Laminar Organization of Response Properties in Primary Visual Cortex of the Gray Squirrel (Sciurus Carolinensis)


Department of Biology, Brandeis University, Waltham, Massachusetts 02454

FINAL ACCEPTED VERSION

Accepted 29 June 2005

* corresponding author: Netherlands Ophthalmic Research Institute, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands. tel. +31-20-5664529, fax. +31-20-5666121, email: heimel@ioi.knaw.nl

Abstract:

The gray squirrel (Sciurus carolinensis) is a diurnal highly visual rodent with a cone-rich retina. In order to determine which features of visual cortex are common to highly visual mammals and which are restricted to non-rodent species, we studied the laminar organization of response properties in primary visual area V1 of isoflurane-anesthetized squirrels using extra-cellular single-unit recording and sinusoidal grating stimuli. Of the responsive cells, 75% were tuned for orientation. Only 10% were directionally selective, almost all in layer 6, a layer receiving direct input from the dorsal lateral geniculate nucleus (LGN). Cone opponency was widespread, but almost absent from layer 6. Median optimal spatial frequency tuning was 0.21 cpd. Median optimal temporal frequency a high 5.3 Hz. Layer 4 had the highest percentage of simple cells and shortest latency (26 ms). Layers 2/3 had the lowest spontaneous activity and highest temporal frequency tuning. Layer 5 had the broadest spatial frequency tuning and most spontaneous activity. At the layer 4/5 border were sustained cells with high cone opponency. Simple cells, determined by modulation to drifting sinusoidal gratings, responded with shorter latencies, were more selective for orientation and direction, and were tuned to lower spatial frequencies. A comparison with other mammals shows that while the laminar organization of orientation selectivity is variable, the cortical input layers contain more linear cells in most mammals. Nocturnal mammals appear to have more orientation-selective neurons in V1 than diurnal mammals of similar size.

running head: Responses in V1 of the gray squirrel
keywords: striate, rodent, area 17, electrophysiology, receptive fields

Copyright © 2005 by the American Physiological Society.
Introduction

A major feature of sensory cortex is the presence of columns of neurons with similar response properties. Most neurons in a vertical column of primary visual cortex (V1) of mammals as diverse as carnivores, primates and tree shrews respond best to stimuli presented at a narrow range of orientations. These columns are organized horizontally to form smooth, repeating functional maps of orientation preference across the cortical surface. Rodents, however, appear to lack such maps. Recently, we showed that even a large and highly visual rodent, the gray squirrel (Sciurus carolinensis) lacks this horizontal organization (Van Hooser et al. 2005). Another major feature of V1 is its laminar division into horizontal layers containing neurons that vary in their functional response properties. This is particularly evident in animals that have been traditionally used for vision research such as the cat and the monkey. In murid rodents, anatomical lamination is less prominent, and there is an absence of pronounced functional laminar organization. For instance, in mouse and rat direction selectivity is almost uniform across layers (Metin et al. 1988; Girman et al. 1999) unlike cats and primates, where specific sublayers have high direction selectivity (Gilbert 1977; Orban et al. 1986; Hawken et al. 1988; DeBruyn et al. 1993; Snodderly and Gur 1995). Another example is that while many studies find high proportions of simple cells in layer 4 (and 6) of area 17 in the cat (Hubel and Wiesel 1962, Bullier and Henry 1979, Henry et al. 1979, LeVay et al. 1987) and macaque (Hubel and Wiesel 1968, Schiller et al. 1976a, Livingstone and Hubel 1984, Kagan et al. 2002, Ringach et al. 2002), so far only one study has found a similar trend in a rodent species (Parnavelas et al. 1983). These differences in laminar specificity might be due to differences in animal size or to the degree of specialization for vision. On the other hand, it may be the case that all rodents lack a strong laminar organization in V1. If so, this would indicate a more general lack of functional organization in rodent visual cortex, and would suggest that mechanisms for vertical and horizontal organization are related or interdependent.

To answer this question, we studied the vertical organization of a highly visual rodent, the gray squirrel. This animal has large eyes and relatively large and well-laminated visual brain structures (Hall et al. 1971; Van Hooser et al. 2003). Its visual acuity (2.8-3.9 cpd, Jacobs et al. 1982) is better than a tree shrew's (1.2-2.4 cpd, Petry et al. 1984) and its visual cortex is comparable in size to a ferret's (Hall et al. 1971; Law et al. 1988). Orientation selectivity is very common among V1 neurons of squirrels (Polkoshnikov and Supin 1988; Van Hooser et al. 2005).

Unlike nocturnal rodents, gray squirrels have good color vision. The gray squirrel retina contains rods and cones in a 2:3 ratio (Cohen 1964; West and Dowling 1975; Anderson and Fisher 1976). It contains two classes of cones, a short wavelength S-cone with a peak sensitivity of about 444 nm and a medium wavelength M-cone with a peak sensitivity of about 543 nm, and a rod photoreceptor with a peak sensitivity at about 502 nm (Blakeslee et al. 1988). Gray squirrels also have a much higher percentage of color-selective optic nerve fibers than cats have (6% vs. <1%, Blakeslee et al. 1988; Pearlman and Daw 1970). This provides an extra opportunity for a comparative study of dichromatic color vision outside the primate order.

Apart from laminar variations (see e.g. Table 2), there are also differences in the overall degree of selectivity for different stimulus features. Perhaps the most obvious are the large differences across mammals in the spatial acuity of neurons in V1. This most likely reflects differences in eye size and retinal ganglion cell density. Other differences, such as the varying level of orientation selectivity and temporal frequency tuning across species are not easily explained by differences in size (see Table 2 for numbers and references). A pattern may emerge if we would have knowledge of the response
properties of a diurnal rodent.

For these reasons, we studied the organization of response properties in V1 of the gray squirrel and focused on their laminar organization. We found several functional cell types that have been reported in other mammals: orientation-selective cells, direction-selective cells, end-stopped cells, and cone-opponent cells. Based on the linearity of the response, we found both simple and complex cells. Simple cells were more common in the major input layers from LGN, while orientation selectivity did not vary across layers. Most cells received input from S- and M-cones and showed some degree of both luminance and color sensitivity. High direction selectivity and cone opponency were mutually exclusive, and layer 6 contained many direction-selective cells and almost no cone-opponent cells. The distribution of response properties in gray squirrel V1 is broad and lacks clear classes, but there are correlations between response properties and laminar location. Thus, the lack of functional horizontal organization is not accompanied by poor laminar organization in all rodent species. We find that a prominent laminar organization is present in all highly visual mammals, suggesting that the mechanism for organization of V1 into smoothly ordered orientation columns differ from the mechanisms that produce laminar functional organization of this area.

Methods

Surgical preparation and maintenance

Adult gray squirrels (*Sciurus carolinensis*) weighing 300-700 g were prepared for single-unit recording using methods similar to those of (Van Hooser et al. 2003). Animals were initially anesthetized with a mixture of ketamine and acepromazine maleate (90 mg/ml ketamine, 0.91 mg/ml acepromazine maleate, 0.5 ml/kg initial dose, intramuscularly). A tracheotomy was performed for artificial ventilation and administration of isoflurane anesthesia after surgery (0.5-1.5% isoflurane in 50/50 oxygen/nitrous oxide). End tidal CO₂ was measured and kept at 4% by adjusting the ventilation rate within 35-90 strokes/min. The animal was mounted in a custom stereotaxic frame. Rectal temperature was recorded and maintained at 38°C. EEG and heart rate were monitored continuously to assess the level of anesthesia. If spindle activity disappeared from the EEG or if the heart rate changed in response to a toe pinch, the isoflurane concentration was increased. If the EEG showed long periods of low activity, the level was decreased. Typically 1% isoflurane was adequate to maintain this level of anesthesia. Preparations were generally stable for over thirty hours. To minimize eye movements, a paralytic agent (10 mg/ml gallamine triethoiodide, 0.5 ml/h, intravenous) was infused. Eyelids were held open with loose sutures. Pupils were dilated with 1% atropine sulfate. Plano contact lenses were inserted to prevent drying. In earlier experiments (Van Hooser et al. 2003), we found that it was not necessary to adjust the focus of the eyes. All procedures were approved by the animal care and use committee at Brandeis University.

Recording

The primary visual cortex in the gray squirrel is a large area surrounding the posterior medial pole of the cortex (Hall et al. 1971). Part of it is folded beneath the brain surface, but all of the central vision representation is easily accessible. The anterior-lateral border of V1 represents the vertical meridian. We made a craniotomy (roughly 3 x 3 mm²) centered on average at 6.5 mm posterior and 3.5 mm lateral from bregma. In early experiments, when recording close the vertical meridian, we mapped the progression of receptive field positions at several locations to ascertain that we were in V1 and not in
neighboring V2, which has a mirrored retinotopy. Under our anesthesia regime we learned that we could easily determine whether we were in V1 or V2 because the amount of multunit response to visual stimuli in and around layer 4 is much lower in V2 (Hall et al. 1971). In the first half of the experiments the dura was resected, and later the dura was left intact. Warm artificial cerebral spinal fluid was used to keep the brain moist, and 3% agar in lactated Ringer's solution was used to protect the brain and minimize pulsations. We used high impedance micro-electrodes (10 MΩ, FHC, Bowdoinham, ME) and a custom-developed multiple window discriminator to isolate single units. We recorded data on 21 penetrations that were roughly perpendicular to the cortical surface. We searched for well isolated units, so our sample may be biased towards larger cells. After recording from one cell, the electrode was advanced at least 40 µm, and a subsequent cell was included if the electrode had advanced at least 100 µm or if the cell showed different response properties from the previous cell. Histological reconstructions showed that penetrations were generally within 15° of perpendicular to the cortical surface (Van Hooser et al. 2005).

Reconstruction of recording sites

At the end of each penetration three electrolytic lesions (9 µA, 3 s, tip negative) were made along the electrode track to recover the recording positions. The electrodes were coated in DiI (Molecular Probes, Eugene OR) so that the tracks could later be found (Snodderly and Gur 1995; DiCarlo et al. 1996).

The animals were given an overdose of ketamine/acepromazine or sodium thiopental, and perfused transcardially with 0.1 M phosphate-buffered solution (PBS) followed by 4% paraformaldehyde. 50 µm coronal sections were prepared on a cryostat. Sections were Nissl-stained, as previously described (Van Hooser et al. 2005). Cortical layers 2/3, 4, 5, and 6 could easily be identified, as shown in Fig 1. Sublayers 3c and 6b (Kaas et al. 1972b; Moore 2001) could often be distinguished and occasionally a sub-lamination of layer 4 was apparent, but not consistently enough to include this in our laminar analysis. Cytochrome oxidase staining did not reveal any further sublamination or tangential organization (Moore 2001). We used the lesion sites to calibrate the electrode manipulator readings to laminar positions in the cortex using a technique similar to (Hawken et al. 1988). Recording sites were assigned a layer and a relative depth within that layer. By studying lesions and dye labeling from the same penetration and laminar borders on several neighboring sections we estimate that the error in the reconstruction depth is approximately 70 µm. For seven penetrations we could not reconstruct the relative depths for the recording sites with certainty and left these cells out of the laminar analysis.

Visual stimulation

Visual stimulation was provided by an Apple Macintosh PowerMac G4 and a gamma-corrected Samsung SyncMaster 900SL CRT monitor running custom-developed stimulation software (Van Hooser et al. 2003) using Matlab (The MathWorks, Natick, MA) and the Psychophysics Toolbox (Brainard 1997; Pelli 1997). Stimuli were shown at a distance of 57 cm from the eyes with a refresh rate of 120 Hz.

Color stimulation

We measured the spectra of the red, green, and blue phosphors (denoted R, G, and B) on our monitor from 400 to 700 nm in steps of 4 nm using a PR-650 spectral radiometer (Photo Research, Chatsworth, CA) kindly lent to us by R. Clay Reid of Harvard University. Using activity spectra S and M for the
blue and green cones, respectively, estimated from (Blakeslee et al. 1988) and correcting these values for preretinal absorbance (Yolton et al. 1974), we computed a matrix relating RGB color values \((r,g,b)\) to relative cone activation \((S_{act} : M_{act}) = (R \cdot S, G \cdot S, B \cdot S; R \cdot M, G \cdot M, B \cdot M) = (0.0008, 0.00057, 0.0299; 0.0135, 0.0742, 0.0191) \cdot (r; g; b)\). Using this equation we computed an 'equiluminant' pair of colors, blue \((r,g,b) = (0, 0, 1)\) and green \((1, 0.42, 0)\). The blue color mainly activates the S-cone, while the green color mainly activates the M-cone. The total activation of the two cone types, \((M_{act} + S_{act})\), is very similar for the two colors. The luminance contrast of this stimulus (computed using this total activation) is only 2%.

We also used cone-isolating stimuli (Estevéz and Spekreijse 1982) to assay the cone inputs to a subset of the recorded cells. We developed one pair of colors for each cone: \(m_{+}\) and \(m_{-}\) for the M-cone, and \(s_{+}\) and \(s_{-}\) for the S-cone. The color pairs were chosen so that a transition from one color to the other would dramatically change the drive to the cone of interest while minimally influencing the drive to the other cone. Thus, switching from \(s_{-}\) to \(s_{+}\) dramatically increases the drive to S-cones, but M-cones respond with equal intensity to both \(s_{-}\) and \(s_{+}\). We found color pairs that meet the cone isolating criteria and provide strong contrast: \(m_{+} = (1, 1, 0)\), \(m_{-} = (0, 0, 0.24)\), \(s_{+} = (0, 0, 0.92)\), \(s_{-} = (0.98, 0.11, 0)\). The \(m\)- and \(s\)-pairs correspond to 90% and -10% M-cone contrast and -5% and 90% S-cone contrast. The luminance contrast between the pairs (using \(dL/mean L\)) is 96% for \(m_{+}\) and \(m_{-}\), and 95% for \(s_{+}\) and \(s_{-}\). The pairs do not provide the maximum possible contrasts, because they were originally designed using less accurate measurements of the CRT phosphor spectra.

It is difficult to assess the validity of our computations psychophysically. We have simulated a behavioral experiment by Blakeslee et al. (1988) in which gray squirrels were required to identify a colored light among three choices: two achromatic lights (4800 K temperature) and a monochromatic light that varied in wavelength from 470 to 510 nm. The investigators observed a clear neutral range between 495-505 nm where the gray squirrels could not distinguish the colored light from achromatic light. We computed the ratio of green to blue cone activation for a 4800 K source using the cone spectra estimated above and correcting for retinal absorbance, and then computed the same ratio for stimulation with monochromatic light. The achromatic and monochromatic activation ratios were equal for a 502 nm monochromatic stimulus, which is in excellent agreement with the neutral range above, suggesting our choices for cone-isolating stimuli are appropriate. In addition, in this study and in pilot experiments in the LGN we encountered some cells that responded exclusively to either the S- or M-cone isolating stimuli, consistent with the idea that these stimuli are truly cone isolating.

**Experimental protocol**

Receptive fields were initially mapped by hand on a tangent screen. Stimuli were presented monocularly to the dominant eye. We did not score ocular dominance or binocularity, as receptive fields in the two eyes did not always overlap, possibly due to the paralysis of the animal. Coarse orientation tuning curves were measured using large (roughly 16° x 16°) sinusoidal gratings drifting in twelve equally spaced different directions. These gratings had a spatial frequency of 0.2 cycles per degree (cpd) and drifted with a temporal frequency of 4 Hz. Most cells responded vigorously to at least one direction. As with all our tests, all stimulus conditions were pseudorandomly interleaved and shown 5 times. Between all of our stimuli a gray background (luminance 45 cd/m²) was shown for at least 3 s. Except for the contrast tuning test, contrast was 80% for all tests.

We determined the optimal direction (maximum modulation or firing rate, see below) and used this for all subsequent stimuli. For two thirds of our experiments, a small patch of this grating (5° x 5° square
rotated to match optimal orientation) was shown at 9 overlapping positions around the hand mapped center to determine the receptive field center more accurately. Centered at this position we showed drifting sinusoidal gratings of 9 different spatial frequencies between 0.015 and 1.6 cpd in the original larger window of 16° x 16°. Further tests used gratings with the optimal spatial frequency. Temporal frequency was varied between 0.5 and 32 Hz, and the optimal temporal frequency was used for the remaining tests. Contrast tuning was measured using drifting gratings at 7 contrasts levels between 2 and 100%. To determine latency and spatial linearity we flashed static gratings with 12 different spatial phases.

For a subset of the cells, color sensitivity was assessed by measuring spatial frequency tuning again using an equiluminant colored grating drifting at 4 Hz. For some cells, we measured cone inputs and cone opponency by showing a series of linear combinations of cone-isolating colors, with m+ overlapping with s- and m- with s+. In the early spatial phase of the sinusoidal grating we used the combination $\eta \cdot m_+ + (1-\eta) s_-$ and in the late phase we used $\eta \cdot m_- + (1-\eta) s_+$. Thus, for $\eta = 0(1)$ the stimulus is $S(M)$-cone isolating.

The total characterization procedure took a little less than an hour per cell. Not all cells could be kept well isolated long enough to run all tests. The results of all tests run are included in the analysis.

**Data analysis and statistics**

Average firing rates (DC- or F0-component) and response modulation at the drifting frequency (F1-component) were computed. The parameter value that gave the largest F0 or F1 component overall was considered optimal and was used in subsequent tests. For the analysis of the data, and fitting of tuning curves, we did not use the F1 modulation but used the average firing rate for all cells. This allowed us to compare the tuning of cells with different F1/F0 ratios.

For several parameters, we defined low and high cut-offs as the stimuli where the firing rate reached half the maximum firing rate. The spontaneous rate was not subtracted unless otherwise stated. For each cell we computed the Orientation Selectivity Index (OSI) as follows, $\text{OSI} = |\sum_k F_0(\theta_k) \exp(i2\theta_k)| / \sum_k F_0(\theta_k)$, where $\theta_k$ is the drift direction in radians and $F_0(\theta_k)$ is mean firing rate in response to a stimulus with that direction. The OSI and the related circular variance (1-OSI) are often used as a measure of orientation selectivity in V1, see e.g. (Worgotter and Eysel 1987). Von Misen functions $p_0 \cdot p_1 \exp((\cos(2 \theta - \theta_{\text{pref}})) - 1) / p_3$ provide the best fit to orientation tuning curves (Swindale 1998). From Von Misen fits we computed the tuning width as Half Width at Half the Height (HWHH) of the maximum F0 response (Henry et al. 1974). A Directionality Index (DI) was computed as $(R_{\text{optimal}} - R_{\text{opposite}}) / R_{\text{optimal}}$, subtracting the spontaneous firing rate from all responses. Spatial and temporal frequency responses were fit with difference of Gaussians. For the temporal frequency tuning a constraint was added that above 150 Hz the cells would respond at the spontaneous rate. The fits were not very sensitive to the point at which this constraint is enforced.

Few, if any, of the response properties were normally distributed. To compare scalar properties between different groups of cells, we used a non-parametric Kruskal-Wallis rank test, unless otherwise stated in the text. To calculate the significance of differences in categorical properties, we applied a $\chi^2$ test. For computation of the significance of bimodality we used a Matlab implementation of Hartigan's DIP test (Hartigan and Hartigan 1985) by F. Mechler (available at http://manuelita.psych.ucla.edu/~dario/neurodata.htm). In bar graphs, significance is shown by stars, *:
p<0.05, **: p<0.01 and ***: p<0.001.

**Results**

We studied the functional response properties of 221 neurons in the primary visual cortex of sixteen gray squirrels using sinusoidal gratings. Of these cells, 27 did not respond to visual stimulation or had peak firing rates below 3 Hz, and we excluded these from our analysis. Our sample of cells was well distributed across cortical layers. We could reconstruct the locations of 41, 32, 27 and 28 cells in layers 2/3, 4, 5 and 6, respectively. We did not record any cells in layer 1. The same cells were used for one additional test in which the orientation preference and tuning width dependence on contrast was measured. The results of this test and the absence of a smooth horizontal organization of orientation preference were reported earlier (Van Hooser et al. 2005).

Gray squirrel V1 is divided into a lateral binocular zone that mediates the central 30° of vision in each hemisphere, and a medial monocular zone (Hall et al. 1971; Kaas et al. 1972a). Receptive fields of cells in our study all fell between -30° and 10° of the horizontal meridian and were less than 60° lateral of the vertical meridian, and three quarters (151/194) of these cells were within the binocular zone. Of these, only 8% (12/151) responded preferentially to the ipsilateral eye.

**Relative modulation**

The relative modulation $F_1/F_0$, i.e. the ratio of response modulated at the drift frequency to the average firing rate, is a measure of the linearity of input summation of a neuron. Researchers in other mammals have reported a bimodal distribution of $F_1/F_0$ with a valley near 1 (Schiller et al. 1976c; Skottun et al. 1991). We did not find such a bimodal distribution if all cells are considered (Fig. 2C). A bimodality is apparent if we only consider the more oriented cells, i.e. all cells with an orientation tuning half width at the half height of the maximum response (HWHH, see section Orientation tuning) less than the population median, (dark bars Fig. 2C), but this was not significant (p=0.09). A bimodality does not necessarily imply the existence of two distinct populations, but may reflect a non-linearity in the relative modulation measure itself which could make a unimodal distribution of cell parameters appear bimodal (Mechler and Ringach 2002; Mata and Ringach 2005). However, since the relative modulation correlates to several other response properties, such as the preferred spatial frequency and the contrast linearity (see below) it is convenient for presentation purposes, to take the $F_1/F_0=1$ as a boundary between two classes. We did not measure subfields and cannot apply the original definition of simple and complex cells based on subfield segregation (Hubel and Wiesel 1962), but the 146 cells with smaller $F_1/F_0$ values, we call 'complex', and the 48 cells with ratios above this value we call 'simple'.

Fig. 2A and B show the laminar distribution of the relative modulation. The dots in Fig. 2A show the individual cells. The black line is the median over a window with a width of 12 % of the cortical thickness (corresponding to approx. 250 micron). The gray lines on either side are first and third quartiles calculated over the same moving window. Fig. 2B shows the same data grouped per layer. The height of the bars corresponds to the median, with the lower and top end of the lines corresponding to the first and third quartiles. This convention is followed in all the graphs in this paper, unless otherwise stated. The $F_1/F_0$ ratio is higher in layer 4 than in the other layers, (median 0.81 versus 0.58 average across layers), but the difference is not significant (p=0.12). Layer 4 and 6 together, the two layers receiving densest innervation from the LGN, do have a significantly higher $F_1/F_0$ ratio (p=0.01).
The response to flashed stationary gratings at different spatial phases is another indication of the spatial linearity of a cell. The spatial linearity is defined as the ratio of the spatial F₁-component and spatial F₀-component of the response. The measure is very similar to the \( \frac{F_1}{F_0} \) value computed for drifting gratings, and the two measures are highly correlated \((r=0.6, p<10^{-11})\). Its distribution is very skewed and only shows a hint of bimodality with a notch around \( \frac{F_1}{F_0} = 0.75 \). The laminar distribution, shown in Fig. 2D, is similar to that of the temporal modulation ratio of Fig. 2B, but the differences are more pronounced. Layers 2/3 and 5 are on average more non-linear than layers 4 and 6.

When making the distinction between simple and complex cells based on relative modulation due to moving stimuli in primates, one finds much higher percentages of simple cells than when using static stimuli and subfield segregation for the classification (Bullier and Henry 1980, Kagan et al. 2002). There is no such difference between the two measures within our dataset: a quarter (26%) of the cells are simple based on the criterion that \( F_1/F_0 > 1 \) for drifting gratings, while 27% have \( F_1/F_0 > 0.75 \) for static gratings.

Orientation tuning

The degree of orientation tuning varied enormously, from cells that were completely indifferent to orientation, e.g. the example shown at the top of Fig. 3A, to cells that responded very selectively to certain orientations, e.g. the example at the bottom of Fig. 3A. The median, first and third quartiles of the Orientation Selectivity Index (OSI) are 0.29, 0.13 and 0.54 as shown in the cumulative histogram in Fig. 3B by the dashed and dotted vertical lines.

The Half Width at Half the Height (HWHH) of the maximum \( F_0 \) response gives information about selectivity around the peak, while the OSI measures the strength of the oriented response relative to responses at all angles. The median HWHH is 32°, see Fig. 3C. About 25% of the cells are not orientation-selective and have HWHH \( \geq 90^\circ \). Both the OSI and HWHH show a significant difference in the orientation selectivity of simple and complex cells. The median OSI of simple cells is 0.5, while that of complex cells is 0.25 \((p=0.0002)\).

We found little difference in the distribution of orientation selectivity across the different layers of the cortex, as shown in Fig. 3D. An analysis of the horizontal organization across the cortical surface of orientation preferences of cells in this dataset has been published previously (Van Hooser et al. 2005).

Direction tuning

The median Directionality Index (DI) is a low 0.23, Fig. 3E. Using the criterion of DI\( > 2/3 \), only 10% of the cells are directionally selective. The directional selectivity is significantly higher in layer 6 than in other layers, as illustrated in Fig. 3F \((p=0.0001)\). Simple cells are more directional than complex cells (median 0.34 versus 0.18, \( p=0.001 \)). The given numbers and statistics are very similar if the spontaneous rate is not subtracted (not shown).

Spatial frequency tuning

Spatial frequency tuning with drifting gratings in the optimal direction was recorded in 192 neurons and fit with a difference of Gaussians. The median optimal spatial frequency is 0.21 cpd, with complex cells preferring slightly higher frequencies than simple cells \((p=0.006; \text{two middle curves in Fig. 4B})\).
This difference is more pronounced for the high cut-off spatial frequency, shown by the right two curves in Fig. 4B and Table 1 (p=0.0002). The high and low frequency cut-off frequencies (frequencies with responses of half the maximum response) were estimated using the fit. If a cell's response did not drop below half the maximum response for the lowest frequency that we used in our tests (0.015 cpd), the cell was classified as lowpass. The majority (82%) of the cells show bandpass spatial frequency tuning like the example shown at top of Fig. 4A. The median bandwidth \( \log_2(\text{high cut-off freq./low cut-off freq.}) \) of the bandpass cells is 2.1 octaves. The full distribution of bandwidths is shown in Fig. 4C.

There is very little laminar dependence of the preferred spatial frequency. A broadening of the distribution is seen in layer 5. Layer 5 also contains a higher percentage of lowpass cells than other layers, Fig. 4D, but this was not significant (p=0.12) and there is hardly any variation of the high cut-off spatial frequency.

The highest preferred spatial frequencies are found centrally within the visual field. More peripherally the preferred spatial frequencies drop significantly. For the 144 cells within the central 30 degrees of the visual field, the median preferred spatial frequency is 0.23 cpd, while for the 48 cells in our sample outside that region, the median is 0.17 cpd (p<10^-6).

The spatial frequency bandwidth is positively correlated with the orientation tuning width (r = 0.26, p<10^-3) and the temporal frequency bandwidth (r = 0.25, p=0.002). This means that in general cells do not sacrifice selectivity in one of these features to obtain higher selectivity in other features. An illustration of this is that the preferred spatial frequency is even negatively correlated with the orientation tuning width (r=-0.32, p<10^-5).

**Temporal frequency tuning**

Using drifting gratings, we measured the cells' temporal frequency tuning from 0.5-32 Hz. About a third of the cells fired significantly above the spontaneous rate at 32 Hz, but as our monitor had a refresh rate of 120 Hz, we could not test cells at much higher frequencies. A fairly typical example of the tuning of a bandpass neuron is shown in Fig. 5A. Median optimal temporal frequency is 5.3 Hz. Simple and complex cells do not differ from each other in their temporal frequency tuning, see Fig. 5B. Median high temporal frequency cut-off is 17 Hz. At the lowest temporal frequency (0.5 Hz) 10% of the cells still respond above half of the maximum response. These cells are classified as lowpass. The other cells have a median temporal bandwidth of 3.0 octaves, Fig. 5C.

While we did not do a separate velocity tuning test, we calculated the velocity tuning by dividing the temporal frequency tuning of each cell by the optimal spatial frequency. The median optimal velocity is 26 deg/s, and the high velocity cut-off (calculated as the high temporal frequency cut-off divided by the optimal spatial frequency) median is 86 deg/s.

Cells in layers 2/3 have a higher optimal temporal frequency (p=0.004), Fig. 5D, and a higher low cut-off frequency (p=0.0002), Fig. 5E, than cells in other layers. There are no significant laminar differences in the high temporal cut-off frequency. Optimal velocity is significantly higher in layers 2/3 (median 31 deg/s, p=0.006) and lower in layer 4 (median 19 deg/s, p=0.04).

The temporal frequency tuning of cells responding to the central 30° of vision (median 6.2 Hz) and those responding to the periphery (median 5.3 Hz) is not significantly different. Preferred velocities are significantly higher in the periphery than in central vision, since cells mediating central vision have
higher preferred spatial frequencies than those in the periphery.

**Responses to static stimuli**

*Latency*
After determining a cell’s optimal parameters for drifting gratings, we used these parameters to show stationary gratings. The spatial phase with the strongest response within 1 s was used to calculate the cell’s latency, defined as the time at which the firing rate reached half its maximum value. The latency is strongly laminar dependent, as can be seen in Fig. 6A and B. The median latency of the whole population is 34 ms, with first and third quartiles of 25 and 52 ms, shown in Fig. 6C. Cells in layer 4 have a significantly shorter latency (p=0.001) than those in other layers, with a layer median of 26 ms. Layers 2/3 have significantly longer latencies with a median of 48 ms (p=0.0003).

Simple cells respond much more rapidly than complex cells (p=0.0007), Fig. 6C. The simple cell median is 25 ms, while the complex cell median is 37 ms.

*Response duration*
Fig. 7A shows a few examples of neuronal responses to the onset of stationary gratings. Some neurons have a very transient response consisting of a single peak with a latency between 18 and 80 ms. Many other cells continue to fire afterward at a lower rate but above spontaneous levels, and some of these cells show a pronounced second wider peak at a latency around 100 ms. We did not see an obvious correlation between the state of the animal and response duration, as we often recorded sustained cells after encountering transient cells and vice-versa.

To quantify the response properties, we defined a transience index TI=(R_{early}-R_{late})/R_{early}. The early response R_{early} is the spike count in the 50 ms interval following the response latency time minus the expected number of spikes in this period based on the spontaneous firing rate. The late response R_{late} is calculated similarly using spikes between 300 and 400 ms after the response latency. A transience TI=1 corresponds to the complete absence of sustained firing 300 ms after response onset. The cells in the cumulative histogram shown in Fig. 7B as having TI>1 have a late response below spontaneous levels. The median transience index is 0.9. There is no difference (p=0.77) between simple and complex cells. Cells in layers 2/3 on average show more transient responses (median 0.96, p=0.02), while cells in layer 5 are more sustained (median 0.74, p=0.01). Fig. 7C shows that the layer 4/5 border contains many very sustained cells.

**Spontaneous and maximum rates**

Spontaneous firing rates are between 0.01 - 20 Hz, with an overall median rate of 0.46 Hz (see Fig. 8A). Complex cells have significantly higher firing rates than simple cells, with median 0.57 Hz versus 0.22 Hz (p=0.006). There is a clear laminar dependence. Cells in layer 5 have significantly higher spontaneous rates than the general population, (median 1.7 Hz, p<10^{-4}), while layers 2/3 have a much lower firing rate (median 0.19 Hz, p<10^{-5}). The median maximum average firing rate in response to 5 cycles of an optimal drifting grating of 100% contrast is 19 Hz. There are no significant laminar differences in the maximum average firing rate. Spontaneous and maximum rates are correlated (r=0.4, p<10^{-6}).
Contrast tuning

The three examples in Fig. 9C illustrate the wide range of contrast response curves observed. All curves could be well fit by the non-linear Naka-Rushton equation (Naka and Rushton 1966; Albrecht and Hamilton 1982) \( R = R_s + gC^n/(s^n + C^n) \), where \( R_s \) is the spontaneous rate and \( C \) is the contrast. The fitting parameters are: the contrast at mid-saturation \( s \), the gain \( g \) and the exponent \( n \). For most cells in the LGN a good fit can be achieved with \( n=1 \), see e.g. (Van Hooser et al. 2003), but many cells in our V1 sample are more non-linear and require fits with higher exponents. From the fits we could calculate the relative maximum gain (RMG). This is the maximum slope of the graphs in Fig. 9C if the maximum rate minus the spontaneous rate is normalized to 1. The RMG is a measure for the non-linearity in response to contrast and is much less dependent on the fitting procedure than the exponent \( n \) or the gain \( g \). A completely linear contrast response curve would correspond with RMG=0.01%-1=1. Any non-linear curve will have a higher RMG. The median RMG is 2.8. We did not find any simple cells with a very non-linear contrast response curve, as can be seen from the simple cell RMG distribution in Fig. 9D. The general difference between the linearity of complex and simple cells is also clear in their population medians of 2.8 and 2.4 (p=0.004).

Another measure of response linearity is the contrast value at half the peak response (\( C_{50} \)), measured directly from the stimulus responses by linear interpolation. The \( C_{50} \) is correlated to the RMG (\( r=-0.5 \), \( p<10^{-10} \)), but the measures provide different information. The median \( C_{50} \) is 35%, but its range is wide, Fig. 9E. There is a small difference (p=0.02) between the complex (median 34%) and simple cell populations (median 41%). There is a negative correlation (\( r=-0.32 \), \( p=10^{-5} \)) between the \( C_{50} \) and the maximum rate and a positive correlation between the RMG and the maximum rate (\( r=0.26 \), \( p=0.0004 \)). The distributions of both RMG or \( C_{50} \) are almost uniform across cortical layers.

Color

We ran two tests specifically designed to study color sensitivity. We calculated an S-cone isolating color pair \( s^+ \) and \( s^- \) and an M-cone isolating pair \( m^+ \) and \( m^- \). The color \( s^+ \) excites the S-cone much more than \( s^- \) does, while both equally activate the M-cone. The pair \( m^+ \) and \( m^- \) differentially activate the M-cone. At the optimal spatial frequency, we showed a family of drifting grating stimuli that linearly interpolate between the S-cone isolating grating and the M-cone isolating grating (Chatterjee and Callaway 2002; Diller et al. 2004; Johnson et al. 2004). The color of the up-phase was \( \eta m^+ +(1-\eta)s^- \) and the down-phase was \( \eta m^-+(1-\eta)s^+ \). Thus, for \( \eta =0 \) this constitutes an S-cone isolating stimulus, for \( \eta =1 \) an M-cone isolating stimulus at the opposite phase, and intervening values of \( \eta \) are combinations of the two. We also measured the spatial frequency tuning using a pair of equiluminant colors that gave maximally different responses in each cone type while the sum of the two cone-type activity was identical.

To improve our intuition for how spatial profiles of cone input influence the responses to these stimuli, we constructed linear model cells, shown in Fig. 10A, and computed their responses. The graphs in the left column show spatial profiles \( W_S(x) \) of S- (solid line) and \( W_M(x) \) of M-cone (dashed line) input along the direction of movement of the stimulating grating. The middle graphs show model spatial frequency tuning for luminance contrast gratings in black and the spatial frequency tuning for equiluminant color gratings in gray. The column on the right shows responses for the mixtures of cone isolating stimuli. These pictures illustrate a few properties of the stimuli. If the profiles of S- and M-cone input are identical up to a constant positive factor, i.e. \( W_S(x)/(W_S(x)+W_M(x))=c \) everywhere and
0 \leq c \leq 1, there will be a mixture $\eta_{\text{min}}$ of the two cone-isolating stimuli that gives no response, such as in the top figure. For an ideal pair of cone-isolating stimuli that equally modulate the S- and M-cones, this point would be equal to the relative S-cone weight, i.e. $\eta_{\text{min}}=c$, for a linear neuron. If a neuron receives only M-cone input, $\eta_{\text{min}}=0$, while only S-cone input corresponds to $\eta_{\text{min}}=1$. When S- and M-cone input are almost identical, i.e. $c=1/2$, the response to an equiluminant grating vanishes. In general, if the S- and M-cone input are not proportional to each other, a cell responds for all $\eta$. One exception to this rule is when both S- and M-cone input are on-like or both are off-like. Even if the spatial profiles are not proportional to each other, there will be a mixture where there is no response, see the second row of Fig. 10A. In such a case, the spatial frequency tuning will be lowpass for both black & white and colored stimuli. In recognition of these properties, we name non-opponent, cells that have a point in the color mixture stimulus where they do not fire above spontaneous rate (by at least 3 standard deviations), and thus lack cone opponency. Cells that respond above spontaneous rate for mixtures of all $\eta$, we name cone-opponent. Cells are called bandpass if they are spatial bandpass filters for both the contrast luminance and the equiluminant gratings, and lowpass otherwise.

Double opponent cells (Livingstone and Hubel 1984), like the example shown at the bottom of Fig. 10A, would be in the bandpass cone-opponent group. In general, for cells in this class the response to the luminance contrast grating can still be higher than the response to the equiluminant grating. In Fig. 10B from top to bottom a non-opponent bandpass, a non-opponent lowpass, a cone-opponent lowpass and a cone-opponent bandpass (double opponent) example are shown. The 120 cells for which we ran both these tests are fairly equally distributed among these classes (see Fig. 10E).

A histogram of the cone balance $\eta_{\text{min}}$ is plotted in Fig. 10C. The colors correspond to the colors in E. Most of the cells have a low $\eta_{\text{min}}$, which means they respond preferentially to M-cone input, like the top three examples shown in Fig. 10B. The distribution of $\eta_{\text{min}}$ is not significantly different for cone-opponent versus non-opponent cells (comparing the dark bars with the lighter bars). The distribution of $\eta_{\text{min}}$ is wide, but skewed towards low values. The average value of $\eta_{\text{min}}$ is 0.21 for cone-opponent cells and 0.22 for non-opponent cells, for which it is an approximation to the relative S-cone weight. The majority of cells (68%) show a significant response for all $\eta$, even at $\eta_{\text{min}}$, and are classified as cone-opponent. A fifth (26/122) of the cells do not fire (at least 3 standard deviations) above spontaneous rate for the S-cone isolating stimulus, while a tenth (12/122) of the neurons do not respond to the M-cone isolating grating.

Fig. 10D shows that the preferred spatial frequency is significantly lower for equiluminant gratings than for luminance contrast gratings (0.14 cpd versus 0.21 cpd, p<10^{-8}). The percentage of lowpass cells is 29% when measured with equiluminant gratings, while it is only 19% measured with a luminance contrast gratings. This suggests that the spatial antagonism between excitation and suppression is not as well matched per cone type as it is for the summed cone inputs.

The laminar distribution of cell classes, shown in Fig. 10E, reveals a striking absence of cone-opponent cells in layer 6 (significantly different from other layers, p=0.0002). The layer 4/5 border has relatively many cone-opponent cells (not shown).

Cone opponency and orientation tuning are not correlated. Fig. 10F shows that the percentage of oriented cells (HWHH<90°) in the two cone-opponent categories is similar to that in the non-opponent categories (p=0.3). The plot, however, does show that nearly all of the spatial bandpass cells are tuned for orientation while only around half of the lowpass cells are (p<0.0001).
The situation is very different for cone opponency and direction selectivity. Cone-opponent cells have a much lower direction selectivity than non-opponent cells (medians 0.16 versus 0.38, p<10^{-4}). Fig. 10G shows that virtually none of the opponent cells have a direction bias (DI>0.5), which is very different from the non-opponent cells (p<10^{-4}). There is no difference in direction selectivity of bandpass and lowpass cells (p=0.4).

Cone-opponent cells have a higher high cut-off temporal frequency (median 21 Hz versus 15 Hz, p=0.01), and a much shorter latency (median 31 ms versus 48 ms, p=0.0001). Only 16% of the non-opponent cells have latencies shorter than 34 ms, the overall population median. The cone-opponent cells are also much more sustained (median TI 0.81 versus 0.99, p<0.001) and have a lower C_{50} (median 31% versus 44%, p=10^{-5}). The groups of cone-opponent and non-opponent cells were not significantly different in other properties such as F_1/F_0 ratio, optimal spatial frequency and optimal temporal frequency.

To compare with (Johnson et al. 2001; Shapley and Hawken 2002) we computed the color sensitivity, defined as the ratio of the maximum firing rate for the preferred equiluminant grating over the maximum rate for the luminance contrast stimulus. The median color sensitivity is 0.71. Three-quarters of the cells (116/154) are in the color-luminance category of (Johnson et al. 2001) with color sensitivities between 0.5 and 2. Only one cell in our sample responds to the equiluminant grating at more than twice the rate of the luminance contrast grating. Of course, we may have missed cells that do not respond at all to luminance contrast gratings, because we used black&white gratings when searching for cells. Color sensitivity is not different in the different cell classes, nor is it significantly correlated to direction selectivity or orientation tuning, optimal spatial frequency tuning, temporal frequency tuning or latency.

Apart from the laminar differences, we did not find a clustering of cone opponency or color sensitivity for nearby neurons on a single penetration. The cone opponency was not significantly different on 9 out of 10 penetrations for which we studied cone opponency. The tenth penetration had a lower color opponency, but a Kruskal-Wallis p-value of 0.04 only. Color sensitivity varied even less between penetrations. Thus, we did not find evidence for dramatic clustering of color processing, although we cannot exclude the possibility of a more subtle organization.

**Multivariate analysis**

Except for the F_1/F_0 ratio, none of the cells' individual properties show non-trivial bimodality or clustering, seen by eye or by the Hartigan's dip test (Hartigan and Hartigan 1985). To see if our data suggest the existence of discrete groups of cell types, we looked at the clustering of cells in multidimensional space. We took various subsets of the measured properties and projected these to their principal component axes. The Hartigan's dip test did not report a significant bimodality along any of these projections. This certainly does not exclude the existence of cell classes, but we have not found an indication that there are. There is not one axis that explains most of the variance, suggesting that most properties vary mostly independently. Principal component analysis reflected the correlations that we have already mentioned, such as that between sharper orientation tuning and higher F_1/F_0 ratio, but did not unveil any additional underlying structure.
Discussion

We found all the major classes of cell types reported in the V1 of other mammals. Unoriented cells, simple and complex oriented cells, both with and without end-stopping are present in gray squirrel V1. We first compare the individual response properties in the gray squirrel to those in other species before discussing their laminar organization.

Orientation tuning

Orientation-selective neurons in the gray squirrel have tuning widths that are very similar to those observed in other mammals. If we consider only the oriented cells (with HWHH<90°), the median tuning width (HWHH) of gray squirrel V1 neurons is 25°. This is remarkably similar to both carnivores and primates, 19°-25° in cat (Felis domesticus, Henry et al. 1974; Gilbert 1977), 21° (mean) in ferret (Mustela putorius furo, Alitto and Usrey 2004), 29° in mink (Mustela vison, LeVay et al. 1987), 27° in baboon (Papio ursinus, Kennedy et al. 1985), 27° in owl monkey (Aotus trivirgatus, O'Keefe et al. 1998) and a median width of 24° at 71% of the maximum response in macaque (Macaca fascicularis and Macaca mulatta, Ringach et al. 2002; Gur et al. 2004),

A quarter of the cells are unoriented and have HWHH of 90° or larger. This is much more than in the cat, where unoriented cells are very rare (Hubel and Wiesel 1962; Baumgartner et al. 1965; Gilbert 1977; 1%, Murphy and Berman 1979; 5%, Kato et al. 1978), and a little more than most reports in primate, such as macaque (16% Macaca mulatta, Schiller et al. 1976a; 14% Macaca fascicularis, De Valois et al. 1982a) and owl monkey (10%, O'Keefe et al. 1998), although one study in macaque reports a similar number (31% Macaca nemestrina, Bullier and Henry, 1980). It is similar to the slightly smaller tree shrew (Tupaia glis), where also a quarter of the cells is not oriented (Humphrey and Norton 1980). In comparison with other rodents, the gray squirrel number falls in the middle. The mouse (Mus musculus) has many more unoriented neurons in V1, 55% (Drager 1975), 46% (Metin et al. 1988), 49% (Mangini and Pearlman 1980). So has the golden hamster (Mesocricetus auratus), 60% (Tiao and Blakemore 1976). In the related red squirrel (Sciurus vulgaris), 44% (Polkoshnikov and Supin 1988) of cells sampled in V1 and 17% of cells sampled in the binocular region (Polkoshnikov and Revischin 1998) were classified as non-oriented. Both tree squirrel species have more unoriented cells than the latest estimates in the rat (Rattus norvegicus), 16% (Parnavelas et al. 1981) and less than 7% (Girman et al. 1999). Older studies in the rat differ and find as many as 70% unoriented cells (Wiesenfeld and Kornel 1975; Shaw et al. 1975). Girman et al. (1999) suggest that their use of a different anesthetic, paralyzing the animal and a smaller craniotomy make their higher estimate of orientation selectivity in the rat more reliable. Table 2 shows orientation tuning across several mammalian species.

The fraction of oriented cells across mammals shows two trends. Our interpretation of the literature is that nocturnal and crepuscular species, which have rod-dominated retina's or like the owl monkey only have a single cone-type (Jacobs et al. 1993), have more oriented cells than diurnal species of similar size. It is difficult to answer the question whether diurnal animals trade orientation-selective neurons or direction-selective neurons for color-selective neurons. We do see, however, that cone-opponent neurons are just as likely to be strongly orientation-selective as non-opponent neurons. There is also no significant negative correlation between the orientation index and color sensitivity. Another trend is that the smallest animals, mouse (adult weight 25 g) and hamster (adult weight 90-150 g), have the most unoriented cells and the largest animals, cat and primate have the fewest. An exception to this is
the rat (adult weight 350 g), which is smaller than gray squirrel (adult weight 600 g) and has more oriented cells, but the rat is nocturnal and may have more oriented cells than a similarly sized diurnal animal.

**Simple/complex**

Oriented simple and complex cells (Hubel and Wiesel 1962) have been reported in several mammals. We did not measure subfield segregation, but made a simple/complex classification based on the relative modulation. This classification is correlated to the original classification based on a neuron’s subfield segregation (Schiller et al. 1976c; Movshon et al. 1978a; Skottun et al. 1991; Mata and Ringach 2005, but see Kagan et al. 2002). Simple cells, i.e. oriented cells with segregated ON and OFF subfields (Hubel and Wiesel 1962) showing relatively linear spatial summation, tend to have a high \( F_1/F_0 \) (Kagan et al. 2002). Complex cells are non-linear in their spatial summation and tend to have a low \( F_1/F_0 \). Many complex cells in the macaque, however, have a high relative modulation (Kagan et al. 2002) and a study in the cat showed that many simple cells have a low modulation ratio (Movshon et al. 1978a). We called the three quarters of the cells in our sample which had \( F_1/F_0 < 1 \) ‘complex’ and the remaining quarter ‘simple’. Our data does not allow us to tell whether simple and complex cells are truly separate cell classes or different ends of a continuous population as suggested recently (Chance et al. 1999; Mechler and Ringach 2002; Mata and Ringach 2005). The simple/complex distinction based on \( F_1/F_0 \) ratio certainly correlates with several other response properties. The population of simple-like cells with \( F_1/F_0 > 1 \) responds faster, is more sharply tuned for orientation, has higher direction selectivity, lower spontaneous rate, lower maximum contrast gain, and responds to lower spatial frequencies. The increased modulation as well as selectivity for orientation and direction, and the lower spontaneous rate of simple cells, could be the effect of a higher spike threshold in these cells compared to complex cells (Priebe et al. 2004).

In gray squirrel, simple cells are more orientation-selective than complex cells. This is also true in cat (Murphy and Berman 1979; Gizzi et al. 1990), ferret (Alitto and Usrey 2004), tree shrew (Kaufmann and Somjen 1978), and macaque (Schiller et al. 1976b; Ringach 2002; Gur et al. 2004). An exception is the wallaby marsupial (Ibbotson and Mark 2003) where a larger fraction of the population of complex cells was sharply tuned than the simple cell population. In rodents, the situation is unclear, as relatively few of the oriented cells are complex in mouse (Mangini and Pearlman 1980) and rat (Girman et al. 1999). The lower spontaneous rate of simple cells is a universal finding, reported in mouse (Drager 1975), rat (Parnavelas et al. 1981), cat (Pribram et al. 1981), macaque (Schiller et al. 1976a) and wallaby (Ibbotson and Mark 2003).

The question of whether simple and complex cells prefer different spatial frequencies has been studied extensively in cat. Maffei and Fiorentini (Maffei and Fiorentini 1973) report that complex cells prefer lower spatial frequencies. Other authors do not find any significant difference in preferred spatial frequencies (Ikeda and Wright 1975; Movshon et al. 1978b) or the opposite (Tolhurst and Thompson 1981). Studies in the macaque also find no difference (Foster et al. 1985; Kagan et al. 2002). The owl monkey and bush baby (Galago crassicaudatus) are more like gray squirrel in this respect, in that simple cells are tuned to lower spatial frequencies than complex cells (O'Keefe et al. 1998; DeBruyn et al. 1993).

Complex cells are reported to have larger receptive fields in mouse (Drager 1975), cat (Leventhal and Hirsch 1978), and macaque (Hubel and Wiesel 1968; Schiller et al. 1976a), but this was not apparent in our dataset, or in the hamster (Tiao and Blakemore 1976).
There was no difference in the optimal velocity of simple and complex cells, but simple cells have a slightly higher cut-off velocity on average. In cat, complex cells respond to higher velocities than simple cells (Pettigrew et al. 1968; Movshon 1975). This discrepancy might be due to our indirect measurement of velocity tuning by varying the temporal frequency of a drifting grating of the optimal spatial frequency rather than true species differences.

**Direction selectivity**

Compared to other mammals, few cells show strong direction selectivity in gray squirrel. We found less than a tenth of the cells firing more than three times as much to the preferred direction than to the opposite direction (DI>2/3). When classified in this way, a third of cells in rat (Girman et al. 1999), macaque (Schiller et al. 1976a), owl monkey (O'Keefe et al. 1998), a quarter in mouse (Metin et al. 1988) and bush baby (DeBruyn et al. 1993) and a fifth in the rabbit (Chow et al. 1971) are direction-selective (see Table 2). The difference between gray squirrel and other rodents also exhibits itself in the LGN. In rat some cells are strongly direction-selective (Montero and Brugge 1969), while we found hardly any such cells in the gray squirrel LGN (Van Hooser et al. 2003). There are, however, many more direction-selective units in the optic nerve in the gray squirrel (10-19%) (Cooper and Robson 1966; Blakeslee et al. 1985) than there are in rat (1.0%) (Hughes 1980) or cat (1.1%) (Cleland et al. 1973), but all of these fibers project to the superior colliculus and not to the LGN (Michael 1970). Both the gray squirrel and the tree shrew, which is another animal with relatively little V1 direction selectivity (Kaufmann and Somjen 1978), have a relatively large superior colliculus. On the basis of lesion studies it has been argued that this structure plays a larger role in vision in these animals than it does in primates or carnivores (Diamond 1976). The superior colliculus projects via the pulvinar to extrastriate cortex. The California ground squirrel (Spermophilus beecheyi) has two extrastriate areas (ML and L) that are strongly direction-selective (Paolini and Sereno 1998). These areas, possibly homologous to monkey MT, may exist in gray squirrel and may perform much of the cortical processing of motion information that is done in V1 in mouse and rat.

**Spatial frequency tuning**

The optimal spatial frequency tuning of neurons in gray squirrel V1 (median 0.21 cpd) is only slightly smaller than that in ferret area 17 (Baker et al. 1998) and is within the range expected from other animals with higher or lower visual acuity, see Table 2. In the rat, which has an behavioral visual acuity between 2-3 times lower than gray squirrel, the average optimal spatial frequency is 0.1 cpd (Girman et al. 1999). The average optimal spatial frequencies in areas 17 and 18 of the cat, which has a visual acuity about twice that of a gray squirrel, are 0.9 and 0.2 cpd, respectively (Movshon et al. 1978b). Table 2 shows that spatial bandwidths are surprisingly similar for all mammals. Across a fifty-fold difference in visual acuity, mean neuronal spatial bandwidths range only from 1.5 oct. in the cat and monkey (Movshon et al. 1978b; Foster et al. 1985) to 2.6 oct. in the bush baby (DeBruyn et al. 1993), with the high acuity owl monkey and low acuity rat in the middle of the range (O'Keefe et al. 1998; Girman et al. 1999). The gray squirrel's bandwidth of 2.3 oct. lies on the upper half of the range. Spatial filtering mechanisms are apparently such that both low and high spatial frequency cut-offs scale with the acuity of the animal. Cells in gray squirrel V1 are much more bandpass than cells in LGN, where there is much less filtering at low spatial frequencies (Van Hooser et al. 2003). This suggests that the high-pass filtering mechanism responsible for the bandwidth in V1 is operating at the cortical level (Bauman and Bonds 1991; Bredfeldt and Ringach 2002), while the high spatial frequency cut-off could be due to limits earlier in the visual system. A simple model where two rectangular subfields, each of a size corresponding to the visual resolution, provide excitation and push-pull inhibition gives a
bandwidth of 2 octaves, close to the value observed in many species.

Spatial frequency bandwidth in gray squirrel is positively correlated to the temporal frequency bandwidth and the orientation tuning width. Thus, more selective cells are generally more selective for all stimulus features. Finally, preferred spatial frequency and orientation tuning width are negatively correlated ($r=-0.3$, $p<10^{-5}$). All of the 8 cells preferring spatial frequencies over 0.5 cpd have HWHH below 35° (mean 18°).

**Temporal frequency tuning**

Neurons in gray squirrel V1 are tuned to high temporal frequencies. From the animals in Table 2, only the macaque has a higher preferred temporal frequency and a higher cut-off frequency. This high temporal resolution most likely reflects gray squirrel and macaque's cone-based vision. Cones have much shorter integration times and faster transmission than rods. The long integration and summation times of rods are more suited to low light levels and a nocturnal lifestyle. Even within a species, changing the luminance from the cone-dominated range to the rod-dominated range lowers the temporal resolution (Peterson *et al.* 2001).

It could be hypothesized that animals such as macaques, gray squirrels and tree shrews, need fast visual processing for an arboreal lifestyle. However, cone dominance seems more related to life in the sun than to life in the trees, as in retina of the ground dwelling, diurnal, California ground squirrel cone to rod ratio is 16:1 (Jacobs *et al.* 1976), while in the foveas of the arboreal, but nocturnal, owl monkey and bush baby, rods outnumber cones by fourteen and forty to one, respectively (Wikler and Rakic 1990).

**Color**

We studied color vision using cone-isolating stimuli. These stimuli were based on the assumption that the rod photoreceptor was saturated under our experimental light levels (mean luminance = 45 cd/m²). One physiological experiment using gray squirrels (Blakeslee *et al.* 1988) did find a rod contribution to sensitivity curves of achromatic optic nerve fibers using a much lower 3 cd/m² illumination, but in support of our assumption, a behavioral experiment using fox squirrels (*Sciurus niger*, another tree squirrel) has shown a large drop in wavelength sensitivity and a shift away from the rod spectrum between dark adapted conditions and background luminance of 2.6 cd/m² or 7 cd/m² (Jacobs 1975). Also, physiological studies of wavelength sensitivity in achromatic optic nerve fibers in the California ground squirrel have revealed a similar drop and shift between conditions of dark adaptation and background luminance of 3 cd/m² (Jacobs and Tootell 1981).

Two out of three cells (68%) responded to all mixtures of two phase-shifted S-cone and M-cone isolating gratings. If the rod-input indeed is negligible, the absence of a null-response can only be caused by a difference in the spatial or temporal profiles of the input of the two cone types. These cone-opponent cells will show different response properties when measured with light of different wavelengths, while non-opponent cells will show no differences other than those seen by varying the contrast or luminance level.

The cone-opponent cells are not exclusively coding color as they are not less selective for orientation or spatial frequency than the non-opponent population. More than 80% of the bandpass cone-opponent
cells, which would include any double opponent cell, are oriented. Unoriented double opponent cells, reported in the macaque (Livingstone and Hubel 1984; Michael 1985), may form the remaining fifth of the cells, but are thus certainly not the only neurons involved in color processing. In contrast to the lack of relationship between cone-opponency and orientation selectivity, cone-opponency and direction selectivity appear to be mutually exclusive. The cone-opponent neurons are much more sustained than non-opponent neurons. This suggests a dominant input coming from sustained LGN X-cells, but the higher temporal cut-off frequency and shorter latencies of opponent neurons do not confirm this idea.

The mixture $\eta$ to which a non-opponent cell does not respond allows us to approximate the relative weight of the two cone contributions. The average estimated S-cone weight is about a fifth. In the optic nerve of the gray squirrel only 6% of the fibers receive input from the S-cone (Blakeslee et al. 1988). This small fraction of fibers has a large impact in the cortex, where 4 out of 5 of the cells respond to the S-cone isolating stimulus.

We grouped cells which showed bandpass spatial frequency tuning for both the luminance contrast and the color gratings. These 'bandpass cells' are much more selective for orientation, but not for direction than lowpass cells.

The spatial frequency tuning for equiluminant color gratings is significantly lower than that for black&white gratings. We believe the shift is specifically caused by the equiluminant character of the stimulus and not due to a low luminance contrast. There may have been some luminance contrast in our equiluminant stimulus, but at least in other species the spatial frequency tuning is largely invariant to changes in contrast (Albrecht and Hamilton 1982; Sceniak et al. 2002).

The range of S-M color sensitivity (the maximum response to an equiluminant grating divided by the maximum response to a contrast luminance grating) in the gray squirrel is strikingly different and much closer to unity than the range of L-M color sensitivity of macaque V1. Three-quarters of our cells have color sensitivities between 0.5 and 2, whereas only 30% of cells tested for L-M color sensitivity in the macaque are in this category (Johnson et al. 2001). In gray squirrel only 1 out of 154 cells tested responded more than twice as high to the equiluminant stimulus than to the luminance stimulus. Color sensitivity is not correlated to any other of the discussed cell properties except for a small positive correlation to the spatial frequency bandwidth measured with black&white gratings.

In the macaque, L-M equiluminant stimuli do not shift the spatial frequency tuning to lower frequencies. There is much evidence that, at least at the retinal and geniculate level, the L-M color system is distinct from the S-M color system. Therefore, a more relevant comparison would be with the S-M color sensitivity in the monkey. Unfortunately, these data are not yet available. The relative weight of the S-cone in macaque V1 has been measured and is much smaller than in gray squirrel (mean 0.05 versus 0.22) (Johnson et al. 2004).

Cytochrome oxidase blobs similar to those seen in primate species, which have been implicated in color processing, are not apparent in gray squirrel V1 (Moore 2001). We did not find any evidence of clustering of color processing as non cone-opponent and cone-opponent were mingled on each penetration. We cannot exclude the existence of a sparse mosaic of clusters with more or less cone opponency, nor can we exclude clustering with a spatial scale of less than 40 micron, which was the minimum distance between two cells on a single penetration.
Laminar organization

The clearest signs of laminar organization of information processing can be seen in the layer specificity of the response latency, Fig. 6A and B. Layer 4, receiving the bulk of the input from the LGN (Harting and Huerta 1983), has a homogeneous short latency of about 26 ms after stimulus onset. Subsequently cells in layers 5, 6 and finally layers 2/3 respond. There are a few short latency cells scattered around the bottom of layer 5 and in layer 6. These may be cells receiving direct geniculate input, as the LGN also projects to the dense layer of cells at the top of layer 6 (Robson and Hall 1975). The slower average response in layer 6 is consistent with the anatomical indications that the layer 4 geniculocortical projection is much stronger than the layer 6 projection.

In macaque (Macaca mulatta and fascicularis, Hubel and Wiesel 1968; Gur et al. 2004; Macaca nemestrina, Bullier and Henry 1980), ferret (Chapman and Stryker 1993), and to a lesser extent also in cat (Gilbert 1977; Henry et al. 1979; Jacob et al. 2003), there are reports that the layer receiving most of the thalamic projections is less tuned for orientation than the upper layers. A prevalence of unoriented cells in layer 4 has also been reported in mouse (Mangini and Pearlman 1980; Metin et al. 1988) and tree shrew (Humphrey and Norton 1980; Chisum et al. 2003). This trend is present but not significant in another macaque studies (Macaca fascicularis, Ringach et al. 2002) and in the owl monkey (Aotus trivirgatus, O'Keefe et al. 1998) and is not detectable in the bush baby (DeBruyn et al. 1993). In other studies, not layer 4 but the deeper layers have cells with a broader orientation tuning than the superficial layers (mouse, Drager 1975; rat, Girman et al. 1999; hamster, Tiao and Blakemore 1976; macaque, Macaca fascicularis, Schiller et al. 1976b) (see Table 2). In gray squirrel, the orientation tuning does not vary significantly by layer. If anything, there is a lack of cells with narrow tuning widths in the lower region of layer 3. In gray squirrel, layer 4 does stand out by the relative absence of complex cells, see Fig. 2A and B. Together with layer 6, the two layers receiving dense innervation from the LGN have a higher F1/F0 ratio (when measured with drifting or stationary gratings). The relative abundance of simple cells in the layers receiving thalamic input had also been noted in cats (Hubel and Wiesel 1962; Van Essen and Kelly 1973; Gilbert 1977; Gilbert and Wiesel 1979; Henry et al. 1979; Martin and Whitteridge 1984) and macaques (Hubel and Wiesel 1968; Schiller et al. 1976a; Hawken et al. 1988; Ringach et al. 2002) and. Some studies in the macaque find a higher proportion of simple cells particularly in layers 4B, 4C α and 6, which are layers receiving input from the magnocellular layers of the LGN (Bullier and Henry 1980; Livingstone and Hubel 1984; Kagan et al. 2002). One study also finds a higher proportion of simple cells in layer 4 of rat V1 (Parnavelas et al. 1983). Our results confirm that a higher proportion of simple cells in the thalamic input layers is a general rule. The linearity measure taken with static gratings shows this laminar distribution more clearly than the relative modulation to drifting gratings. In the macaque, the pattern is also less pronounced when the classification is made based on F1/F0 than when made based on subfield segregation (Kagan et al. 2002).

Our data suggest a very specialized role for layer 6, which has virtually no cone opponency and has a near monopoly on direction-selective cells. The same specialization in direction selectivity, though less pronounced, is present in cat (Gilbert 1977), the bush baby (DeBruyn et al. 1993) and the macaque (Orban et al. 1986). In these two primate species, cells around the layer 3/4 border (4B, 4C α) are also more direction-selective (Snodderly and Gur, 1995; but Kagan et al. 2002 also find direction selective cells in upper layers). Thalamic input into this region is dominated by axons from the magnocellular LGN layers (Florence and Casagrande 1987; Bullier and Henry 1980). Layer 6 receives input from both X- and Y-cells in the LGN in the cat (Bullier and Henry 1979; Humphrey et al. 1985). Layer 6 also receives direct thalamic input in the gray squirrel, including input from the Y/W-layers (Harting
and Huerta 1983). This is consistent with the belief that gray squirrel Y-cells are homologous to primate magnocellular cells (Van Hooser et al. 2003), but a smaller projection from LGN X-cell layers to layer 6 also seems to exist (Harting and Huerta 1983).

There are many sustained cells present in the layer 4/5 border region. The latency at this depth is slightly longer than in the rest of layer 4. Both observations suggest that the layer 4/5 border is more strongly driven by the sustained and slower X-cells of LGN layers 1 and 2 or the slow LGN W-cells, than by the faster transient Y-cells from LGN layer 3. Adding to this suggestion, is that at the same cortical depth, cone opponency is higher than it is at all other depths.

Summary

We conclude that gray squirrel V1 has many properties in common with V1 of larger mammals and smaller, non-visual mammals. The optimal spatial frequencies lie between those of rat and cat, as expected from behavioral measurements. Its high temporal frequency tuning sets gray squirrel apart from nocturnal rodents and places it among other diurnal animals. Gray squirrel has fewer oriented cells in V1 than the rat, an animal half its size. The macaque, another animal with cone-dominated vision, also has fewer oriented cells in V1 than smaller nocturnal primates. As in other animals, gray squirrel V1 possesses oriented simple and complex cells and unoriented cells. In Table 2 we have summarized several features of the organization of response characteristics that are common among different mammals or in which gray squirrel differs. Except for a bimodality in the modulation ratio, possibly separating simple from complex cells, there are no distinct cell class boundaries based on response properties. We find a range of different sensitivities to the two gray squirrel cone types. Cone opponency and direction selectivity are mutually exclusive. Cone opponency is absent in LGN-input recipient layer 6. This layer contains almost all direction selective cells. The lack of laminar structure in direction selectivity seen in the mouse and rat is therefore not common to all rodents. The response of cells in thalamic input layers 4 and 6 are more linear than in other layers. This is a consistent feature across species. Unlike other species, gray squirrel shows no reduced orientation selectivity in layer 4 or its infragranular layers.

Acknowledgments

We wish to thank S. Chung for assistance with surgeries and pilot experiments, J. Barry and K. Thavaradhar for histology and Z. Radisic for help in designing color stimuli. We thank J.B. Levitt for help on tuning curve fitting and R.C. Reid for lending us a spectral radiometer.

Grants

This work was supported by the National Institute of Health (NS046881), the National Eye Institute (EY11116) and the Sloan-Schwartz foundations.

Bibliography


Kennedy H, Martin KA, Orban GA, & Whitteridge D. Receptive field properties of neurones in


Orban GA, Kennedy H, & Maes H. Response to movement of neurons in areas 17 and 18 of the cat:


Figure 1: **Reconstructing an electrode track.** Nissl stained coronal section of V1 with DiI coated micro-electrode track and electrolytic lesion. Layers 2/3, 4, 5, 6, and white matter are distinguishable.
Figure 2: Modulation and linearity. A: Running median and quartiles of $F_1/F_0$ for drifting gratings over cortical depth. Moving window corresponds to approx. 250 µm. Dots are individual cells. B: Median and quartiles of $F_1/F_0$ ratios for different layers. Layers 4 and 6 show slightly higher $F_1/F_0$ ratios (p=0.01), i.e. cells are more linear in their spatial summation. C: Distribution of $F_1/F_0$ ratios appears bimodal for oriented cells (dark bars), but not if unoriented cells are included (light bars). D: Spatial $F_1/F_0$ for static gratings is lower in layers 2/3 (p=0.008) and higher in layer 4 and 6, but only the latter is significant by itself (p=0.05). E: Histogram of $F_1/F_0$ static. Dark bars show oriented cells, light bars show unoriented cells.
Figure 3: Orientation and direction selectivity. A: Examples of orientation tuning of an unselective cell (top) with Orientation Selectivity Index (OSI)=0.04 and of a highly orientation-selective cell (bottom) with OSI=0.61 and Half Width at Half Height (HWHH) of 24°. Error bars give SEM, solid lines are Von Mises fits. Dotted horizontal lines show spontaneous rates. B: Cumulative histogram of OSI. Black line: all cells; gray line: simple cells. Dashed line shows median, dotted lines show quartiles. Simple cells have higher OSI. C: Cumulative histogram of HWHH. Simple cells have a smaller HWHH. A HWHH of 90° means that the response did not drop below half its maximum. D: Little dependence of orientation selectivity on cortical depth. E: Cumulative histogram of DI. Directionality is higher in simple cells (p=0.001). F: Median and quartiles of directionality index (DI) in different layers. Direction selectivity is higher in layer 6 (p=0.0001).
Figure 4: Spatial frequency. A: Examples of bandpass (top) and lowpass (bottom) spatial frequency tuning. Curves are fits with a difference of two Gaussians. Dashed straight lines are low cut-off, optimal and high cut-off frequencies. Dotted horizontal line shows the spontaneous rate. B: Cumulative histogram of spatial frequency tuning. Black lines show all cells, gray lines only simple cells. Left-most curves are low cut-offs, middle two are optimal frequencies, and right-most are high cut-off frequencies. C: Histogram of bandwidth $\log_2$(high cut-off freq/low cut-off). White bars: complex cells. Gray bars: simple cells. D: Cells in layer 5 have a tendency to be lowpass (p=0.12).
Figure 5: Temporal frequency. A: Example temporal frequency tuning curve. Error bars show SEM. The curve is fit with a difference of Gaussians. Dashed verticals lines are from left to right, low cut-off, optimal and high cut-off frequency. B: Cumulative histogram of temporal frequency tuning. Black lines include all cells, gray lines only simple cells. Left-most curves are low cut-offs, middle are optimal frequencies, and right-most are high cut-off frequencies. C: Bandwidth log₂(high cut-off freq/low cut-off). White bars: complex cells. Gray bars: simple cells. D: Optimal frequency is higher in layers 2/3 (p=0.004) E: Low cut-off frequency is also higher in layers 2/3 (p=0.0002)
Figure 6: Latency. A: Depth profile of latency shows strong laminar dependence. B: Median and quartiles of latency across layers. Layer 4 latency is shorter and layers 2/3 latency is longer than the average population. C: Cumulative histogram. Simple cells (gray curve) tend to have shorter latencies than complex cells (black curve).
Figure 7: Response to stationary stimuli. A: Examples of peri-stimulus histograms of responses after onset of stationary grating at time 0. Numbers give the transience index (see text). B: Cumulative histogram of transience values. No difference exists between transience of complex and simple cells. C: Transience versus cortical depth. Layer 4/5 border contains very sustained cells.
Figure 8: Spontaneous rate. A: Cumulative histogram shows a range of 0.01 - 20 Hz rates and a lower rate for simple cells (gray line). B: Layers 2/3 have a very low spontaneous rate, while layer 5 has a high rate. C: Depth profile. Cells in supragranular layers have low spontaneous rates.
Figure 9: Contrast tuning. A: Examples of contrast dependence, from very linear (top) to very non-linear (bottom). Solid lines are Naka-Rushton fits. Dashed lines mark the C_{50} value, the contrast at half the peak response. The value in the bottom right corner is the relative maximum gain (maximum slope of graph with normalized response). B: Cumulative histogram of relative maximum gain. Complex cells generally have higher maximum relative gains than simple cells (median 2.8 versus 2.4, p=0.004). C: Cumulative histogram of contrast at half peak response (C_{50}). Complex cells tend to have lower C_{50} values (median 34% versus 41%, p=0.02).
Figure 10: Color. A: Examples of linear cell model responses. Left column: Spatial profiles in the drift direction of M-cone (dashed) and S-cone (solid) input. Middle column: spatial frequency tuning for luminance (black) and equiluminant (gray) gratings. Right column: response for mixtures of phase-shifted S- and M-cone isolating stimuli from S-cone isolating at $\eta = 0$ to M-cone isolating at $\eta = 1$. B: Examples of measured responses. Left column: Spatial frequency tuning for luminance (black) and equiluminant (gray) gratings. Right column: response for mixtures of cone isolating stimuli. C: Histogram of the cone balance $\eta$ giving the least response. Few cells respond least to M-cone isolating stimuli. Colors correspond to legend of E. D: The optimal spatial frequency is most often lower for equiluminant gratings than for luminance gratings. E: Total and laminar percentages of color groups. Cone opponency is almost absent in layer 6, very distinct from the other layers ($p=0.0001$). F: Percentage per class of cells with HWHH<90°. Cells with bandpass spatial frequency tuning are nearly all orientation-selective, while only around half of the cells in other classes are oriented ($p<0.0001$). There is no difference between cone-opponent and non-opponent cells ($p=0.27$). G: Percentage per class of cells with DI>0.5. Direction selectivity is nearly absent in cone-opponent cells. There is no difference between bandpass cells and lowpass cells ($p=0.4$).
<table>
<thead>
<tr>
<th></th>
<th>Modulation</th>
<th>Layer</th>
<th>R.F. location</th>
<th>Color</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sample</td>
<td>Complex</td>
<td>2/3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Orientation and direction selectivity (OSI)</td>
<td>0.50 0.25 ***</td>
<td>0.33 0.25</td>
<td>0.18 0.38</td>
<td>0.29 0.34</td>
<td>0.26 0.31</td>
</tr>
<tr>
<td>Half width at half height (HWHH)</td>
<td>26 38 *</td>
<td>35</td>
<td>28 30 34</td>
<td>33 28</td>
<td>33 32</td>
</tr>
<tr>
<td>Directionality Index (DI)</td>
<td>0.36 0.21 **</td>
<td>0.21 0.22</td>
<td>0.25 0.46 ***</td>
<td>0.23 0.24</td>
<td>0.38 0.16 ***</td>
</tr>
<tr>
<td>Spatial frequency</td>
<td>0.19 0.22 **</td>
<td>0.23 0.22</td>
<td>0.26 0.20</td>
<td>0.23 0.17 ***</td>
<td>0.20 0.23</td>
</tr>
<tr>
<td>High cut-off</td>
<td>0.36 0.44 **</td>
<td>0.40 0.43</td>
<td>0.52 * 0.41</td>
<td>0.43 0.32 ***</td>
<td>0.39 0.43</td>
</tr>
<tr>
<td>Low cut-off</td>
<td>0.09 0.10</td>
<td>0.10 0.10</td>
<td>0.10 0.09</td>
<td>0.10 0.08 *</td>
<td>0.09 0.10</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>2.3 2.3</td>
<td>1.9 *** 2.2</td>
<td>2.6 * 2.4</td>
<td>2.3 2.1</td>
<td>2.4 2.4</td>
</tr>
<tr>
<td>% Lowpass</td>
<td>20 18</td>
<td>12 16</td>
<td>30 15</td>
<td>16 27</td>
<td>24 18</td>
</tr>
<tr>
<td>Temporal frequency and velocity</td>
<td>5.3 6.2</td>
<td>6.3 ** 4.4</td>
<td>4.8 5.3</td>
<td>6.2 5.3</td>
<td>5.3 6.2</td>
</tr>
<tr>
<td>Optimal</td>
<td>18 17</td>
<td>17 18</td>
<td>15 15</td>
<td>18 15</td>
<td>15 21 *</td>
</tr>
<tr>
<td>High cut-off</td>
<td>1.8 1.8</td>
<td>2.4 *** 1.5</td>
<td>1.5 1.8</td>
<td>1.9 1.7</td>
<td>1.9 1.5</td>
</tr>
<tr>
<td>Low cut-off</td>
<td>5 8</td>
<td>0 17</td>
<td>19 0</td>
<td>8 8</td>
<td>8 10</td>
</tr>
<tr>
<td>Optimal velocity</td>
<td>28 25</td>
<td>31 ** 19 *</td>
<td>22 23</td>
<td>23 43 ***</td>
<td>31 25</td>
</tr>
<tr>
<td>High cut-off velocity</td>
<td>110 77 *</td>
<td>83 80</td>
<td>81 80</td>
<td>72 120 **</td>
<td>98 87</td>
</tr>
<tr>
<td>Contrast</td>
<td>0.25 0.59 ***</td>
<td>0.39 0.47</td>
<td>0.61 0.40</td>
<td>0.52 0.48</td>
<td>0.23 0.56 ***</td>
</tr>
<tr>
<td>Naka-Rushton gain</td>
<td>2.8 3.2 *</td>
<td>2.8 3.0</td>
<td>2.7 3.3</td>
<td>3.3 2.6 *</td>
<td>3.0 2.9</td>
</tr>
<tr>
<td>Naka-Rushton exponent</td>
<td>41 34 *</td>
<td>39 43</td>
<td>33 * 41</td>
<td>35 34</td>
<td>44 31 ***</td>
</tr>
<tr>
<td>Relative max. gain</td>
<td>2.4 2.8 ***</td>
<td>2.4 2.9</td>
<td>2.6 2.7</td>
<td>2.8 2.6</td>
<td>2.4 2.8 *</td>
</tr>
<tr>
<td>Response</td>
<td>0.61 0.81</td>
<td>0.52</td>
<td>0.66</td>
<td>0.56 0.73</td>
<td>0.58 0.65</td>
</tr>
<tr>
<td>Fi/F0 (drifting gratings)</td>
<td>0.3 1.2 ***</td>
<td>0.32 * 0.68</td>
<td>0.37 1.2</td>
<td>0.33 0.44</td>
<td>0.37 0.34</td>
</tr>
<tr>
<td>Fi/F0 (static gratings)</td>
<td>25 37 ***</td>
<td>48 *** 26 **</td>
<td>31 37</td>
<td>33 39</td>
<td>49 32 **</td>
</tr>
<tr>
<td>Latency</td>
<td>0.22 0.57 **</td>
<td>0.19 *** 0.35</td>
<td>1.70 *** 0.74</td>
<td>0.47 0.40</td>
<td>0.59 0.57</td>
</tr>
<tr>
<td>Spontaneous rate</td>
<td>14 21 **</td>
<td>16 20</td>
<td>20 21</td>
<td>20 17</td>
<td>13 20 ***</td>
</tr>
<tr>
<td>Maximum rate</td>
<td>0.91 0.90</td>
<td>0.96 * 0.85</td>
<td>0.74 * 0.95</td>
<td>0.90 0.90</td>
<td>0.99 0.81 ***</td>
</tr>
<tr>
<td>Transience Index</td>
<td>0.11 0.17</td>
<td>0.15 0.18</td>
<td>0.09 0.13</td>
<td>0.17 0.08 ***</td>
<td>0.11 0.17</td>
</tr>
<tr>
<td>Color and equiluminant grating</td>
<td>0.30 0.34</td>
<td>0.33 0.39</td>
<td>0.35 0.32</td>
<td>0.35 0.27 **</td>
<td>0.21 0.38 **</td>
</tr>
<tr>
<td>% Lowpass</td>
<td>22 32</td>
<td>15 30</td>
<td>50 35</td>
<td>25 42</td>
<td>44 21 *</td>
</tr>
<tr>
<td>Color sensitivity</td>
<td>0.59 0.75 *</td>
<td>0.76 0.51 ***</td>
<td>0.79 0.72</td>
<td>0.71 0.70</td>
<td>0.69 0.76</td>
</tr>
<tr>
<td>Core balance v vs v</td>
<td>0.25 0.13</td>
<td>0.13 0.25</td>
<td>0.25 0.13</td>
<td>0.13 0.25</td>
<td>0.13 0.25</td>
</tr>
<tr>
<td>% Core-opponent</td>
<td>47 60</td>
<td>52 71 *</td>
<td>43 7 **</td>
<td>54 67</td>
<td>57 67</td>
</tr>
</tbody>
</table>

Table 1. Summary of results. Given are medians. Significances are indicated by *: p<0.05, **: p<0.01 and ***: p<0.001.

<table>
<thead>
<tr>
<th>Orientation and direction selectivity</th>
<th>45-54%</th>
<th>84-93%</th>
<th>75%</th>
<th>layer 4: 84%</th>
<th>95-99%</th>
<th>94%</th>
<th>90%</th>
<th>69-95%</th>
<th>size &amp; rhythm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median HWHH for oriented cells</td>
<td>&lt; 30°</td>
<td>25°</td>
<td>21°</td>
<td>20°</td>
<td>24°</td>
<td>27°</td>
<td>&gt; 24°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layers with lower orientation selectivity</td>
<td>4</td>
<td>5/6</td>
<td>5 (n.s.)</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4 (n.s.)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Layers with higher orientation selectivity</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3 (n.s.)</td>
<td>2/3</td>
<td>2/3</td>
<td>3C</td>
<td>2/3 (n.s.)</td>
<td>2/3, 4B, 5</td>
<td></td>
</tr>
<tr>
<td>Direction selective cells (DE&gt;0.7)</td>
<td>25%</td>
<td>&gt; 29%</td>
<td>10%</td>
<td>33%</td>
<td>24%</td>
<td>33%</td>
<td>32%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layers with higher directional selectivity</td>
<td>none</td>
<td>none</td>
<td>6</td>
<td>6</td>
<td>3C, 4a, 6</td>
<td>none</td>
<td>4B, 4, C, 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simple Complexes:
- Simple cells have narrower orientation tuning
  - yes
- Simple cells have lower spontaneous rates
  - yes
- Simple cells have smaller receptive fields
  - yes
- Simple cells are more direction selective
  - yes
- Simple cells are tuned to lower spatial frequencies
  - yes
- Simple cells have higher CS0 or lower contrast gains
  - yes
- Layers with higher proportion of simple cells
  - 4 | 4.6 |

Spatial frequency tuning:
- Optimal spatial frequency
  - 0.1 0.21 0.25 0.9 0.65 0.7 1.5-4.2 cpd | size
- Spatial frequency bandwidth
  - 2 2 1.7 1.9 2.5 2.1 common |
- Layers with higher optimal spatial frequencies
  - 2 | 5 (n.s.) |
- Layers with smaller SF bandwidth
  - 2/3 | none |
- Layers with broader SF bandwidth
  - 5 | none |

Temporal frequency tuning:
- Mean optimal temporal frequency
  - 4 Hz | 6.6 Hz |
- Mean high cut-off temporal frequency
  - 21 Hz | > 20 Hz |
- Layers with lower optimal TF
  - 2/3 | 4 (n.s.) |
- Layers with higher TF resolution
  - 4 | 4 |