in networks with non-specific connectivity (Chance et al. 1999; Abbott and Chance 2002; Tao et al. 2004). In particular, Tao et al (2004), have shown that a bimodal distribution of F_i/F_o arises in a large-scale model of layer 4Ca. It would be of interest to see if an analysis of subregion overlap and its relation to the F_i/F_o ratio in these models can replicate aspects of our data.

We suggested that a likely reason for the bimodality of the overlap measures is their high degree of nonlinearity in some situations. This means that, under certain conditions, the measures generate very different values when the maps change very
little. It was argued that the behavior is a partial consequence of these measures being insensitive to the magnitudes of the maps. A measure that takes this into account (the relative magnitude, μ) did not show any clear evidence of bimodality. Caution should be exercised in comparing the amplitude of the kernels (see discussion above), but we believe the present analyses show that ignoring the amplitudes by normalizing them does not constitute a solution to the problem.

Finally, our results indicate that the various overlap measures and the response modulation ratio show significant correlations among themselves. This is in agreement with the quantitative data of Dean and Tolhurst (1983), and is also consistent with the agreement in the classification of cells using either the modulation ratio or manual mapping of the receptive fields (Skottun, De Valois, Grosof, Movshon, Albrecht, and Bonds 1991). Such results would not be expected if the F_r/F_o ratio did not correlate with the overlap between subregions. Our data disagree with a recent report (Kagan, Gur, and Snodderly 2003) that modulation ratio and subregion overlap are not significantly correlated in primary visual cortex of awake monkeys. At present, we do not have a good explanation for this discrepancy, except to state that our preparations are different (our study was done in the anesthetized animal) and our methods to map the receptive fields differ (we used a reverse correlation technique while Kagan et al (2003) employed drifting bars).

Despite the long held belief that there are two discrete neuronal classes in V1, the null hypothesis should be that of a continuum of receptive field attributes. We believe our data and the accompanying analysis, together with similar findings in cat area 17 (Priebe, Mechler, Carandini, and Ferster 2004), show that neither the F_r/F_o ratio nor subregion overlap convincingly demonstrates the existence of discrete classes of simple and complex cells in primary visual cortex. Of course, one cannot “prove” that there is a continuum between simple and complex cells (the null hypothesis). There is always
the possibility that future studies will reveal a clear segregation into neuronal classes based on measurement(s) not considered here.

The original description of discrete classes of simple and complex cells and the associated hierarchical model proposed by Hubel and Wiesel have had a strong impact in shaping theories of V1 function. Influenced by the classic framework, many investigators have developed theories of how simple cells represent the visual image, deferring the question about the function of complex cells, the logic being that in a strict hierarchy we can study cortical function one level at a time (Maffei and Fiorentini 1973; De Valois et al. 1979; Kulikowski and Bishop 1981; Olshausen and Field 1996; Bell and Sejnowski 1997; Olshausen B. A. 2001; Simoncelli and Olshausen 2001; Hurri and Hyvarinen 2003). The hierarchical model has also encouraged the search for coding principles that, when applied layer after layer in a hierarchy, will develop simple and complex-like behavior in a sequence (Rao and Ballard 1997; Rao and Ballard 1999; Hyvarinen and Hoyer 2001; Hoyer and Hyvarinen 2002).

Therefore, we believe the discreteness of simple/complex cells is more than a technical discussion about how to define these classes of neurons; the concept has become an integral part of many theoretical and modelling approaches to cortical function. At stake is the wide belief that V1 cortex can be considered as composed of a hierarchy of distinct classes of receptive fields. The null-hypothesis is that receptive fields lie along a continuum, with simple and complex cells at the ends. If we accept the view that RF properties lie on a continuum, it would make sense to seek theoretical models that explain the distribution of receptive field properties and their correlations across the entire population, as well as trends in receptive field properties with laminar location (Ringach 2004). Such theories would have a quite different flavor than current ones that assume a “building-block” cortex with simple and complex cells organized in a strict hierarchy. Thus, the discreteness of neural populations in the cortex is something
we must consider seriously, as the outcome may have a strong impact on how one views cortical organization and function.
Acknowledgements: We thank Jessy Dorn, Brian Malone and Christine Bredfeldt for data collection and valuable comments and discussions. We wish to thank Jonathan Victor, Steve Engel, Ferenc Mechler, Bob Shapley, Moshe Gur, Alan Saul, Max Snodderly and Igor Kagan for feedback on an earlier version of this manuscript. This research has been supported by NIH EY 12816 and a Research to Prevent Blindness Grant to the Jules Stein Eye Institute at UCLA.
Figure 1: A descriptive model. (a) The model consists of the linear combination of two subunits, located a distance d apart, having a single subregion. Each subregion organized in a push-pull manner, meaning that stimuli of opposite contrast generate antagonistic responses. The hypothetical one-dimensional slice of the “on” subunit obtained with bright dots (h_{ON}^+) is shown by the solid red line, and its map obtained with dark dots (h_{ON}^-) is shown by the dashed red line. Similarly, the hypothetical profile of the “off” subunit obtained with dark dots (h_{OFF}^+) is shown by the solid blue curve, and its map obtained with bright dots (h_{OFF}^-) is shown by the dashed blue line. (b) The resulting maps for bright (h_{ON}^+, in red) and dark (h_{OFF}^-, in blue) stimuli after the linear combination of the subunits.

Figure 2: ‘On’ and ‘off’ maps in macaque V1. The figure depicts representative maps obtained via reverse correlation with sparse dot sequences. In each panel, the image on the left represents the map corresponding to bright dots (h_{ON}^+) while the image in the middle represents the map corresponding to dark dots (h_{OFF}^-). As indicated by the colormap on the bottom right, regions in red represent areas where stimuli induced the cell to increase its firing rate above baseline; regions in blue show areas of the receptive field where stimuli of the corresponding contrast sign induced the cell to decrease its firing rate below baseline; while neutral areas appear in green. The curves on the right in each panel represent the one dimensional profile for the ‘on’ (red curve) and ‘off’ (blue curve) maps. The one-dimensional slices of the maps are defined to pass through the center-of-mass of the dominant subregions (see Methods). The orientation of one
such slice is shown as a dashed line in (a). The various overlap measures in each case appear to the right of the panels.

Figure 3: Distribution of subregion overlap and modulation ratio in macaque primary visual cortex. On the main diagonal, from top left to bottom right, we show the histograms of the discreteness measure, the correlation coefficient, the normalized distance, the overlap index, the relative phase, and the modulation ratio. All the distributions except for the normalized distance show signs of bimodality. The scatter-plot between each pair of variables is shown off the main diagonal. All measures are significantly correlated ($p<0.01$). The correlation coefficient for each case appears at the inset to the scatter-plots.

Figure 4: Examples of maps generated by the model. The format is the same as that of Fig 2. The model generates maps that resemble those observed experimentally.

Figure 5: Distribution of subregion overlap resulting from the simulation of $n=250$ receptive fields by the model. On the main diagonal, from top left to bottom right, we show the histograms of the discreteness measure, the correlation coefficient, the normalized distance, the overlap index, and the relative phase. All the distributions except for the normalized distance show signs of bimodality. The scatter-plot between each pair of variables is shown off the main diagonal. All measures are significantly correlated ($p<0.01$). The correlation coefficient for each case appears at the inset to the scatter-plots. The results resemble quite well the main features of our data, including
the bimodality of the various overlap measures and the unimodal nature of the normalized distance.

Figure 6: The relative amplitude measure. (a) The relative amplitude μ is the relative length of the smaller map projected onto the larger map. In this example, it would be the length of h_{OFF} divided by the length of h_{ON}. Complex cells are expected to yield $\mu \approx +1$, while simple cells are expected to yield $\mu \approx -1$. (b) The distribution of relative amplitude in V1 is unimodal and is also well explained by the model, as shown in (c).

Mata & Ringach, Fig 1
Mata & Ringach, Fig 2
Mata & Ringach, Fig 3
Mata & Ringach, Fig 4

Suppression

Enhancement
<table>
<thead>
<tr>
<th>Discreteness (α)</th>
<th>Correlation Coefficient (ρ)</th>
<th>Normalized Distance (δ)</th>
<th>Overlap Index (ω)</th>
<th>Relative Phase ($\Delta \phi$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mata & Ringach, Fig 5
Relative amplitude, μ

Mata & Ringach, Fig 6