Stumbling over obstacles in older adults compared to young adults

A.M. SCHILLINGS1,2, TH. MULDER3, AND J. DUYSENS1,2

1 Department of Biophysics, University of Nijmegen, Geert Grooteplein 21, 6525 EZ Nijmegen, The Netherlands

2 Sint Maartenskliniek Research, P.O. Box 9011, 6500 GM Nijmegen, The Netherlands

3 Institute of Human Movement Sciences, University of Groningen, The Netherlands

Abbreviated title: Stumbling responses in older versus young adults

Abstract: 250 words

Text: 48 pages (including title page, abstract, main text, acknowledgements, references, figure legends, tables, and figures)

Illustrations: 9 figures, 2 tables

Correspondence to:
A. M. Schillings
Department of Biophysics UMC
University of Nijmegen
PO Box 9101
NL-6500 HB Nijmegen
The Netherlands
Tel: +31-24-3614452
Fax: +31-24-3541435
E-mail: ieke@mbfys.kun.nl
ABSTRACT

Falls are a major problem in older adults. Many falls are due to stumbling. The aim of the present study is to investigate stumbling reactions of older adults and to compare them with young adults. While subjects walked on a treadmill, a rigid obstacle unexpectedly obstructed the forward sway of the foot. In general, older adults used the same movement strategies as young adults (‘elevating’ and ‘lowering’). The electromyographic responses were categorized according to latencies: short-latency (~45 ms, RP1), medium-latency (~80 ms, RP2), and long-latency responses (~110 ms, RP3; ~160 ms, RP4). Latencies of RP1 responses increased by ~6 ms and of RP2 by 10-19 ms in older adults compared to the young. Amplitudes of RP1 were similar for both age groups, whereas amplitudes of RP2-RP4 could differ. In the early-swing elevating strategy (perturbed foot directly lifted over the obstacle) older adults showed smaller responses in ipsilateral upper-leg muscles (biceps femoris and rectus femoris). This was related to shorter swing durations, more shortened step distances, and more failures in clearing the obstacle. In parallel, RP4 activity in the contralateral biceps femoris was enhanced, possibly pointing to a higher demand for trunk stabilization. In the late-swing lowering strategy (foot placed on the treadmill before clearing the obstacle) older adults showed lower RP2-RP3 responses in most muscles measured. However, kinematic responses were similar to those of the young. It is concluded that the changes in muscular responses in older adults induce a greater risk of falling after tripping, especially in early swing.
INTRODUCTION

Falling is a relevant health problem for many elderly. Thirty percent of the community-dwelling people over 65 years of age falls at least once a year (Tinetti et al. 1988). These falls may have a profound impact on the lives of elderly. They may lead to a decrease of activity resulting in social isolation, to serious injuries, such as fractures of the wrist and hip, and even to death (Nevitt et al. 1991; Sattin et al. 1990; Stel et al. 2004; Tinetti et al. 1995).

In risk factor studies, it has been described that an important cause of falling in community-dwelling elderly is stumbling (Blake et al. 1988). For instance, 12 to 38% of falls leading to hip fractures in older adults was caused by stumbling (Cumming and Klineberg 1994; Nyberg et al. 1996, Parker et al. 1996). Hence, it is important to gain more insight into the mechanisms, which play a role in the balance problems of elderly people after tripping. Next, this insight might enable us to find ways to reduce the risk of falling.

In general, there are two main reactions of the body to being tripped (or stumbling strategies) dependent on the phase of the step cycle, as has been observed in prior studies with young adults (Eng et al. 1994; Schillings et al. 1999, 2000). After perturbations in the early swing phase the ‘elevating strategy’ was performed; after the collision with the obstacle, the foot was directly lifted over the obstacle during the perturbed swing (see Fig. 1B). After perturbations in the late swing phase, subjects usually showed the 'lowering strategy'. Following the perturbation, the ipsilateral foot was quickly placed on the treadmill without clearing the obstacle. This foot was lifted over the obstacle in the swing phase that succeeded the perturbed swing (see Fig. 1B).

Only a few studies have actually studied reactions of elderly after unexpected trips during walking (see for review Grabiner et al. 2002). In these studies, stumbling reactions were induced by a mechanical obstacle on a walkway, which perturbed the toe of the shoe of the swing foot.
during mid-to-late swing in older adults. Biomechanical variables of stumbling reactions resulting in falls (i.e. 50% of the subject's body weight supported by the safety harness ropes) were compared with the same variables during successful recoveries. Some factors at the time of perturbation increased the risk of falling, such as a high walking velocity and a more anterior center of mass of the upper body. In addition, a significantly slower placement of the tripped foot during the lowering strategy appeared to be an important factor that increased the risk of falling in older adults (Van den Bogert et al. 2002).

In these previous studies, the focus was on the factors contributing to a fall after tripping. The question remains, however, whether stumbling reactions differ between young and older adults, even if the stumbling reactions do not lead to actual falls. Are there indications that elderly react differently after being tripped?

In the leg muscles of young adults, reflex responses of various latencies have been observed after being tripped. Short-latency reflexes (latency ~40 ms) were most obvious after late swing perturbations in the perturbed leg (Schillings et al. 1999). These responses occurred simultaneously in flexor and extensor muscles and the responses were not followed by clearly observable joint angle changes. Hence, it has been suggested that the short-latency responses may generate a temporary stiffening of the joints (Schillings et al. 1999). Medium-latency responses (latency ~75 ms) and long-latency responses (>100 ms) occurred in muscles of both legs and were an essential part of the stumbling reactions. In mid swing, the short- and medium-latency responses were similar during the two stumbling strategies (elevating and lowering). Possibly this initial aspecific response provides the CNS some time to integrate information from sensory receptors and supraspinal sources to make an appropriate decision about the final behavioral strategy, which was mainly determined by the responses occurring later than ~100 ms after the perturbation (Schillings et al. 2000). The amplitudes of the short-, medium-, and long-latency
responses were dependent on the phase of perturbation in the step cycle (Schillings et al. 2000).

For stumbling it is unknown whether elderly have longer response latencies and lower response amplitudes than young adults. Some evidence pointing in that direction comes from studies with another type of unexpected perturbations of older adults during walking, namely induced slips. Tang et al. (1998, 1999) described longer response latencies and lower response amplitudes after slipping at heel strike in older adults compared to young adults. On the basis of these studies, it is hypothesized that during stumbling older adults may also have longer electromyographic response latencies and lower response amplitudes than young adults. The aim of the present study was to induce trips during walking in older adults, and to compare the stumbling strategies and the concurrent electromyographic and kinematic responses of older adults with the responses of young adults.
METHODS

Eight older healthy, community-dwelling adult subjects (five male, three female) aged between 60 and 73 years (mean age 65 years) participated in the experiment. Subjects reported to be free from neurological or motor disorder and had no known history of repeated falling. They were all active elderly and reported to be capable of walking continuously for at least two hours. The experiments were carried out in conformity with the declaration of Helsinki for experiments on humans. All subjects gave informed consent and the study was approved by the local ethical committee.

Experimental set-up

Since a detailed account of the experimental set-up can be found in Schillings et al. (1996), only a short description is given here. While subjects walked on a treadmill (speed 4 km/h), an obstacle (length, width, and height: 40.0, 30.0, and 4.5 cm, respectively; weight 2.2 kg) was held by an electromagnet above the treadmill about one meter in front of the subject (see Fig. 1A). To induce perturbations, the obstacle was dropped unexpectedly on the belt thereby obstructing the forward sway of the left (ipsilateral) leg. Release of the obstacle occurred at a predetermined delay after ipsilateral or contralateral heel strike. A pressure-sensitive strip attached to the front of the obstacle was used to measure the time at which the foot hit the obstacle. In the thin flexible shoes, the toes were covered with a piece of cotton to protect them during the collision. The subjects wore a pair of glasses, which blocked downward sight (and thus blocked the view of the obstacle). Earplugs eliminated most of the sound produced by the obstacle landing on the treadmill. In addition, the sound was masked by music through headphones. As a result of these measures, subjects were not able to perceive the obstacle prior to the collision with the foot. Subjects were instructed to
keep the same position on the treadmill prior to the perturbation, but after the collision they were free to react without restrictions. The subjects wore a safety harness, fixed to a safety brake on the ceiling that would hold the subject and stop the treadmill in case a subject should fall. The safety brake was activated when a force of >120 N was exerted. The harness was loosely suspended so that it did not provide extra stability during the experiment.

Data sampling

Bipolar surface electromyogram (EMG) activity of the biceps femoris (BF), rectus femoris (RF), tibialis anterior (TA), and soleus (SO) of both legs was measured. Laterally placed goniometers were used to measure the joint angles of the knee and ankle of the ipsilateral leg. Thin insole foot switches measured foot contact with the treadmill. Data were sampled in a time interval starting 100 ms prior to triggering the electromagnet and lasting for 2100 ms. For the control trials the same intervals were sampled but no obstacle was dropped after the trigger. The EMG was (pre-) amplified (by a factor in the order of 10^4 to maximally 10^6), high-pass filtered (>3 Hz), full-wave rectified, low-pass filtered (<300 Hz), AD-converted (500 Hz), and stored on hard disk along with the signals of the goniometers, foot switches, and pressure-sensitive strip. In addition, the subjects were recorded on video (25 Hz) during the experiment.

Experimental protocol

The experiment consisted of three parts. The first and second part were preparations for the main experiment (third part). In the first part, subjects walked on the treadmill for at least 5 minutes in order to get used to the treadmill (unperturbed walking). In the second part (20 minutes), the obstacle perturbed the walking pattern in phases spread all over the step cycle. The computer triggered the electromagnet to drop the obstacle on the treadmill after fixed delays (0 ms, 40 ms,
80 ms, \ldots, 600 ms) following heel strike (in total 32 delays). Each delay condition was randomly
applied only once, consistent with the protocol used for the young adults. The aim of this part of
the experiment was to select the delay conditions in which stumbling reactions were evoked in
early (5-25\%, time of obstacle contact with respect to control swing duration), mid (30-50\%), and
late swing (55-75\%). The three selected delay conditions were used in the third part of the
experiment.

In the third part of the experiment (30 minutes), stumbling reactions were repeatedly and
randomly introduced during early, mid, and late swing in order to construct averages. On average 8
trials (minimal 5 trials) were obtained for each phase of perturbation. The responses during these
perturbed cycles were compared with unperturbed control trials (n=10 to 15) obtained in between
the perturbation trials (perturbation-free period between trials >10 seconds).

Data analysis
To obtain the averaged responses, only trials in which the collision of the foot with the obstacle
occurred during early (5-25\%) and late swing (55-75\%) were analyzed (the mid swing data were
not further analyzed since the number of trials per strategy was too small to allow a quantitative
analysis). For each muscle of each subject separately, the stumble responses occurring in the same
phase of the step cycle were averaged. In addition, the corresponding control trials were averaged.
Subsequently the averaged control activity was subtracted from the averaged stumbling trials.

To quantify the amplitudes of the responses, the mean EMG activity was calculated in the
period between the beginning and end of the response. For this purpose, windows were set around
the individual response peaks occurring within the first 200 ms (see Schillings et al. 2000);
windows were set around responses with short-latencies (~45 ms, RP1), medium-latencies (~80
ms, RP2), and two windows for responses with long-latencies (~110 ms, RP3 and ~ 160 ms, RP4,
respectively). When a response did not have the shape of a sharp peak, an extrapolation was made on the basis of other trials or conditions of the same subject in which such peaks were clearly detected. In this way it was possible to discern peaks with latencies which corresponded well with those seen in young adults (Schillings et al. 2000). The RP1-RP3 responses (occurring before ~150 ms) are considered to be reflex responses, while the RP4 responses (occurring after ~150 ms) might be under voluntary control. The latter conclusion is based on the findings of a study of Hase and Stein (1998), in which subjects were instructed to stop walking as soon as they got a cue by electrical stimulation of the superficial peroneal nerve. It was found that the earliest voluntary changes in EMG activity of leg muscles occurred 150-200 ms after stimulation.

To enable a proper intersubject comparison of the response amplitudes, the resulting data of each muscle were normalized with respect to the maximal EMG activity during the control step cycles. To obtain the mean response of the whole group, the normalized responses of all older adults were averaged. This type of analysis was performed on the four response peaks. The Wilcoxon Matched-Pairs Signed-Ranks Test (P < 0.05) was used to test whether the response amplitudes during stumbling were significantly different from the control EMG activity.

Video analysis

In order to find out whether a lengthened swing duration of the perturbed leg also implied a lengthened step distance, video recordings were analyzed. For both control trials and stumble trials, the distance between the two feet at the time of ipsilateral heel contact was determined using video analysis of marks on the treadmill belt (distance between two marks = 6.0 cm). In addition, for the stumble trials it was determined whether a secondary contact of the ipsilateral foot with the obstacle occurred, or not.
Comparison of the data of older adults with young adults

The results of the present study were compared with the stumbling reactions of young adults, which were mostly described in a prior study (Schillings et al. 2000). The number of young subjects was eight (5 male, 3 female, mean age 27). The latencies of the short-latency responses and medium latencies were determined automatically for the average subtracted EMG responses of all older adults separately, and of all young adults separately. First, the SD of the non-perturbed subtracted EMG activity was calculated in the last 100 ms prior to the perturbation. Secondly, the latencies of the stumble responses were defined as the time at which the EMG amplitude exceeded three times the SD and stayed above this level for at least four succeeding samples (~ 8 ms in duration). In some cases where the EMG activity did not return under the 3SD level after the short-latency response, the onset of the medium-latency response was defined as the onset of the subsequent increase of EMG activity. To compare the response latencies of older and young adults, the Wilcoxon rank sum test (P < 0.05) was used. When the EMG activity did not meet the criteria (EMG level >3SD, duration >8ms), the data were treated as missing data. With this automatic detection criterion, it was not possible to distinguish reliably between the medium- and long-latency responses since in the majority of trials the EMG activity did not return under the 3SD level. Hence, the latencies of the RP3 and RP4 responses could not be compared between the two age groups.

The EMG amplitudes calculated from the four time windows in older adults (see data analysis) could be compared with the responses in young adults since the same method was used to quantify the amplitudes of responses in young adults (Schillings et al. 2000). The Wilcoxon rank sum test (P < 0.05) was used to compare the response amplitudes of the iBF (ipsilateral BF), iRF, iTA, iSO, and cBF (contralateral BF) in the two groups.
RESULTS

Normal walking

All older adults were capable of walking at the speed of 4 km/hour imposed by the treadmill. The average step cycle duration during the control trials, in which the walking pattern was not perturbed, was 1088 ms (SD 79 ms). This was similar to the step cycle duration found in young adults (step cycle 1120 ms, SD 65 ms). The average duration of the swing phase in older adults was 438 ms (SD 32 ms; young adults mean 454 ms, SD 28 ms) and of the stance phase was 650 ms (SD 48 ms; young adults mean 666 ms, SD 41 ms). These control step parameters were not significantly different between older and young adults, as determined with the Wilcoxon rank sum test.

Stumbling strategies

All older adults were able to restore their walking cycle by making a stumbling movement after mechanical obstruction of the forward swinging foot. None of the subjects completely lost balance after being tripped. In principle, a loss of balance could be identified by a stop of the treadmill, because a large force (>120 N) on the safety harness (owing to the subject’s weight) would activate the safety brake. However, this never happened during the stumbling experiments. Similar to the stumble responses of young adults, all older adults used two different types of stumble strategies. The choice for one of the two strategies depended on the timing of the perturbation in the step cycle. The stumbling responses after perturbations in the same phase of the step cycle were quite reproducible within the same subject, as can be observed in figure 2. All older adults showed elevating strategies after perturbations in early swing (5-25%) and lowering strategies in late swing (55-75%). This is in agreement with the strategies performed by young adults, who always showed elevating strategies in the first 35% of the swing phase and lowering strategies after 52%.
Figure 3 shows the reactions during the early swing elevating strategy and the late swing lowering strategy for one (typical) older subject. Soon after the early swing perturbation, the ipsilateral knee started to flex in order to lift the foot over the obstacle (Fig. 3A). Knee flexion was assisted by increased iBF activity, which was followed by increased iRF activity assisting the subsequent knee extension. Only ~20 ms after the perturbation, the ankle showed (passive) plantar flexion followed by (dorsi-) flexion, presumably related to the increased activity in iTA. Due to these reactions, the foot trajectory of the ipsilateral foot was changed which led to a lengthened swing phase duration (see iFoot).

After the collision in late swing perturbations, the ipsilateral foot was first placed on the treadmill, before crossing the obstacle. In order to place the foot, responses in iBF and iRF occurred simultaneously (see Fig 3B). In this way the forward swing could be decelerated (iBF) and the knee extended (iRF). In the lower leg, iTA responses were followed by responses in iSO, which could take up body support after foot placement.

Although some differences are apparent, it is striking to see that these patterns of muscle and movement responses of the elevating and the lowering strategy were generally quite similar to the response patterns observed in young adults (Schillings et al. 2000). The similarity of the muscle response patterns is apparent in Figs. 4 and 5, showing the average EMG responses of all older subjects along with the average responses of all young subjects.

Nevertheless, a closer look at the data revealed several differences. In figures 4 and 5 it can be seen that in both phases of perturbation, the average EMG responses of several muscles in older adults had longer latencies and lower amplitudes than in young adults (see for clear example iRF). These differences in response latency and response amplitude were further analyzed quantitatively.
Muscle response latencies

First, short-latency responses (latency ~45 ms) were small in early swing (Fig. 4). Hence, the averages of the responses were rarely larger than the 3SD level used to automatically detect the response latencies in each subject. In late swing however, the short-latency RP1 responses in iRF and iSO did exceed the 3SD level in 5 subjects (in both young and older adults). The response latency in iRF was not significantly lengthened in older adults (iRF average latency: young 41 ms, SD 4.1 ms; older 44 ms, SD 4.6 ms). In iSO however, the latency of the short-latency response was significantly increased by 6 ms in older adults (average latency young: 43 ms, SD 2.3 ms; older: 49 ms, SD 3.3 ms, Wilcoxon rank sum test).

Secondly, it can be observed that the latencies of the main responses (mostly medium-latency responses with latencies of ~75 ms) of older adults were mostly longer than the latencies observed in young adults (see Figs. 4 and 5). The latencies of the medium-latency responses were determined for all subjects separately, allowing a statistical analysis (see Table 1). In early swing a significant difference was found between older and young adults in three muscles: iBF, iTA and iSO. In these muscles, the response latencies of older adults compared to young adults increased by 10 ms, 19 ms and 17 ms, respectively. In late swing, a significantly longer latency was observed as well; in the cBF muscle, the average latency in older adults was 10 ms longer than in young adults.

Muscle response amplitudes

In order to quantitatively compare the amplitudes of the responses, the average EMG activity within certain windows of interest were compared between older and young adults (see Table 2 and Schillings et al. 2000). Figures 6 and 7 show the average EMG amplitudes of the older adults in comparison with young adults for early swing and late swing perturbations, respectively. The
dark bars indicate the background activity during unperturbed walking. No significant differences were found between the background EMG activity in older and young adults, as determined by the Wilcoxon rank sum test. When the amplitude of the stumble response was significantly different from the background activity an asterisk is shown below the bar (Wilcoxon matched-pairs signed-rank test, \(P < 0.05 \)). A larger asterisk in the center above the top of the bars indicates a significantly different response amplitude between older and young adults (Wilcoxon rank sum test, \(P < 0.05 \)).

Significant differences were usually due to smaller responses in older adults (as compared to young adults). In early swing, this can clearly be observed for iBF and iRF (see Fig. 6). The amplitudes of the medium-latency responses (RP2) of the iBF and iRF as well as the long-latency responses (RP3) of iBF were significantly lower in older adults. At most older adults increased their iBF activity to a level beneath the maximum EMG activity during normal walking (RP2: \(~0.6\); RP3: \(~0.5\); values indicate subtracted normalized amplitudes, see Fig. 6). However, young adults increased their iBF activity to \(~3\) times the maximum EMG activity during normal walking (amplitude of RP2: 2.4; RP3: 3.1). Similarly, in late swing significantly lower amplitudes were found in older adults. The medium-latency responses (RP2) of iTA and cBF were smaller for older than for young adults (iTA RP2 0.9 in older adults versus 1.8 in young adults; cBF RP2 1.0 in older adults versus 3.2 in young adults). The long-latency responses (RP3) of iSO and iBF were also smaller in older adults (see Fig. 7).

Whereas RP2 responses were always smaller (or equal) in older adults compared to the young, for the later responses (RP3 and RP4) the inverse was sometimes true. An example is the cBF activity of the long-latency responses (RP4) in early swing. The normalized amplitude of this response was 3.3 in older adults, which was significantly larger than the RP4 response of 1.1 in young adults. Also in late swing the RP3 response of iTA in older adults (1.1) was
significantly larger than in young adults (0.2).

Kinematics of the early swing elevating strategy

The increased response latencies as well as the lower response amplitudes in older adults as compared to young adults might influence the kinematics of the stumble responses. After early swing perturbations, for example it is clear that the iBF response (latency older adults 78 ms; young adults 68 ms) was smaller in older than in young adults (see Figs. 4 and 6). The iBF response contributed to the knee flexion of the ipsilateral leg in order to step over the obstacle. To see whether this diminished activity resulted in changes of the kinematics during the early swing elevating strategy, the average joint angle changes were investigated (see Fig. 8).

Both older and young adults increased the knee flexion during the perturbed swing (solid lines) as compared to the knee flexion during normal walking (dotted lines) in order to lift their foot directly over the obstacle. Older adults showed less increase of the knee flexion than young adults (Wilcoxon rank sum test, \(P = 0.32 \)). Although the first part of the iTA activity (between ~70 ms and 120 ms) showed some difference (see Fig. 4), the ankle joint changes of older and young adults were similar during the early swing elevating strategy.

What do these differences in EMG activity and joint movements mean for the duration of step parameters in early swing? During the early swing elevating strategy, both young and older adults lengthened the duration of the ipsilateral swing phase in order to step over the obstacle (see Fig. 8 solid lines in lower trace). However, older adults lengthened their swing phase by on average 69 ms (which was ~16% of normal swing phase duration, SD 40 ms, Wilcoxon matched-pairs signed-ranks test, \(P < 0.01 \)), whereas young adults lengthened their swing phase by 128 ms (which was ~29% of normal swing phase duration, SD 30 ms, see Schillings et al. 2000). The lengthening of the swing phase was significantly reduced in older adults (Wilcoxon rank sum test, \(P < 0.01 \)).
The same can be observed for the contralateral stance phase. While older adults did not significantly change the contralateral stance phase (on average the contralateral stance phase was shortened by 11 ms, ~2%, SD 46 ms), young adults significantly lengthened the contralateral stance phase by 81 ms (~12%, SD 41 ms, Schillings et al. 2000). The difference in the duration of the contralateral stance phase between older and young adults was significant (Wilcoxon rank sum test, P < 0.01).

Failed obstacle clearance during the elevating strategy

On the video recordings, the number of trials in which the subjects had secondary contact with the obstacle was counted. Secondary contact occurred since the subject landed with the foot on top of the obstacle, after an attempt to step over it. In older adults, in 10 out of 56 trials a secondary contact was observed. For five of the older adults the secondary contact occurred in one single trial, for one subject it happened in two trials, for another in three trials. For only one older subject no secondary contact occurred. In the young subjects, merely one secondary contact was observed in the whole group (total number of trials 56).

The risk to step on the obstacle increases when a shorter step distance is made. Therefore, on the video recordings it was determined whether the step distance during the elevating strategy was shorter than the step distance during normal walking, or not. The video recordings revealed that during the elevating strategy, older adults shortened their step distance in 73% of all trials (although they significantly lengthened their sway duration). In contrast, young adults shortened their step distance in only 30% of all trials. Indeed, it was found that most secondary contacts of older adults occurred in the trials in which the step distance was shortened; 9 out of 10 secondary contacts of older adults were made in trials with a shortened step distance.
Kinematics of the late swing lowering strategy

Comparing the late swing lowering responses of older adults and young adults, the EMG-activity of all muscles reached lower maximum amplitudes in older adults (Fig. 5). The joint movements in the ipsilateral leg of older adults however, showed relatively small changes in older adults with respect to young adults (see Fig. 9). Possibly older adults used other strategies to make the same joint movements. For example, it might be possible that they recruited other muscles, which were not recorded.

The average latency of foot placement of the ipsilateral foot after the perturbation in older adults was 151 ms (SD 60 ms), which was slightly longer than the latency of foot placement in young adults (125 ms; SD 35 ms; Wilcoxon rank sum test, $P = 0.69$). Since foot placement of the ipsilateral foot is considered to be actively controlled by iRF for knee extension and iBF for deceleration of the forward sway, the lower responses in these muscles (though not significant in iRF) might be responsible for the somewhat later placing of the foot on the treadmill in older adults.

In addition, there was no consistent difference between young and older adults in the amount of shortening of the corresponding contralateral stance phase (older 47 ms, SD 19 ms, ~7%; young 62 ms, SD 29 ms, ~9%; Wilcoxon rank sum test, $P = 0.30$).
DISCUSSION

The present study reports on stumbling responses in the elderly. The responses were compared with stumbling responses of younger adults (as published in Schillings et al. 2000). Changes in the stumbling reactions of older adults as compared to young adults might elucidate factors that contribute to the increased risk of falling in the elderly. The results showed that stumbling over obstacles induces similar behavioral responses ("strategies") in elderly as in young adults. Early swing perturbations led to elevating strategies (foot directly lifted over the obstacle after contact with the obstacle), while late swing perturbations induced lowering strategies (foot quickly placed on the treadmill and lifted over the obstacle in the succeeding swing). Similarly, the general pattern of muscle activation underlying these strategies was consistent with the pattern observed in young adults. However, some important differences in the stumbling responses of older and young adults occurred. Firstly, elderly had less success in avoiding the obstacle after tripping in early swing, since more older adults had a secondary contact with the obstacle. Secondly, after both early and late swing perturbations, the characteristics of the motor responses, such as response latency and amplitude varied between both groups.

Early swing elevating strategy

Response amplitudes of ipsilateral upper leg muscles (iBF and iRF) were smaller in older adults than in young adults during the early swing elevating strategy. Most markedly decreased were the RP2 and RP3 response amplitudes. The decreased muscle responses were associated with a reduction of the lengthening of the ipsilateral swing phase during obstacle crossing. Shorter swing durations might result in smaller safety margins during stepping over the obstacles, leading to an increased risk of falling in older adults. The video observations clearly supported this interpretation showing
more secondary contact with the obstacle in older adults. In these cases the ipsilateral foot was properly elevated above the obstacle, but instead of placing the foot over the obstacle, it was placed on top.

The video observations revealed that older adults mostly made shorter steps (in distance) during stumbling than during unperturbed walking, whereas young adults mostly increased their step length. This finding is in agreement with studies on obstacle anticipation on a walkway (Begg 2000; Chen et al. 1991; McFadyen and Prince 2002). In these studies, older adults used shorter stride lengths and reduced toe clearances during stepping over obstacles, as compared to young adults. This can be interpreted as a preference of the elderly to use smaller steps over the obstacle, possibly to reduce the effort and keep their gait more consistent with their normal cadence of walking.

However, a large disadvantage of shortening the step is the increased risk of falling from a trip, because the center of mass presumably tends to be anterior to the position of foot contact with the ground at the time of landing. This makes it difficult to slow the forward body rotation imposed by the perturbation, which was described earlier for postural perturbations during stance (i.e. treadmill accelerations, Owings et al. 2001). In the present study, it is unknown whether the center of pressure relative to the base of support was indeed different for older and young adults, since these parameters were not measured.

Knee flexion during the elevation of the ipsilateral foot over the obstacle also tended to be reduced in older adults compared to the young. Although this difference was not significant with the current number of subjects, this finding may be an important factor in studies on falling in the elderly, since less knee flexion could result in lower clearance of the foot over the obstacle with smaller safety margins. This increases the risk that the foot re-encounters the obstacle, which induces a second obstruction of the foot.

In contrast to the ipsilateral responses, the amplitudes of the upper leg muscle BF in the
contralateral leg (RP4) were larger in older than in young adults after early swing perturbations. These BF responses on the contralateral side are considered to be of utmost importance in restoring balance. It has been suggested that in response to perturbations of the swinging leg, BF responses in the supporting leg could contribute to the stability of the upper body (Dietz et al. 1986; Eng et al. 1994). During the elevating strategy, the forward rotation of the body and the trunk needs to be stopped in order to regain balance (Eng et al. 1994; Grabiner et al. 1993; Pavol et al. 2001).
Pijnappels et al. (2002; 2004a; 2004b) described that a push-off force generated by hamstring and gastrocnemius muscles in the support limb contributes to the reduction of the forward rotation. Hence, the increased cBF activity of the older adults in the present study might reflect an increased effort of these subjects to stabilize the upper body in early swing, which possibly points to a higher demand for trunk stabilization.

Late swing lowering strategy

In late swing, older adults showed significantly lower RP3 responses in some muscles (iBF and iSO) compared to the young. These muscles can contribute to an early foot placement since iBF contributes to slowing down the forward swing and iSO (and iRF) can take up body support in preparation of the early foot placement. The smaller muscle activity in older adults results in a somewhat later placement of the ipsilateral foot compared to the young, though the relative delay (25 ms) was not significant. In studies on stumbling reactions after tripping on a walkway it has been described that a delayed foot placement during the lowering strategy is associated with falling in older adults (Pavol et al. 2001; Van den Bogert et al. 2002). Pavol et al. (2001) showed that older adults who fall quickly after placing their foot during the lowering strategy had a latency of touchdown which was approximately 100 ms longer than the latency of those who did not fall. Delayed foot placement leads to increased forward rotation of the body and to the center of mass
being in front of the base of support during the limb loading of the ipsilateral leg. Hence, the support force of the lowered limb cannot be used to stop the trip-induced forward body rotation (Pavol et al. 2001; Van den Bogert et al. 2002).

Underlying mechanisms of reduced ipsilateral RP2-RP3 responses in elderly

As mentioned above, the amplitudes of the RP2 and RP3 responses during stumbling were mostly smaller in older adults than in young adults. A reduction of medium- and long-latency muscle response amplitudes in elderly has also been described in previous studies with other types of unexpected perturbations during walking or stance. For example, in studies in which subjects slipped during walking, Tang and Woollacott (1998) found a reduction in muscle response amplitudes in both the ipsilateral and contralateral leg muscles of older adults. Some studies, in which stance was perturbed by sudden platform rotations in various directions, reported that the balance correcting responses in TA and SO showed smaller amplitudes in elderly than in young adults in the interval between 120-220 ms after perturbation (Allum et al. 2002). However, others did not find major age-related changes in the amplitude of the responses (Nardone et al. 1995).

The underlying mechanism of the decreased response amplitudes during the stumbling reactions in aging could be due to both peripheral and central changes. It was shown that the sensitivity in the proprioceptive sensory systems decreases with aging (Alexander 1994; Horak et al. 1989; Nadler et al. 2002; Stelmach and Worringham 1985; Verrilo 1980). In addition, the number of motoneurons is reduced (Mynark and Koceja 2001). Further, it is well known that during aging, the muscle properties change, resulting in muscle atrophy and reduced numbers of motor units, with especially a decrease of type II muscle fibers (Bouche et al. 1993; Maki and Fernie 1996; Merletti et al. 2002; Mynark and Koceja 2001).

On the other hand, changes in the central nervous system could also contribute to the
reduced response amplitudes in older adults. Medium-latency reflex responses are considered to travel through a short train of spinal interneurons (Dietz 1992; Jankowska 1992, Nardone and Schieppati 1998). It has been suggested that age-related decreases in the supraspinal facilitatory drive on these interneuronal circuits interposed in these reflexes (Dietz 1992) might play a role. In addition, the excitability of aging motoneurons could be reduced by increased levels of presynaptic inhibition with aging (Koceja and Mynark 2000; Morita et al. 1995).

Latency of medium-latency responses

The present finding that older adults show significantly longer response latencies (prolongation 10-19 ms) in some muscles such as iBF, iTA, iSO and cBF is in agreement with previous studies in which another type of unexpected perturbation was introduced during stance or walking (Nardone et al. 1995; Stelmach et al. 1989; Tang and Woollacott 1998, 1999). For example, in studies on slips during walking in early stance, the response latencies in the ipsilateral muscles of the anterior side of the leg (TA and RF) of elderly increased by approximately 20 to 50 ms (see Fig. 2 in Tang and Woollacott 1998), whereas the ipsilateral muscles of the posterior side of the leg were not significantly different. In contrast, in the present stumbling experiments, we have found that muscles on both the anterior (iTIA) and the posterior side (iBF and iSO) showed significantly delayed latencies.

Medium-latency reflex responses are most likely due to proprioceptive group II afferents (Dietz 1992; Jankowska 1992; Nardone et al. 1995, 1998; Schillings et al. 2000) or cutaneous afferents (Schillings et al. 2000). For cutaneous afferents, the latency increase could be accounted for by changes in the sensory thresholds of these afferents (Baloh et al. 2003; Verrillo 1980). Alternatively, there might be a decrease in nerve conduction velocity of the afferents, as has been suggested for the group II afferents by Nardone et al. (1995). Moreover, the latency increase could
be due to changes in the central nervous system (Tanosaki et al. 1999; Tobimatsu et al. 1998) or the alpha-motoneurons (Mynark and Koceja 2001).

RP1 Short-latency responses

During the stumbling reactions, older adults showed significant short-latency responses (latency ~45 ms) in the muscles of the ipsilateral leg after the collision with the obstacle. The latency of the short-latency response in iSO was 6 ms longer in older adults (this study) than in younger subjects (Schillings et al. 1999). Similar lengthened latencies of short-latency stretch or H-reflexes in older adults have been described in studies on reflexes after stance perturbations (Nardone et al. 1995; Sabbahi and Sedgwick 1982; Scaglioni et al. 2002). The increase of these latencies in older adults can largely be attributed to a decrease of the peripheral nerve conduction velocity (for review see Mynark and Koceja 2001). However, slowing of central synaptic transmission at the spinal level might also play a role (Mynark and Koceja 2001; Sabbahi and Sedgwick 1982).

Regarding the amplitudes of short-latency responses, many authors described that for static body postures (sitting, prone, and standing) the amplitudes of either H-reflexes or tendon tap reflexes decline with normal aging (Angulo-Kinzler et al. 1998; Bouche et al. 1993; Kido and Stein 2002; Koceja et al. 1995; Sabbahi and Sedgwick 1982; Scaglioni et al. 2002; Mynark and Koceja 2001; Van Rey et al. 2002). Correspondingly, studies describing reflex responses during walking showed that in phases of the walking cycle, in which responses are prominent (in the stance phase), the amplitude of the soleus H-reflex was found to be smaller in elderly than in young adults (Chalmers and Knutzen 2000; Kido and Stein 2002). However during the swing phase of walking, H-reflexes were very small in both young and older adults and the two groups were not significantly different from each other (Chalmers and Knutzen 2000). This is similar to our results, which also showed no significant difference between the RP1 response amplitudes of older and young adults. It
is suggested that under a dynamic condition, such as the swing phase of walking, the responses are too small and variable to allow a convincing identification of subtle reductions in amplitude.

In summary, the present results suggest that the increased risk of falling after a trip in the elderly results from changed muscle responses in the stumbling reactions of older adults. The older adults in the present study were all healthy community-dwelling and had no history of falls. The age effects described might be even more pronounced if the group of elderly was at a more advanced age. In addition, in every-day life the circumstances of a trip could be more complex for older adults (such as circumstances with reduced vision, reduced attention, higher obstacles and uneven floors). Further studies are needed to test these hypotheses.
ACKNOWLEDGEMENTS

We would like to thank P.H.J.A. Nieuwenhuijzen for his help with the analysis software. We also acknowledge G. Windau for developing the software as well as A.M. Van Dreumel and J.W.C. Kleijn for their technical assistance. This study was supported by the Dutch Science Foundation (NWO) and by Eurokines (grant QLK6-CT-2002-00151).
REFERENCES

Nyberg L, Gustafson Y, Berggren D, Brännström B, and Bucht G. Falls leading to femoral neck

Pijnappels M, Bobbert MF, and van Dieën JH. Stance limb contributes to prevention of falling after tripping (Abstract). In: *IV World Congress of Biomechanics*, Calgary, Alberta, Canada, August 4-9, 2002.

Sabbahi MA and Sedgewick EM. Age-related changes in monosynaptic reflex excitability. *J*

Stelmach GE and Worringham CJ. Sensorimotor deficits related to postural stability. *Clin Geriatr*

Van den Bogert AJ, Pavol MJ, and Grabiner MD. Response time is more important than walking speed for the ability of older adults to avoid a fall after a trip. *J Biomech* 35: 199-205, 2002.

Van Rey E, Chung SG, Rogers M, and Zhang L-Q. Aging-related changes in achilles tendon reflexes (Abstract). In: *IV World Congress Biomechanics*, Calgary, Alberta, Canada, August 4-9, 2002.

LEGENDS

FIG. 1. A. Experimental set up. The electromagnet (colored black) holds the obstacle above the treadmill in front of the subject’s left (ipsilateral) foot (Reprinted from J. Neurosci. Meth., 67, Schillings, A.M., Van Wezel, B.M.H., and Duysens, J., Mechanically induced stumbling during human treadmill walking, 11-17, Copyright (1996), with permission from Elsevier Science).
B. Schematic picture of the characteristics of the foot trajectory during the elevating and lowering strategy. Elevating strategy: after the collision with the obstacle, the foot was directly lifted over the obstacle during the perturbed swing. Lowering strategy: following the perturbation, the ipsilateral foot was quickly placed on the treadmill without clearing the obstacle; the foot was lifted over the obstacle in the swing phase that succeeded the perturbed swing (Reprinted from J. Neurophysiol., 83, Schillings, A.M., Van Wezel, B.M.H., Mulder, TH., and Duysens, J., Muscular responses and movement strategies during stumbling over obstacles, 2093-2102, Copyright (2000), with permission from The American Physiological Society).

FIG. 2. Within-subject variability of the responses. Traces show iBF EMG activity (normalized to the maximum background activity) during individual trials of one typical subject after early swing perturbations.

FIG. 3. Typical average subtracted EMG responses and joint angle changes for subject 6. A: responses during the early swing elevating strategy (n=5 trials). Averaged subtracted EMG responses (mV) are shown for the ipsilateral biceps femoris (iBF), rectus femoris (iRF), tibialis anterior (iTA), and soleus (iSO) as well as for the contralateral biceps femoris (cBF). Joint angle changes (Degrees; not subtracted) are shown for the ipsilateral knee (iKnee) and ankle (iAnkle).
Angle at standing position is zero. Two bottom traces show stance phases of the ipsilateral (iFoot) and contralateral foot (cFoot). Goniometer and foot signals: solid lines indicate stumble responses; dashed lines indicate control data (n=15). Zero time is the time the foot collided with the obstacle. B: responses during the late swing lowering strategy (n=5 trials; Ext., extension; Fl., flexion; Plant. Fl., plantar flexion; Dorsi Fl., dorsiflexion).

FIG. 4. EMG responses during the early swing elevating strategy for older and young adults. The averaged normalized subtracted responses of all older adults (n=8) are shown by heavy lines and of all young adults (n=8) by thin lines. EMG responses (normalized to the maximum background activity) are shown for the ipsilateral and contralateral biceps femoris (iBF; cBF), rectus femoris (iRF; cBF), tibialis anterior (iTA; cTA), and soleus (iSO; cSO). Zero time is the time the foot collided with the obstacle.

FIG. 5. EMG responses during the late swing lowering strategy for older and young adults. The averaged normalized subtracted responses of all older adults (n=8) are shown by heavy lines and of all young adults (n=8) by thin lines. EMG responses (normalized to the maximum background activity) are shown for the ipsilateral and contralateral biceps femoris (iBF; cBF), rectus femoris (iRF; cBF), tibialis anterior (iTA; cTA), and soleus (iSO; cSO). Zero time is the time the foot collided with the obstacle. The same format is used as in Fig. 4.

FIG. 6. Mean normalized EMG amplitudes of the four response peaks (RP1-RP4) in iBF, iRF, iTA, iSO and cBF of older (O) and young (Y) adults during the early swing elevating strategy. Dark bars show the normalized background activity; light bars show the normalized EMG response amplitudes during the stumbling reactions (normalization with respect to the maximum
background locomotor activity). In this way, the part of the light bars above the dark bars indicate the amplitude of the subtracted responses. The SE of the control activity and the subtracted response activity is shown by error bars. Averaged responses were calculated by averaging the mean responses of all subjects: n=8 for both older and young adults (number of trials per subject: 5-10, except for one subject with 3 trials). * below the bars, pooled average response amplitudes of all subjects were significantly different from the averaged control activity (Wilcoxon Matched-Pairs Signed-Ranks Test, P < 0.05). * above the bars, pooled average response amplitudes of all older adults were significantly different from the pooled average response amplitudes of all young adults (Wilcoxon rank sum test, P < 0.05).

FIG. 7. Mean normalized EMG amplitudes of the four response peaks (RP1-RP4) in iBF, iRF, iTA, iSO, and cBF of older (O) and young (Y) adults during the late swing lowering strategy. Dark bars show the normalized background activity; light bars show the normalized EMG response amplitudes during the stumbling reactions (normalization with respect to the maximum background locomotor activity). In this way, the part of the light bars above the dark bars indicate the amplitude of the subtracted responses. In case the response was suppressive, the dark bar was larger than the light bar (see for example, iTA, RP4). The SE of the control activity and the subtracted response activity is shown by error bars. Averaged responses were calculated by averaging the mean responses of all subjects: n=8 for both older and young adults (number of trials per subject: 5-10). The same format is used as in Fig. 6.

FIG. 8. Pooled joint angle changes (Degrees; not subtracted) during the early swing elevating strategy for the ipsilateral knee (iKnee) and ankle (iAnkle) of all older and all young adults. Angle at standing position is zero. Two lowest traces show stance phases of the ipsilateral (iFoot)
and contralateral foot (cFoot). Thin lines indicate pooled stumble responses of all young adults (n=8); heavy lines indicate pooled stumble responses of older adults (n=4-8); dashed lines indicate control data (average of pooled controls of older and young adults). Zero time is the time the foot collided with the obstacle. (Ext., extension; Fl., flexion; Plant. Fl., plantar flexion; Dorsi Fl., dorsiflexion).

FIG. 9. Pooled joint angle changes (Degrees; not subtracted) during the late swing lowering strategy for the ipsilateral knee (iKnee) and ankle (iAnkle) of all older and all young adults. Angle at standing position is zero. Two lowest traces show stance phases of the ipsilateral (iFoot) and contralateral foot (cFoot). The same format is used as in Fig. 8.
<table>
<thead>
<tr>
<th></th>
<th>Early swing</th>
<th></th>
<th>Late swing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Older</td>
<td>Young</td>
<td>Older</td>
<td>Young</td>
</tr>
<tr>
<td>iBF</td>
<td>78 (±10; 7) *</td>
<td>68 (±5; 8)</td>
<td>93 (-; 2)</td>
<td>80 (±12; 3)</td>
</tr>
<tr>
<td>iRF</td>
<td>72 (-; 2)</td>
<td>76 (±7; 7)</td>
<td>77 (±5; 3)</td>
<td>77 (±10; 8)</td>
</tr>
<tr>
<td>iTA</td>
<td>88 (±5; 4) *</td>
<td>69 (±3; 5)</td>
<td>82 (±8; 3)</td>
<td>78 (±10; 8)</td>
</tr>
<tr>
<td>iSO</td>
<td>95 (±4; 4) *</td>
<td>78 (±8; 5)</td>
<td>90 (±5; 5)</td>
<td>82 (±7; 6)</td>
</tr>
<tr>
<td>cBF</td>
<td>77 (±8; 3)</td>
<td>72 (±10; 8)</td>
<td>78 (±6; 6) *</td>
<td>68 (±8; 8)</td>
</tr>
<tr>
<td>cRF</td>
<td>--</td>
<td>87 (±6; 3)</td>
<td>78 (-; 1)</td>
<td>73 (±8; 7)</td>
</tr>
<tr>
<td>cTA</td>
<td>82 (-; 1)</td>
<td>80 (-; 1)</td>
<td>89 (-; 2)</td>
<td>80 (±12; 4)</td>
</tr>
<tr>
<td>cSO</td>
<td>--</td>
<td>95 (±2; 3)</td>
<td>--</td>
<td>64 (-; 1)</td>
</tr>
</tbody>
</table>

Mean latencies in ms after perturbation of older versus young adults (±SD; n = number of subjects included in average). Note that in older adults the number of subjects with observed medium-latency responses >3SD was smaller than in young adults (and was sometimes zero as indicated with --). * indicates a significant difference in response latency between older and young adults (Wilcoxon Rank Sum Test, P < 0.05). i, ipsilateral; BF, biceps femoris; RF, rectus femoris; TA, tibialis anterior; SO, soleus; c, contralateral.
TABLE 2. Mean onset and end of windows around the four response peaks

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Function</th>
<th>RP1</th>
<th>RP2</th>
<th>RP3</th>
<th>RP4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Y: 42-67 (±3)</td>
<td>Y: 76-100 (±4)</td>
<td>Y : 112-147 (±6)</td>
<td>Y : 162-197 (±12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y: 41-64 (±3)</td>
<td>Y : 78-105 (±7)</td>
<td>Y : 120-144 (±3)</td>
<td>Y : 164-197 (±3)</td>
</tr>
<tr>
<td></td>
<td>Hip extension</td>
<td>Y: 34-53 (±4)</td>
<td>Y : 71-98 (±5)</td>
<td>Y : 103-143 (±3)</td>
<td>Y : 159-200 (±8)</td>
</tr>
<tr>
<td></td>
<td>Hip extension</td>
<td>-</td>
<td>Y: 74-104 (±5)</td>
<td>Y : 118-151 (±10)</td>
<td>Y : 164-201 (±14)</td>
</tr>
</tbody>
</table>

Mean onset and end of windows, which were set around the four response peaks (RP1-RP4) of older (O) and young (Y) adults in the muscles iSO, iTA, iBF, iRF, and cBF. These values are means of all subjects (n=8 for both groups) in ms after perturbation. Number in parentheses is ±SD of the window onset. The movement functions of the muscles in the saggital plane are indicated in the second column. i, ipsilateral; SO, soleus; TA, tibialis anterior; BF, biceps femoris; RF, rectus femoris; c, contralateral.
Figure 1

A

B Elevating strategy

Lowering strategy
Figure 2

Within-subject variability

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Trial 6

0 100 Time (ms)
Figure 3

A

Elevating early swing, subject 6

B

Lowering late swing, subject 6
Figure 4

Older versus Young Early Swing

- iBF
- iRF
- iTA
- iSO
- cBF
- cRF
- cTA
- cSO

Time (ms)
Figure 5

Older versus Young Late Swing

- iBF
- iRF
- iTA
- iSO
- cBF
- cRF
- cTA
- cSO

Time (ms)
Early swing: normalized EMG amplitudes of older versus young

<table>
<thead>
<tr>
<th>iBF</th>
<th>iRF</th>
<th>iTA</th>
<th>iSO</th>
<th>cBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* response
* control
Late swing: normalized EMG amplitudes of older versus young

RP1

RP2

RP3

RP4

* response

* control
Figure 8

Older versus Young Early Swing

Knee

Ankle

Foot

0 100 Time (ms)
Figure 9