Neuromodulation by a Cytokine: Interferon-β differentially augments neocortical neuronal activity and excitability

Gergana Hadjilambreva, Eilhard Mix, Arndt Rolfs, Jana Müller, Ulf Strauss
Neurobiological Laboratory, Dept. of Neurology, University of Rostock, Germany

IFN-β augments neocortical excitability

Number of figures: 6
Number of pages: 33
Number of words:
 abstract – 252
 introduction – 393

Correspondence should be addressed to Dr. Ulf Strauss, Neurobiological Laboratory, Dept. of Neurology, University of Rostock, Gehlsheimer Strasse 20, 18147 Rostock, Germany, Phone +49 381 4949551, Fax +49 381 4949542. E-mail:ulf.strauss@med.uni-rostock.de

Copyright © 2004 by the American Physiological Society.
Abstract

The immunomodulatory cytokine interferon-β (IFN-β) is used in the treatment of autoimmune diseases such as multiple sclerosis. However, the effect of IFN-β on neuronal functions is currently unknown. Intracellular recordings were conducted on somatosensory neurons of neocortical layers 2/3 and 5 exposed to IFN-β. The excitability of neurons was increased by IFN-β (10 – 10,000 U/ml) in two kinetically distinct, putatively independent manners. Firstly, IFN-β reversibly influenced the subthreshold membrane response by raising the membrane resistance \(R_M \) 2.5-fold and the membrane time constant \(\tau \) 1.7-fold dose-dependently. The effect required permanent exposure to IFN-β, and was reduced in magnitude if the extracellular \(K^+ \) was lowered. However, the membrane response to IFN-β in the subthreshold range was prevented by ZD7288 (a specific blocker of \(I_h \)) but not by \(Ni^{2+} \), carbachol or bicuculline, pointing to a dependence on an intact \(I_h \). Secondly, IFN-β enhanced the rate of action potential firing. This effect was observed to develop for \(> 1 \) hr when the cell was exposed to IFN-β for 5 min or greater than 5 min, and showed no reversibility (up to 210 min). Current–discharge (\(F-I \)) curves revealed a shift (prevented by bicuculline), as well as an increase in slope (prevented by carbachol and \(Ni^{2+} \)). Layer specificity was not observed with any of the described effects.

In conclusion, IFN-β influences the neuronal excitability in neocortical pyramidal neurons \textit{in vitro}, especially under conditions of slightly increased extracellular \(K^+ \). Our blocker experiments indicate that various ionic conductances with different voltage-dependencies cause different influences on sub- and supra-threshold behavior, suggesting a more general intracellular process induced by IFN-β.
Introduction

Various cytokines are produced within the central nervous system (CNS) by different cell classes including lymphocytes (Fabry et al. 1994), resident glial cells (Hopkins and Rothwell 1995) and neurons (Bartfai and Schultzberg 1993; Villarroya et al. 1997). The subgroup of the interferons (IFNs) belongs to a family of endogenous glycoproteins and acts in the defense to virus infections and tumors as well as in the regulation of immune responses of vertebrates (Baron et al. 1991; Bocci 1992).

The latter effect is thought to be responsible for the suppressive activity of IFN-β on autoimmune demyelination in patients with multiple sclerosis (MS), which renders IFN-β an important therapy for these patients (Kinnunen et al. 1993; Durelli et al. 2001; Coyle and Hartung 2002). However, the response to IFN-β is variable and some patients do not show any improvement, while others have to stop the therapy because of side-effects such as fever, muscle rigidity, fatigue, depression, anorexia (Bramanti et al. 1998; Walther and Hohlfeld 1999). These effects are regulated in CNS structures and depend on specific neuronal activity. Accordingly, IFNs - besides other cytokines (Sternberg 1997; Jiang and Lu 1998) - affect neuronal cells, as reported for IFN-α during cancer treatment. IFN-α and IFN-β are type I IFNs and share several features, which makes a similar activity of both likely. The amino acid sequences of IFN-α and IFN-β indicate they are homologous proteins that bind with high affinity (Kd of 10^{-10} M - 10^{-11} M) to a common receptor (IFNAR$_1$). They induce similar intracellular signaling pathways, but they do not always act synergistically (Ransohoff 1998). Known neuronal effects of IFN-α are divergent. Excitatory as well as inhibitory effects on neurons and the synaptic transmission are reported (for more detailed information see discussion, for review see Dafny et al. 1997). These effects differed according to the brain region
(Dafny et al. 1996), however, as described in further detail in the discussion, antagonistical effects may even occur in one region.

The IFN-α modulation of neuronal activity in the rat neocortex, hippocampus and hypothalamus (Dafny et al. 1997) could also apply for IFN-β. Therefore we assumed that IFN-β could have a direct effect on the electrical activity of neocortical neurons. To test our hypothesis we applied intracellular recordings with sharp microelectrodes from neocortical sensorimotor pyramidal neurons in rat brain slices under the influence of IFN-β.
Materials and Methods

Slice preparation

Animals were kept under standard laboratory conditions and all procedures were performed in agreement with the European Communities Council Directive of November 24, 1986 (86/609/EEC). Brain slices were prepared by standard methods (Strauss et al. 2004). After deep anesthesia with ether, adult male Wistar rats (250-400 g) were decapitated. A small block of brain containing the somatosensory cortex was rapidly removed and transferred to cold (4-5°C), oxygenated (95 % O₂, 5% CO₂, pH 7.34-7.40) artificial cerebrospinal fluid (ACSF). The block was fixed with cyanoacrylate glue ventral side up in the cutting chamber, the neocortex facing the blade. Coronal brain slices of 400 μm nominal thickness were cut on a vibrating microtome (Vibratome Series 1000, Vibratome, St. Louis, MO, USA) under cold (2–5°C) ACSF. The slices were incubated for at least 1 h in ACSF at room temperature (~23°C) before being transferred to a submerged–type chamber for electrophysiological recording. The ACSF contained (in mM): 124 NaCl, 5.0 KCl, 1.25 NaH₂PO₄, 2.0 MgSO₄, 26 NaHCO₃, 2.0 CaCl₂, 10 D-glucose with 295-308 mOsmol (all compounds were purchased from Sigma-Aldrich, Steinheim, Germany). For 6 experiments 2.5 mM KCl had been substituted by 2.5 mM NaCl. When using Ni²⁺, the MgSO₄ was replaced by MgCl₂ and NaH₂PO₄ was omitted. This solution is referred to as divalent cation solution (DCS).

Electrophysiological Recordings

Conventional intracellular electrodes were pulled from thin-wall borosilicate glass with outer diameter 1.2 mm and inner diameter 0.982 mm (Hilgenberg, Mansfeld, Germany) using a vertical puller PUL-100 (WPI, Sarasota, USA). When filled with 3 M KCl or 3 M K⁺-acetate, the electrodes had a final DC resistance of 60-100 MΩ. Neurons were
impaled in the pyramidal layer 2/3 or layer 5 of the somatosensory neocortex and current clamped. Once a stable intracellular recording was obtained (usually >10 min post impalement), square current pulses (0.3 or 0.5 s) were injected through the micropipette for at least 30 min, but up to 240 min. Bridge balance was continuously monitored and adjusted accordingly. When necessary, a tonic current was injected to compensate for changes in membrane potentials induced by carbamylcholin, ZD7288 or Ni^{2+}. Voltage signals were amplified using a high impedance amplifier with active bridge circuitry (npi-amplifier SEC-05LX, npi electronic, Tamm, Germany). The superfusion with ACSF was kept at a constant flow (2 ml/min) by a fast gravity system with an onset time of about 1-3 min for 1 μM tetrodotoxin (TTX, Tocris, Bristol, UK). The temperature was held constant (32 ± 0.5°C) by a temperature control unit (TC10, npi electronic, Tamm, Germany). All substances were applied by superfusion. Recombinant IFN-β (U-CyTech, Netherlands) was aliquoted after reconstitution and kept at -80°C. For the I_h block the specific antagonist ZD7288 (Harris and Constanti 1995) purchased by Tocris was prepared as a 100 mM stock solution, aliquoted and stored at –20°C. To reduce M-currents carbamylcholin chloride (Adams et al. 1982) purchased by Sigma-Aldrich (further referred to as carbachol) was prepared as a 100 mM stock solution, aliquoted and stored at –20°C. Aliquots were diluted in ACSF directly before starting each experiment. Bicuculline methiodide (Sigma-Aldrich) (further referred to as bicuculline) was used to inhibit the fast inhibitory synaptic response mediated by GABA_A (Salin and Prince 1996) and was prepared as a stock solution of 10 mM and stored at 4°C. In 22 experiments, 4 % Neurobiotin (Vector Laboratories, Burlingame, USA) was included in the pipette solution for staining and injected at the end of the experiment by a DC current (20-30 min, +0.15 – +0.35 nA). Ten neocortical neurons were properly filled with neurobiotin, visualized by
diaminobenzydine (DAB) and reconstructed by the use of NeuroLucida imaging system (Microbrightfield, Inc., Williston, USA)

Data acquisition and analysis

Data was sampled at 20 kHz by ISO2 (MFK, Niederegge, Germany) after filtering at 2 kHz. To enable a representative comparison among neurons, all data was normalized on a trial by trial basis, that is each value is expressed in terms of the initial “baseline” value. Evaluation and analysis were performed with ISO2 and Origin7 (Microcal, Northampton, MA, USA). The input resistance was calculated from linear regressions of IV plots including values in the range of ± 5 mV from resting membrane potential. Assuming that the surface area of the cell did not change substantially under the conditions of IFN-β superfusion, the input resistance was expected to reflect the membrane resistance (R_M). The membrane time constant was obtained as a mean of 4 to 5 slowest values of multiexponential least square fits of the initial 200 ms of voltage responses to current steps (Spruston and Johnston, 1992) in the vicinity (± 5 mV) of the resting potential (V_M). The relationship between injected current intensity and the total number of spikes per pulse (normalized by the pulse duration) was calculated, and neurons without a significant correlation between these variables were excluded from analysis. The current-frequency relationship of a given neuron is characterized by the slope (Hz / nA) of the linear regression (see Fig. 6). All values are given as mean ± SEM. Statistical analysis was performed using one way Anova and paired Student’s t-test as appropriate. Significance levels were set to P = 0.05, if not indicated otherwise.
Results

General neuronal properties

Conventional intracellular recordings were analyzed from a total of 98 somatosensory neocortical neurons. All reported neurons met the criteria of neocortical pyramidal neurons based on the classification of Connors and Gutnick (1990). Neurons recorded following the 15 min pretreatment with ZD7288 ($n = 6$) were not considered for the general characterization of electrophysiological properties. The neurons were segregated by their location (for detailed sub- and supra-threshold membrane properties see table 1) and their response to supra-threshold current injections (exemplified in Fig. 4A). The neurons were identified by their relatively broad action potentials (action potential width at half height $1.1 \pm 0.03 \text{ ms}$, $n = 80$) that exhibited spike frequency adaptation upon injection of a depolarizing current pulse. Five neurons in layer 2/3 and 13 neurons in layer 5 generated bursts of action potentials with decreasing amplitudes at the beginning of the depolarizing current pulse through the activation of an afterdepolarization after each action potential. Three out of the 6 neurons recorded after pretreatment with ZD7288 responded initially with burst discharges. Irrespective of classification, no decrease in height of single action potentials ($86.15 \pm 1.1 \text{ mV}$, $n = 63$) was observed during spike trains elicited by depolarizing current injection, suggesting that the recording location was somatic (Spruston et al. 1995). Examination of the electrophysiological properties and 3D reconstruction of neuron morphology confirmed the identity of the pyramidal neocortical neurons in a random sample ($n = 6$ for layer 2/3, see a typical example in Fig. 1; $n = 4$ for layer 5).

IFN-β augments subthreshold membrane properties

IFN-β concentrations of 500 and 1000 U/ml were previously reported as biologically active and have been shown to elicit reproducible and significant effects in immune
cells (Hallal et al. 2003). Therefore 500 and 1,000 U/ml were chosen for initial test experiments. The IFN-β superfusion was ceased after 30 min since this has been shown to be sufficient for IFN-α to elicit effects on neurons (Mendoza-Fernandez et al. 2000). The result of the superfusion was a substantial change in subthreshold membrane responses to current injections, reflected by an increase of R_M to $242 \pm 34\% \ (n = 17)$ (Fig. 1B). Assuming an unchanged surface area and a subsequent constant membrane capacitance, the reported change in R_M was directly linked to τ, which increased up to $163 \pm 10\% \ (n = 17)$ (Fig. 1C). The concentrations of 500 and 1,000 U/ml were equally effective doses ($P = 0.37$ and $P = 0.29$ for R_M and τ, respectively), therefore all data was pooled.

The onset of these effects was delayed by 10 - 15 min and was independent of the depth ($P = 0.51, n = 17$ for R_M and $P = 0.08, n = 17$ for τ) of the neurons. In detail normalized values of neurons impaled at 0-100 µm and 300 –400 µm ($n = 5$) were for $R_M = 1.74 \pm 0.39$ and for $\tau = 1.28 \pm 0.03$, compared to normalized values of $R_M = 2.16 \pm 0.36$ and of $\tau = 1.60 \pm 0.11$ for the group between 100 and 300 µm depth ($n = 12$).

The changes could be reversed within 30 min of washout with ACSF. A dose-dependence of the changes of R_M and τ was revealed by a series of experiments involving the exposure of a distinct pyramidal neuron to increasing concentrations of IFN-β (Fig. 2A). Each concentration was applied for a period of 30 min and followed by superfusion with a higher one. The investigation of the dose-dependence showed that saturation was achieved at doses above 1,000 U/ml.

A comparison was performed between the changes following increasing IFN-β concentrations ($R_M = 2.04 \pm 032. \text{ and } \tau = 1.65 \pm 0.12, \ n = 6, \text{ respectively}$) and the changes after immediate application ($R_M = 1.90 \pm 0.39 \text{ and } \tau = 1.44 \pm 0.11, \ n = 11, \text{ respectively}$) of the submaximal concentration of 500 or 1,000 U/ml. This revealed no
difference in kinetics and magnitude of the increase \((P = 0.80\) and \(P = 0.29\) for \(R_M\) and \(\tau\), respectively) which excludes a putative accumulation of the effect during the application of increasing doses. For comparison between neurons, we normalized the data to the initial value (see methods). However, we observed a large intercell-variability of the subthreshold voltage responses of the neocortical neurons at a distinct concentration. This variability is best reflected in a plot of the individual values (Fig. 2B and C), considering that the experimental setup did not allow to test for the whole concentration range in one given neuron. A sigmoidal fit revealed a half maximal dose (ED50) of 29.6 ± 24.9 U/ml \((n = 4 - 10)\) and 64.1 ± 40 U/ml IFN-\(\beta\) \((n = 4 - 10)\) and a slope of 0.94 and 0.90 for \(R_M\) and \(\tau\), respectively. There was no significant change in \(V_M\) between the control value and after 30 min IFN-\(\beta\) application (from -73.3 ± 1.8 mV to -72.2 ± 1.7 mV, \(n = 11, P = 0.29\)). The effect could be observed in all neurons and there was neither a difference in the kinetics nor in the magnitude of the effects on \(R_M\) and \(\tau\) between layer 2/3 and layer 5 neurons \((P = 0.77\) for \(R_M\) and \(P = 0.16\) for \(\tau\). Layer 2/3 neurons experienced an increase in \(R_M\) to 253 ± 90 % \((n = 7)\) and \(\tau\) to 146 ± 8 % \((n = 7)\), compared to an \(R_M\) increase to 237 ± 27 % \((n = 10)\) and an \(\tau\) increase to 175 ± 15 % \((n = 10)\) in layer 5 neurons. Data for both layers have therefore been pooled. Decreasing the potassium concentration in the ACSF to the lower limit of the physiological range (2.5 mM) did not change the quality of the effect but reduced its intensity \((R_M\) increased to 128 ± 9 %, and \(\tau\) to 115 ± 4 %, \(n = 6\), for both layers, Fig. 1B,C). Various substances were pre-applied to further determine putative targets of the influence of IFN-\(\beta\) on “resting” properties of neuronal membranes (Fig.3). We mainly focused on substances known to block potassium conductances which are partially active at rest. IFN-\(\beta\) was added after the effects of the pre-applied substances reached a steady state. After the pre-application of 1 mM Ni\(^{2+}\), which blocks Ca\(^{2+}\) influx into the
neuron and prevents the opening of Ca2+ activated K+ channels, the superfusion with 1,000 U/ml IFN-\textbeta increased R\textsubscript{M} to 147.7 ± 18.0% and \(\tau\) to 129.4 ± 06.5% (\(n = 7\)). Pre-application of 10 \(\mu\text{M}\) bicuculline, which blocks the fast inhibitory synaptic response mediated by GABA\textsubscript{A}, followed by the superfusion of IFN-\textbeta (1,000 U/ml) raised R\textsubscript{M} to 161.46 ± 22.3% and \(\tau\) to 158.15 ± 11.2% (\(n = 7\)). The same extent of increase in R\textsubscript{M} to 171.9 ± 26.7% and \(\tau\) to 169.5 ± 28.0% (\(n = 4\)) was achieved by IFN-\textbeta after pre-application of 50 \(\mu\text{M}\) carbachol, used to diminish M-currents. The amount of relative effect appeared smaller during the pre-application of all three substances compared to the superfusion with IFN-\textbeta alone, which might argue for a partial contribution of Ca2+-activated K+ channels, tonic inhibition mediated by GABA\textsubscript{A} and M-currents to the effect on R\textsubscript{M} and \(\tau\). However, these effects were not significant on the population level for any of the substances (for Ni2+ \(P = 0.27\), for bicuculline \(P = 0.46\) and for carbachol \(P = 0.73\)), possibly due to the large intercell variability (see Fig. 2). However under the conditions of pre-application of 50 \(\mu\text{M}\) ZD7288, a specific blocker of \(I\textsubscript{h}\), R\textsubscript{M} (90.1 ± 13.8%, \(n = 6\)) and \(\tau\) (98.5 ± 7.9%, \(n = 6\)) remained stable despite the superfusion of IFN-\textbeta. These results imply that IFN-\textbeta causes a dose-dependent and reversible effect on the subthreshold membrane responses of neocortical pyramidal neurons which was mainly mediated by a reduction of \(I\textsubscript{h}\).

\textit{IFN-\textbeta increases the neuronal action potential firing evoked by a 15 \% suprathreshold current injection}

As a second effect of IFN-\textbeta we observed an enhancement of the rate of neuronal action potential firing in a large subset (25/39) of neocortical pyramidal neurons following application of 1 – 10,000 U/ml IFN-\textbeta in ACSF containing 5 mM K+. Only neurons with an increase of more than 20 \% in action potential frequency were regarded as IFN-\textbeta
responsive since control measurements in neocortical pyramidal neurons \((n = 12)\) revealed that impalement and measurement itself led to a ± 10% variation of the firing rate \((P = 0.56)\). Population data of the responding neurons revealed a substantial increase (up to 317 ± 62%) in action potential frequency in response to a 15% supra-threshold current injection as calculated from the first interspike interval (ISI) (Fig. 4). The 15% supra-threshold current injection was chosen to mimic the situation of a moderate synaptic input. The observed increase in the frequency developed slowly during the 30 min period of IFN-β superfusion. Most neurons continued to experience an increase in action potential frequency even after the cessation of IFN-β application (Fig. 4B, C), i.e. during a washout period of up to 60 min the effect was sustained or even increased as long as we held the recording (up to 210 min after the cessation of the IFN-β superfusion). There was no change in the voltage threshold for action potential generation in a random sample (control: -52.8 ± 3.2 mV, IFN 1,000 U/ml: -53.0 ± 3.2 mV, \(P = 0.44, n = 13\))

Some neurons \((n = 8/45\) in layer 2/3 and \(n = 6/47\) in layer 5) also experienced an IFN-β induced change in the pattern of action potential firing, i.e. burst discharging at the beginning of the current injection was unleashed, irrespective of the concentrations applied. This resulted in a dose-independent 6.32 ± 1.1-fold \((n = 14)\) increase of the action potential frequency of the first ISI in the group of burst developing neurons. Due to their different response characteristics, these neurons were excluded from the population dose-dependence analysis of the frequency revealed from the first ISI. The effect on the firing rate of the regular spiking neurons was dose-dependent (Fig. 5A).

We pooled data for each concentration and calculated means (normalized to initial values, Fig. 5B) for the first and the last ISI as well as for the number of action potentials. The sigmoidal fit for the frequency of the first ISI revealed an ED50 of 24.0
± 20.6 U/ml ($n = 3–5$) and a slope of 1.04, for the last frequency an ED50 of 29.9 ± 21 U/ml ($n = 2–5$) and a slope of 1.48, and for the number of action potentials an ED50 = 40.6 ± 21.2 U/ml ($n = 3–6$) and a slope of 1.26. A pre-treatment with 1 mM Ni$^{2+}$ prevented the IFN-β induced increase in frequency of the first ISI as reflected by the unchanged values as normalized to the first frequency measured in Ni$^{2+}$ alone (1.09 ± 0.2, $P = 0.68$, $n = 7$) whereas a pre-treatment with 50 μM ZD7288 left the IFN-β induced increase intact (3.40 ± 1.89, $P < 0.05$, $n = 6$). No correlation was found between the extent of the enhancement and the location of the neuron in either layer 2/3 or 5 or to the depth in the slice. The effect of IFN-β on the action potential frequency varied markedly in strength; the differences in response varied from slight (1.4-fold) to pronounced (7.8-fold) increase in the firing rate upon application of 500 U/ml IFN-β. The effect was long lasting and was established slower as compared to the effect on R_m and τ in neocortical pyramidal neurons. Our experimental protocol itself is unlikely to account for the effects observed in this study, i.e. did not induce long term potentiation of intrinsic excitability by activation (Cudmore and Turrigiano 2004). The IFN-β induced effects occurred also with slight activation (15% suprathreshold current injection) at large (10 min) intervals, persisted under the conditions of blocked Ca$^{2+}$ influx (1 mM Ni$^{2+}$) and increased the slope of the F-I curve, too.

The suprathreshold excitability is increased by IFN-β over a broad range of current injections by a subtractive shift and by an increase in gain of the F-I curves

We additionally determined if IFN-β causes a similar increase in excitability across a range of suprathreshold current injections. Therefore F-I curves as a measure of the relationship between firing rate and constant driving current were constructed by injecting a range of current amplitudes before and 30 min after the onset of the IFN-β
application. The analysis of these curves (example Fig. 6A, left panel) revealed that the increase in suprathreshold excitability evolves from a shift of the F-I curves, i.e. from a smaller rheobase as calculated from the intersection of the linear regression with the abscissa as well as from a larger gain, i.e. an increase in slope of that linear regression (for values ± sem see Fig. 6B,C, third column). Both effects could be prevented by the reduction of K^+ in the ACSF to low physiological values of 2.5 mM (Fig 6B,C second column). To further address putative mechanisms of action of IFN-β on the neuronal firing rate we used the application of substances bearing the potency to reduce several candidate currents prior to the superfusion with IFN-β. As depicted in Fig. 6 B and C, pre-treatment with bicuculline (10 μM) prevented the IFN-β induced shift in the rheobase, but not the increase in gain. The other two substances used for pre-application (1 mM Ni$^{2+}$ as a blocker of Ca$^{2+}$-conductances with a low selectivity, therewith also reducing Ca$^{2+}$-dependent K$^+$-conductances, and 50 μM carbachol as an inhibitor of M-currents) independently prevented the increase in the gain but not the shift of the F-I curves.

Short application of IFN-β selectively releases the frequency increase

In order to describe the development of the IFN-β effects in more detail, experiments with short-term application were performed. This should elucidate whether the IFN-β effect requires continuous presence of the substance or is triggered by an initial exposure to IFN-β. The IFN-β superfusion was limited to 5 min at the beginning of an experiment running for 60 min ($n = 5$), which was considered long enough for diffusion of the IFN-β molecule into the brain tissue. All experiments were performed with the concentration of 500 U/ml, shown to be an effective concentration (see dose-response curves, Fig. 2B,C and 5B). Whereas R_M and τ did not change 10 and 25 min after IFN-β
application ceased \((P = 0.65 \text{ and } P = 0.29, \text{ respectively, Fig. 3B,C})\), the firing rate of 4 out of 5 neurons in response of a 15% supra-threshold current pulse increased up to 155 ± 5 % at 25 min after cessation of the IFN-β application. This effect seems to be mediated more by an increase in the neuronal gain \((P < 0.05)\) than by a change in \(F-I\) shift \((P = 0.13, \text{ Fig. 6B, right column})\). A further increase of the firing rate up to 257 ± 14 % \((n = 5)\) was seen during the 55 min washout period.

In summary, the IFN-β effect on subthreshold membrane properties requires its continuous presence, while the action potential frequency is triggered in an “instructive” manner.
Discussion

Our investigations provide evidence for dual excitatory effects of IFN-β on somatosensory neocortical pyramidal neurons: (i) IFN-β augmented the subthreshold membrane responses. Increases in R_M and τ were fast developing, reproducible in every given neuron, reversible, dependent on the continuous presence of IFN-β and determined by an intact I_h. (ii) IFN-β caused an enhancement of the neuronal output over a broad range of suprathreshold current injections due to an offset the input-output relationship and an increase in neuronal gain. In contrast to the subthreshold changes this suprathreshold effect occurs in 64% of the neurons, developed comparatively slower and showed a pronounced variability, appeared to be persistent after cessation of the effect on subthreshold membrane responses, was also released by short-term IFN-β application and was differentially influenced by a set of conductance including I_{Ca} and/or I_{KCa}, I_M and the fast inhibitory GABA_A conductance (see below).

These observations, although giving first evidence for direct IFN-β actions in neurons, are in accordance with the majority of reports on IFN-α, which shares a common IFNAR_1 (type I) receptor with IFN-β. For IFN-α previous findings include an increase in the spontaneous discharge activity in rat and cat cerebral cultures (Calvert and Gresser 1979), an enhanced single cell activity in warm-sensitive hypothalamic neurons (Nakashima et al. 1988), short bursts and epileptiform discharges in hippocampal neurons (Müller et al. 1993), an increased activity in cortical and hippocampal neurons in vivo after i.v. IFN-α administration (Dafny et al. 1996), modulated spontaneous activity in glucose-sensitive hypothalamic neurons (Reyes-Vazquez et al. 1997) and cell type dependent responses of thermosensitive neurons (Shibata and Blatteis, 1991). However, there is also evidence for an unchanged intrinsic
and a decreased synaptic excitability in CA1 hippocampal neurons of rats (Mendoza-Fernandez et al. 2000) following application of IFN-α.

We propose a reduction in the hyperpolarization activated nonselective cation current I_h is the key mechanism for the IFN-β effect on subthreshold membrane properties. This is supported by the finding that a reduction in extracellular K^+, which also reduces I_h, leads to a reduction in the IFN-β effect and that the selective blockade of I_h by ZD7288 prevented an effect of IFN-β on the subthreshold membrane properties. A reduction of I_h has been shown to be a critical factor affecting membrane and integrative properties of a given neocortical neuron and to increase cortical excitability (Strauss et al. 2004).

The analysis of the nature of the frequency enhancement by IFN-β pointed to an offset as well as an increase in gain of the $F-I$ curves. Both aspects are sufficient to alter neuronal supra-threshold excitability. Offsetting the input-output relationship reduces the possibility of a neuron to distinguish baseline levels of excitation from a signal, whereas increasing the gain alters the sensitivity of the neuron. Pre-treatment experiments with ion channel blockers and ion channel modulating substances revealed a number of distinct ion channels putatively contributing to the frequency enhancement. Whereas the prevention of the increase in gain by carbachol suggests an involvement of the M-current, the prevention of the increase in gain by Ni$^{2+}$ points to a contribution of either Ca$^{2+}$-activated K$^+$-currents or T-type calcium currents. The latter could explain the character of the frequency increase (highest influence on the frequency of the first ISI), especially since 1 mM Ni$^{2+}$ prevented the increase in the frequency of the first ISI. However, these changes in single cell excitability did not translate to an apparent direct increase in network excitability i.e. there were no signs of spontaneous (epileptiform) discharges like observed for instance under the influence of bicuculline. Nevertheless, the amount of input necessary to evoke an action potential and the number and pattern
of action potentials in response to an input will affect network behavior (Cudmore and Turrigiano 2004). Given this our observations might be explained by a parallel increase in the excitability of inhibitory neurons or by a recurrent inhibition.

As shown by our pre-treatment experiments with bicuculline a putatively IFN-β evoked reduction in the tonic (shunting) inhibition might partially contribute to the enhancement of action potential firing due to a shift in the \(F-I \) relationship without affecting the gain (see also Ulrich 2003). The prevention of the shift in the \(F-I \) curve by bicuculline might reflect a contribution of small conductance \(\text{Ca}^{2+} \)-activated \(K^+ \)-channels, since they have been shown to be affected by the bicuculline (Khawaled et al. 1999). However, this mechanism did not appear to have enough impact to exert significant changes in the gain of the subthreshold I-V relationship, i.e. the membrane properties \(R_M \) and \(\tau \). Which conductance is affected and its exact contribution to the effects described as well as whether existing channels are modulated or whether channels are inserted in or removed from the membrane remains to be determined. A putative PKC-mediated shift in \(I_{\text{Na}^+} \) activation (Astman et al. 1998) due to an upregulation of PKC activity by IFN-β (Qiao et al. 2001) is unlikely to account for the enhancement in excitability, since there was no change in the spike initiation voltage threshold itself. A change in \(I_{\text{Na}^+} \), however, would be expected to cause a decreased threshold voltage (Crill 1996).

Methodological restrictions prevent to commit the mechanism of the IFN-β action to direct effects on ion channels or activation of signaling pathways. Direct effects were reported for IFN-α in lymphocytes (Schlichter 1992). Other cytokines such as interleukin (IL)-1, IL-2, tumor necrosis factor (TNF)-α, TNF-β and transforming growth factor (TGF)-β are known to affect ionic currents, \(\text{Ca}^{2+} \) homeostasis or long-term potentiation, which leads to changed electrophysiological properties of neurons
and glial cells (for review see Köller et al. 1997). Additionally, IL-1β and IL-2 directly inhibit sodium currents (Hamm et al. 1996). Some of the IFN-α effects have been related to both the direct interaction with opioid receptors on neurons (Nakashima et al. 1988) and the release of reactive oxygen species and nitric oxide (Müller et al. 1993).

However, the modulation in the suprathreshold range appeared to be state dependent, i.e. IFN-β had different effects on neuronal activity when applied to the same preparation, even if the starting pattern of activity was similar. Moreover, IFN-β seems to control the intensity and pattern of neuronal activity by regulating sets of conductance rather than by regulating a single conductance. This is in agreement with the observation of Goldman et al (2001) that fairly large changes in one conductance showed no appreciable change in activity, whereas modestly correlated changes in more than one conductance significantly modify activity. The modulation of multiple conductances by a single neuromodulator has been demonstrated for some cases including 5-HT (Kiehn and Harris-Warrick 1992) and dopamine (Kloppenburg et al. 1999). State-dependence and influence on multiple conductances point to a modification of intrinsically programmed regulatory cascades by IFN-β.

Although the sub- and suprathreshold effects seem to be partially independent on each other and putatively based on different mechanisms, we further assume a mediation of the effects via the common IFN-α/β receptor and the subsequent signaling pathway. This could lead to the synthesis of protein(s) that may interfere with membrane molecules. In this case the relative contribution to sub- or supra-threshold responses would depend mainly on the voltage-dependence of the conductance influenced by intracellular compounds. Previous reports showed that the intracellular signaling pathway of IFN-β involves JAKs and STATs for induction of the transcription of target genes (for review see Ransohoff 1998). Within that scenario the reversibility and the dependence on permanent presence of IFN-β for the changes in the subthreshold
membrane responses would argue for a higher turnover rate of the proteins putatively involved in the suspected reduction of I_h.

We recorded in brain slices to preserve physiological conditions. Therefore, we can not conclusively distinguish between direct IFN-β effects on intrinsic channel properties as they are suspected for IFN-α in lymphocytes (Schlichter 1992), on neuronal gap junctions (Jahromi et al. 2002), on synaptic transmission (D’Arcangelo et al. 1991; Katafuchi et al. 1995) and on glial activity (Blalock 1994; Hu et al. 2000; Szelényi 2001). Regarding the latter possibility some reports described an IFN-β involvement in the activation of multiple signaling cascades in human microglia (Kim et al. 2002) and in the phosphatidylinositol 3-kinase pathway in astrocytes (Barca et al. 2003). A close communication and interaction between different cell types, i.e. pyramidal cells, interneurons and glia, cannot be excluded to at least contributing to both IFN-β effects. Subsequent investigations will be necessary to dissect these complex interactions.

Our study may give hints for better understanding the pathogenesis and therapeutic manipulations of inflammatory diseases of the CNS, since a large number of activated lymphocytes and macrophages infiltrate the brain parenchyma and a variety of proinflammatory and antiinflammatory cytokines are released locally (Sternberg 1997; Szelényi 2001). Furthermore, IFN-β might appear in the brain tissue after systemic administration in MS patients, possibly because of a local increase in the permeability of the blood-brain barrier (Smith et al. 1985; Durelli et al. 2001). Given this fact, the observed changes in neuronal properties and activity may support the therapeutic effects, but may also account for CNS related side effects of IFN-β therapy like stiffness, spasms and epileptic seizures (Bramanti et al. 1998; Walther and Hohlfeld 1999). However, reports on electrophysiological parameters which could provide evidence for neuromodulatory actions of IFN-β during therapeutic use in humans are
limited. Using the latency of the P300 wave of cortical event-related potentials as a sensitive neuroelectric tool to evaluate drugs interacting with the CNS, Gerschlager et al. (2000) found changes in a subgroup of MS patients treated for 1 year with IFN-β. If these results can be replicated on a greater number of patients and after a longer treatment period this might be a link to the experimental data presented here.

Our results give new insights in the action of IFN-β as a neuromodulator in addition to the antiviral, antiproliferative and immunoregulatory effects which have been in the focus of interest for many years (Taniguchi and Takaoka 2002; Teige et al. 2003).

Acknowledgements

We gratefully acknowledge Dr. Maarten H.P. Kole for his help and suggestions in performing the staining experiments, as well as for many constructive comments, which are also contributed by Rudolf Schubert. We thank Lucy Palmer for comments on the manuscript, FW. Zhou for the recording of some of the control neurons, G. Brüsch, M. Besener and C. Biedermann for excellent technical assistance. We are indebted to M. Friedrich for ready adapting his software ISO2 to our needs. G.H. was a graduate student of GRK19/3-03 by the DFG.
References

Blalock, J.E. Shared ligands and receptors as a molecular mechanism for communication between the immune and neuroendocrine systems. *Ann. NY Acad. Sci.* 1994; 74: 1292-98.

Figures:

A

Fig. 1: IFN-β reversibly increased subthreshold membrane responses of neocortical sensorimotor pyramidal neurons.

A: Recordings obtained from a layer 2/3 pyramidal neuron (NeuroLucida image of this Neurobiotin-stained neuron in the upper left row) upon current injection as indicated. The sweeps represent the membrane voltage response at control conditions (black traces) and subsequent to 30 min superfusion of 1000 IU/ml IFN-β (dark grey traces).
Note the increase of the membrane resistance and time constant following interferon application. This increase was reversible (light grey) after a washout period of 30 min with artificial cerebrospinal fluid (ACSF).

B and C: Population data of the membrane resistance (circles, B) and the normalized membrane time constant (triangles, C), both normalized to control values (R_M/R_{M0} and τ/τ_0, respectively). IFN-β had been applied as indicated by the horizontal bars at submaximal concentrations of 500 and 1000 U/ml. Measurements were performed before as well as after 15 and 30 min of superfusion with IFN-β and at 15 and 30 min of washout in ACSF containing 5 mM K^+ (closed symbols) and ACSF containing 2.5 mM K^+ (half closed symbols). Both membrane resistance and time constant increased compared to control recordings in untreated pyramidal cells (open symbols). Although the effect of IFN-β remained qualitatively the same it was much more prominent in the higher K^+ concentration. The reversibility of the effect was confirmed by washout experiments. Asterisks indicate significant changes compared to initial values calculated with the paired Student’s t-test ($P = 0.05$), error bars represent SEM.
FIG. 2

IFN-β influences the sub-threshold membrane characteristics dose-dependently.

A: Traces represent voltage responses from a layer 2/3 pyramidal neuron to current injections as indicated (bottom traces). Increasing concentrations of IFN-β lead to a dose-dependent augmentation of the responses, compared to control. The traces were
recorded after superfusion with IFN-β of 30 min at the concentrations given in the legend.

B and C: Individual values ($n = 4 - 10$ neurons for each concentration) of “resting” membrane resistance (R_M) and membrane time constant (τ) were normalized to the control values estimated before IFN-β application and plotted semilogarithmically against the IFN-β concentration. The plot revealed sigmoidal dose response curves characterizing the dose-dependence of both subthreshold membrane characteristics, i.e. R_M (circles, **B**) and τ (triangles, **C**), with an ED50 = 29.62 ± 24.9 U/ml and ED50 = 64.1 ± 40.1 U/ml, respectively.
IFN-β effects on sub-threshold membrane responses were differently influenced by varying the IFN-β application time, reduction of various K⁺ conductances or decreasing fast inhibitory synaptic transmission.

A and B: Population data of the membrane resistance (A) and the membrane time constant (B), both normalized to control values (R_{M1}/R_{M0} and τ_t/τ_0, respectively). IFN-β (1000 U/ml) had been applied either for 5 min (upward triangle, short horizontal bar) at the beginning of the experiment or for 30 min starting after the effects of the pre-applied substances reached a steady state (all other symbols, long horizontal bar). Note that for the latter situation the time 0 indicates the steady state of the pre-applied substance, which was about 20 – 25 min after impaling the neurons. Recordings were analyzed for
times right before as well as 15, 30, 45 and 60min after the beginning of the IFN-β superfusion. For all experiments summarized here the ACSF contained 5 mM K⁺. In case of the pre-application of 1 mM Ni²⁺, 50 μM carbachol or 10 μM bicuculline additional IFN application increased both R_M and τ compared to control recordings in untreated pyramidal neurons (see Fig. 1 and Results). Note that the pre-application of these three substances seemed to prevent partially the effect exerted by IFN alone but this trend did not reach the level of significance (compare to Fig. 1 and see results). The reversibility of the remaining IFN effect was shown in washout experiments. Only the short application of IFN-β and the pre-incubation with the selective I_h blocker ZD7288 (50 μM) fully prevented the increase of R_M and τ. Asterisks indicate significant changes compared to initial values (P < 0.05), error bars represent SEM.
FIG. 4

IFN-β influences the firing behavior of neocortical neurons persistently towards an increase of excitability.
A: Current injections of fifteen percent above the rheobase were used to evoke a train of action potentials in a regular spiking layer 2/3 pyramidal neuron (left column) and a burst discharging layer 5 pyramidal neuron (right column). The absolute amount of injected current is given in the inset traces below the columns. Regardless the location the firing rate increased when IFN-β at 500 U/ml had been applied. Note that the effect of IFN-β on the frequency achieved by IFN application was maintained and even slightly increased throughout the period of washout.

B and C: Quantification of firing frequencies for the first interspike interval (B) and the last interspike interval (C) in neurons, investigated under 30 min application of 500 or 1000 U/ml IFN-β (n = 8, black squares). Only neurons undergoing a complete experiment with at least 30 min washout after 30 min IFN-β application were included. First and last interspike interval show a significant (*, P < 0.05) increase of the frequency values revealed by paired Student’s t-test. Recordings of untreated neurons (grey squares, n = 7 for B and n = 4 for C) for at least 60 min did not show time-dependent increase of the firing rate, therewith excluding an effect of penetration and recording procedure itself. For a representative comparison values are given as ratios to the initial control frequency values (Hzf/Hz0). Symbols represent means ± SEM.
FIG. 5

Dose-dependence of the effect of IFN-β on the action potential frequency.

A: The membrane voltage response of a layer 2/3 neocortical neuron was recorded during application of progressively increased IFN-β concentrations. Voltage responses to fifteen percent suprathreshold current injections are shown, each trace was recorded after 30 min superfusion with the IFN-β concentration indicated below the respective traces.
The influence of IFN-β on the firing behavior of the neocortical neurons was analyzed separately for changes in the first interspike interval (referred to as first frequency, closed squares) and the last interspike interval (last frequency, open circles) as well as for changes in the number of the action potentials per pulse (AP number, closed triangles). All three parameters were increased by IFN-β in a dose-dependent manner. The effect was most prominent for the first frequency, with an ED50 = 24.03 ± 20.69 U/ml (n = 4 - 10). All values were normalized to the control value at the beginning of the experiment, bursting cells are excluded from the analysis of the fast frequency. Mean values are calculated for data at each concentration (n = 4 - 10) and plotted against the IFN-β concentration (log). The error bars represent SEM.
FIG. 6

IFN-β acts additive and multiplicative on the action potential discharge rate.
A: Examples of firing rate versus constant driving current (F-I curves) for 3 different pyramidal neurons which were superfused with 1,000 U/ml IFN-β for 30 min. F-I curves of all 3 neurons were recorded before (black diamonds), at 30 min of the IFN-β superfusion (grey diamonds) and 30 min after cessation of the IFN-β superfusion (light grey diamonds). The straight lines represent linear fits under each condition. The slope of this regression (Hz/nA) represents the gain and the intersection with the abscissa has been taken as a measure of the rheobase to determine the amount of shift of the F-I curve. Note that the superfusion of IFN-β alone shifted the F-I curve and increased the gain (left panel) whereas IFN-β in combination with a pre-treatment of 10µM bicuculline in ACSF containing 5 mM K⁺ cause only an increase in gain (middle panel) and IFN-β combined with a pre-treatment of 1 mM Ni²⁺ (right panel) in divalent cation solution (DCS, see Methods) mainly shifted the F-I curve.

B and C: Population data for the slopes (B) and rheobases (C) of the F-I curves under conditions given at the abscissa. Slopes and rheobases of F-I curves were estimated for times before (black diamonds), at 30 min of the IFN-β superfusion (grey diamonds) and at 30 min after cessation of the IFN-β superfusion (light grey diamonds). Except the leftmost column (control) which was estimated from neurons without any additional substance recorded in ACSF containing 5 mM K⁺ and the rightmost column (IFN-β 0-5 min) which represents data from neurons exposed to IFN-β for 5 min) all other columns consist data of neurons exposed to IFN-β for 30 min. An increase in excitability is either reflected by a decrease in the rheobase (C), i.e. a shift in the F-I curve as for IFN-β (30 min) alone, in addition to 1 mM Ni²⁺ and to 50 µM carbachol, or by an increase in the gain (B), i.e. an increase in slope as for IFN-β alone as well as in addition to 50 µM ZD7288 or 10 µM bicuculline and for short time of IFN application (5 min). Symbols
represent means ± SEM (number of neurons), asterisks right of the symbols indicate significance at the level $P < 0.05$.
Table 1. General sub- and supra-threshold membrane properties of somatosensory pyramidal neurons from the neocortex of Wistar rats

<table>
<thead>
<tr>
<th>Property</th>
<th>Layer 2/3</th>
<th>Layer 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane potential (mV)</td>
<td>-75.1 ± 0.9 (45)</td>
<td>-72.6 ± 0.8 (47)</td>
</tr>
<tr>
<td>Input resistance (MΩ)</td>
<td>34.8 ± 2.5 (45)</td>
<td>33.1 ± 2.5 (47)</td>
</tr>
<tr>
<td>Membrane time constant (ms)</td>
<td>12.4 ± 0.8 (45)</td>
<td>14.1 ± 1.0 (47)</td>
</tr>
<tr>
<td>Action potential amplitude (mV)</td>
<td>87.9 ± 1.2 (39)</td>
<td>83.2 ± 3.2 (24)</td>
</tr>
<tr>
<td>Action potential width at half height (ms)</td>
<td>1.16 ± 0.03 (39)</td>
<td>1.06 ± 0.05 (24)</td>
</tr>
<tr>
<td>Action potential rise time [10 – 90%] (ms)</td>
<td>0.40 ± 0.01 (39)</td>
<td>0.36 ± 0.01 (24)</td>
</tr>
<tr>
<td>Action potential rate of rise (V/s)</td>
<td>162.0 ± 7.5 (39)</td>
<td>182.3 ± 13.2 (24)</td>
</tr>
<tr>
<td>Rheobase (action potential current threshold (pA))</td>
<td>206.8 ± 38.4 (21)</td>
<td>254.0 ± 48.7 (23)</td>
</tr>
<tr>
<td>$F-I$ slope (Hz/nA)</td>
<td>59.5 ± 6.6 (21)</td>
<td>64.6 ± 9.9 (23)</td>
</tr>
</tbody>
</table>

Data presented as mean ± s.e.m. (number of cells). Note that the neurons under the pre-treatment with ZD7288 have been excluded from the analysis of the membrane properties. Analysis of single action potential and firing properties were restricted to those neurons which underwent related IFN-β superfusion experiments.