Presenilin 1 Deficiency Alters the Activity of Voltage-Gated Ca\(^{2+}\) Channels in Cultured Cortical Neurons

David G. Cook\(^1,2\), Xiaofan Li\(^3\), Sheree D. Cherry\(^3\) and Angela R. Cantrell\(^3\)

1 Veterans Affairs Puget Sound Health Care System, Geriatric Research Education and Clinical Center (GRECC), Seattle, WA 98108
2 Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle WA 98195
3 Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis TN 38163.

Running Head: PSI Deficiency Alters HVA Ca\(^{2+}\) Channel Activity

Address correspondence to:

Angela R. Cantrell, Ph.D.
Department of Anatomy & Neurobiology
University of Tennessee Health Science Center
855 Monroe Avenue, Link 515
Memphis, TN 38163
901-448-1534 (phone)
901-448-7193 (fax)
acantrell@utmem.edu

Copyright © 2005 by the American Physiological Society.
ABSTRACT

Cook, D.G., Li, X., Cherry, S. D., and Cantrell, A. R. Presenilins 1 and 2 (PS1 and PS2, respectively) play a critical role in mediating \(\gamma \)-secretase cleavage of the Amyloid Precursor Protein (APP). Numerous mutations in the presenilins are known to cause early-onset familial Alzheimer’s disease (FAD). In addition, it is well established that PS1-deficiency leads to altered intracellular Ca\(^{2+} \) homeostasis involving endoplasmic reticulum Ca\(^{2+} \) stores. However, there has been little evidence suggesting Ca\(^{2+} \) signals from extracellular sources are influenced by PS1. Here we report that the Ca\(^{2+} \) currents carried by voltage-dependent Ca\(^{2+} \) channels are increased in PS1-deficient cortical neurons. This increase is mediated by a significant increase in the contributions of L- and P-type Ca\(^{2+} \) channels to the total voltage-mediated Ca\(^{2+} \) conductance in PS1 (-/-) neurons. In addition, chelating intracellular Ca\(^{2+} \) with BAPTA produced an increase in Ca\(^{2+} \) current amplitude that was comparable to the increase caused by PS1-deficiency. In contrast to this, BAPTA had no effect on voltage-dependent Ca\(^{2+} \) conductances in PS1-deficient neurons. These data suggest that PS1-deficiency may influence voltage-gated Ca\(^{2+} \) channel function by means that involve intracellular Ca\(^{2+} \) signaling. These findings reveal that PS1 functions at multiple levels to regulate and stabilize intracellular Ca\(^{2+} \) levels that ultimately control neuronal firing behavior and influence synaptic transmission.
INTRODUCTION

Presenilin 1 and 2 (PS1 and PS2, respectively) are ubiquitously expressed polytopic membrane-spanning proteins that are best appreciated for their role in regulating cleavage of the Amyloid Precursor Protein (APP) to produce the Alzheimer’s disease related peptide, A-beta (Aβ, Doan et al. 1996; Li and Greenwald 1996; Haass 1997). Early onset Familial Alzheimer’s Disease (FAD) is associated with more than one hundred presenilin mutations, the vast majority of which occur in PS1 (Rogaev et al. 1995; Sherrington et al. 1995; Levy-Lahad et al. 1995; Selkoe 1997). PS1 also regulates cleavage of Notch (Levitan et al. 1996; Baumeister et al. 1997; Struhl and Greenwald 1999), Delta1 and Jagged2 (Ikeuchi and Sisodia 2003), ErbB-4 (Ni et al. 2001), E-cadherin (Marambaud et al. 2002), LDL receptor-related protein (May et al. 2002), and Na⁺ channel β subunits (Kim et al. 2005; Wong et al., 2005); and regulates protein trafficking (Naruse et al. 1998; Leem et al. 2002; Cai et al. 2002), apoptosis (Mattson et al. 1998; Wolozin et al. 1998), and experience-dependent neurogenesis (Feng et al. 2001). In addition, several laboratories have reported that PS1 plays an important role in regulating intracellular Ca²⁺ homeostasis involving endoplasmic reticulum Ca²⁺ stores (Ito et al. 1994; Begley et al. 1999; Guo et al. 1999a; Leissring et al. 1999a, 1999b; Yoo et al. 2000; Herms et al. 2003; Stutzmann et al. 2004). PS1-deficiency (-/-) significantly impairs intracellular Ca²⁺ homeostasis (Yoo et al. 2000; Leissring et al. 2002; Yang and Cook 2004). This defect is attributable to reduced levels of Ca²⁺ release from inositol 1, 4,5-trisphosphate (IP₃)-sensitive intracellular stores (Leissring et al. 1999b, 2002, 2000; LaFerla 2002).

A great deal of effort has been expended to further characterize and understand the role of PS1 in regulating intracellular Ca²⁺ homeostasis and much has been learned. However, there is currently little evidence to suggest that PS1 also influences Ca²⁺ homeostasis via plasma
membrane Ca2+ channels. Therefore, the goal of the present work was to examine whether the alterations in Ca2+ homeostasis in PS-1 deficient mice include any changes in the voltage-dependent Ca2+ current carried by plasma membrane channels. Using primary cultured cortical neurons derived from PS1 wild-type (+/+) and PS1 knock-out (-/-) mice (Shen et al. 1997) we found that PS1-deficiency increased the total voltage-mediated Ca2+ conductance via L- and P-type Ca2+ channels. The effect of PS1-deficiency on voltage-gated Ca2+ currents was mimicked in wild-type neurons following experimental manipulations designed to reduce intracellular Ca2+ signals. Peak Ca2+ current amplitude was increased in wild-type neurons dialyzed with 10 mM BAPTA or treated chronically with caffeine to levels similar to those observed in PS1-deficient neurons. There was no discernable affect of these experimental manipulations in PS1-deficient neurons whose intracellular Ca2+ signals are already reduced. These data suggest an interaction between voltage-gated Ca2+ channel function and the depletion of intracellular Ca2+ stores caused by PS1 loss-of-function. These are the first data showing that PS1 influences Ca2+ homeostasis via voltage-gated Ca2+ channels. These results must be taken into consideration when attempting to explain the role of PS1 in regulating and stabilizing intracellular Ca2+ levels and ultimately in regulating synaptic transmission.
METHODS

Generation of PS1-Deficient Mice

Embryonic mice derived from PS1 doubly heterozygous (+/-) crosses were genotyped using three PCR primers (primer 1: 5’-ACCTCAGCTGTTTGTCCCGG-3’, primer 2: 5’-GCACGAGACTAGTGAGACGTG-3’ and primer 3: 5’-CTGGAAGTAG-GACAAAGGTG-3’). Primers 1 and 3 generated a 345 base pair (bp) PCR product diagnostic of a wild type genotype, whereas primers 1 and 2 yielded a 300 bp band indicating a knock-out genotype (Shen et al 1997). Experiments were performed using PS1 (-/-) mice backcrossed into a C57BL6 genetic background more than ten generations.

Primary Neuronal Culture

These experiments were performed using aged matched cortical neurons from embryonic mice maintained in primary culture. All animal protocols were reviewed and approved by the institutional IACUC committees at the University of Tennessee Health Science Center and the University of Washington. Cortical tissue was obtained from PS1-deficient (-/-), PS1-wild type (+/+) and PS1-heterozygous (+/-) mouse embryos on days E15-E21 and stored in Hibernation media (Gibco BRL; Rockville, MD) at 4°C for less than 24 hours prior to use. Prior to plating, the tissue was transferred to a 15 ml conical tube containing 1 ml Ca^{2+}-, Mg^{2+}-free Hank's Basic Salt Solution (HBSS; pH= 7.37; Gibco BRL; Rockville, MD) supplemented with 10 mM HEPES (Sigma; St. Louis, MO) and 1 mM pyruvate (Sigma; St. Louis, MO). The tissue was then dissociated using a fire polished Pasteur pipette. Following trituration, 2 ml Ca^{2+}-, Mg^{2+}-containing HBSS was added to the tube and the tissue was allowed to settle for 3 min. The supernatant was then transferred to two 1.5 ml microcentrifuge tubes and spun at 8800 RPM to
pellet the cortical neurons. The cells were then resuspended in 3 ml Neurobasal Media (Gibco BRL; Rockville, MD) supplemented with B-27 (1:50; Gibco BRL; Rockville, MD), glutamine (0.5 mM; Sigma; St. Louis, MO), glutamate (25 µM; Sigma; St. Louis, MO) and PenStrep (100 U/ml; Sigma; St. Louis, MO) and plated onto poly-D-lysine (Sigma; St. Louis, MO) treated 35 mm plastic tissue culture dishes at a density of 100-200K cells per dish. Plates were incubated at 37 °C, 5% CO₂ until recording. The cultures were fed every four days with Neurobasal Media supplemented with B-27 (1:50), glutamine (0.5 mM) and PenStrep (100 U/ml). Neurons were studied after being maintained in culture for 10-12 days to allow time for the normal developmental up-regulation of voltage-gated Ca²⁺ channels (Lorenzon and Foehring 1995; Foehring and Lorenzon 1999).

Whole-cell (WC) recordings

Standard whole-cell voltage clamp recording techniques were employed to record whole-cell Ca²⁺ current from visually identified cortical neurons with pyramidal morphology and relatively short processes (Surmeier et al. 1992). The external recording solution consisted of in mM: 20 NaCl, 10 HEPES, 4 MgCl₂, 50 CsCl, 10 BaCl₂, 80 glucose, 0.001 tetrodotoxin (TTX) (pH-7.3, 300-310 mOsm/L; all components obtained from Sigma; St. Louis, MO). The internal recording solution consisted of in mM: 189 N-methyl D-glucamine, 40 HEPES, 1 NaCl, 0.1 BAPTA, 25 phosphocreatine, 2-4 Na₂ATP, 0.2 Na₃GTP, 0.1 leupeptin (pH-7.3, 270-280 mOsm/L; all components obtained from Sigma; St. Louis, MO except BAPTA obtained from Calbiochem; San Diego, CA). 10 mM [1,2-bis(o-Aminophenoxy)ethane-N,N,N’,N’-tetraacetic Acid, 4Na (BAPTA, Calbiochem; San Diego, CA) was added to the internal solution where indicated. This solution was allowed to dialyze into the neuron for at least 5 minutes prior to beginning the experiment. The inclusion of TTX (Calbiochem; San Diego, CA) to block Na⁺
channels and Cs+ to block K+ channels insured that the voltage-gated Ca^{2+} current was recorded in isolation. Since Cs+ blocks many but not all K+ channels, we assessed the sensitivity of the remaining current to block by Cd^{2+}. The remaining current in these cells was completely blocked by 200 µM Cd^{2+}, indicating that the current under study was mediated by voltage-gated Ca^{2+} channels. Electrodes were pulled from micropipette glass and fire-polished prior to use. Electrode resistances were normally 3-6MΩ and final series resistance values averaged 6-8MΩ. Series resistance compensation of (80%) was routinely employed. Recordings were obtained using an Axon Instruments 200B patch clamp. Voltage pulses were delivered and currents were recorded using a personal computer running pClamp software to control AD/DA interface. Drugs were applied using a motor driven “sewer pipe” system that allowed rapid solution changes. The perfusion array was located a few hundred microns away from the cell under study. Concentrated stocks of caffeine (Sigma; St. Louis, MO), ω-conotoxin GVIA (Alomone; Jerusalem, Israel), ω-agatoxin IVA (Alomone; Jerusalem, Israel), ω-conotoxin MVIIC (Alomone; Jerusalem, Israel) and TTX were made in water, aliquoted and frozen until use. When using ω-agatoxin IVA, cytochrome C (Calbiochem; San Diego, CA) was added to all solutions (0.01%) to prevent nonspecific binding to plastics. Concentrated stocks of nifedipine (Sigma RBI; St. Louis, MO) were made in 100% ethanol, aliquoted and frozen prior to use. Ethanol and cytochrome C vehicle controls were performed where necessary.

Data Analysis

Data were collected using standard voltage step or voltage ramp protocols. Whole-cell currents were elicited by a series of 300 ms depolarizing test pulses in the range of –70 to 50 mV from a holding potential of –110. Conductance (g) was calculated from peak current where \(g(V) = \frac{I(V - V_{rev})}{V} \), where I was the current, V was the test pulse voltage, and \(V_{rev} \) was the measured
reversal potential. Conductance-voltage curves were fit with a Boltzmann function of the form:

\[g(V) = \frac{g_{\text{max}}}{1 + \exp[(V - V_{\text{.5}})/k]} \]

where \(V_{\text{.5}} \) was the half activation voltage, \(k \) was the slope factor and \(g_{\text{max}} \) was the maximum conductance. Least-squares curve fitting and statistical analysis were done using Sigma Plot (SPSS, Inc., Chicago, IL) and Origin (Microcal, Northampton, MA).

Statistics are presented as means + SEM. Statistical significance was established by student’s \(t \) test or one-way ANOVA followed by post-hoc Sheffe' analysis with \(p \) values as reported.
RESULTS

We examined the physiological properties of the whole-cell high-voltage activated (HVA) Ca$^{2+}$ current in PS1-wild type (+/+), PS1-heterozygous (+/-), and PS1-deficient (-/-) cortical neurons at DIV 10-12. Whole-cell current was elicited by a series of depolarizing test pulses in the range of –70 to +50 mV from a holding potential of –110 mV (Figures 1A and 1B). In most cells, the current was exclusively of the HVA type. Only infrequently did we see evidence of low-voltage activated (LVA) currents. Under our normal recording conditions, in the presence of TTX to block voltage-gated Na$^+$ current and Cs$^+$ to block voltage-gated K$^+$ current, the remaining current was completely blocked by 200 μM Cd$^{2+}$ (data not shown), indicating that the current under study was mediated by voltage-gated Ca$^{2+}$ channels. We found that the peak HVA Ca$^{2+}$ current amplitude was significantly different across the three groups (one-way ANOVA, p=.00006). Post-hoc comparison using Sheffe’ analysis indicated that peak HVA Ca$^{2+}$ current amplitude was significantly increased in the PS1-deficient neurons (Figures 1A-D). Peak current amplitude for PS1 (+/+) cortical neurons was 268.7 ± 16.3 pA (n=71) compared to 438.7 ± 31.1 pA (n=94; $p<0.005$, Scheffe’ test) for PS1 (-/-) cortical neurons. The PS1 (+/-) neurons had an intermediate peak current amplitude (405.3 ± 46.4 pA; n=28) suggesting a gene dosage effect of PS1.

One possible explanation for this observation is that the increase in peak current amplitude was due to increased cell size in the PS1 (-/-) neurons. To rule out this possibility, we assessed cell size utilizing membrane capacitance measures. Membrane capacitance is defined as the amount of charge across the membrane bilayer and is therefore a good determinant of membrane area. A larger membrane surface area results in a larger membrane capacitance value. If PS1 (-/-) neurons were larger, then the membrane capacitance values would be expected to be
larger for this population of neurons. However, we found no significant difference in the membrane capacitance values among the three populations (Figure 1E; 10.1 ± 0.5 pF (n=71) for PS1 (+/+) neurons vs. 9.9 ± 0.4 pF (n=94) for PS1 (-/-) neurons; p=N.S.; one-way ANOVA). PS1 (+/-) neurons had a similar membrane capacitance value of 11.3 ± 0.7 pF (n=28). To further insure that our findings were not influenced by cell size variations, we normalized our peak current data by cell size using individual cell capacitance measures to determine peak current density (pA/pF). As shown in Figure 1F, peak current density was significantly different across the three groups (one-way ANOVA, p=.00001). Peak current density was significantly larger in the PS1 (-/-) neurons (45.7 ± 2.7 pA/pF; n=94) than in PS1 (+/+) control neurons (29.6 ± 2.0 pA/pF; n=71; p<0.005, Scheffe' test). After correction for cell size variation, the PS1 (+/-) neurons had an intermediate peak current density (36.3 ± 4.8 pA/pF; n=28) again suggesting a gene dosage effect of PS1.

The voltage-dependent properties of the whole-cell current appeared unaltered in the PS1 (-/-) neurons. We found no significant difference in the voltage-dependence of activation among the three populations. The half-maximal activation voltage was –25.0 ± 0.6 mV (n=71) for PS1 (+/+) neurons, -26.5 ± 0.5 mV (n=94) for PS1 (-/-) neurons and –25.7 ± 1.1 mV (n=28) for PS1 (+/-) neurons (one-way ANOVA, p=N.S.). Slope factors were also similar among the three groups (5.5 ± 0.2 mV for PS1 (+/+) neurons, 5.4 ± 0.2 mV for PS1 (-/-) neurons and 6.1 ± 0.4 mV for PS1 (+/-) neurons, one-way ANOVA, p=N.S.).

We next attempted to determine whether the current density of particular classes of HVA Ca\(^{2+}\) channels is increased in the PS1 (-/-) neurons. Pharmacological studies have identified 5 types of HVA channels in central neurons. These include N-, L-, P-, Q- and R-type channels (Tsien et al. 1991), all of which appear to represent distinct gene families and are expressed to
various degrees in cortical neurons in this age range (Snutch et al. 1990; 1991; Snutch and Reiner 1992; Zhang et al. 1993; Randall and Tsien 1995). Class C and D genes encode L-type channel α1 subunits with high affinity for dihydropyridine Ca$^{2+}$ channel antagonists. The class B gene encodes N-type channels with high affinity for ω-conotoxin GVIA. The class A gene encodes P- and Q-type channels. P-type channels are sensitive to low concentrations of ω-agatoxin IVA while Q-type currents can be isolated based on their sensitivity to ω-conotoxin MVIIC once N- and P-type currents have been blocked. Class E channels have features of an R-type channel that is resistant to block by known Ca$^{2+}$ channel blockers except Cd$^{2+}$. The contributions of the various HVA Ca$^{2+}$ channel subtypes (N, L, P, Q and R) can therefore be determined by toxin sensitivity and current subtraction. R-type channels are resistant to all known Ca$^{2+}$ channel blockers, therefore, the contribution of R-type currents was defined as any current remaining in the presence of blockers for all the other channel subtypes.

One or more of these channel blockers were applied sequentially to each cell in the following order: Nifedipine (5 μM), ω-Conotoxin GVIA (1 μM), ω-Agatoxin IVA (100 nM) and ω-Conotoxin MVIIC (2 μM). We were able to apply all four blockers in some but not every cell so the n-values vary for each blocker. L-type current was defined as the component of the whole-cell current that was sensitive to block by 5μM nifedipine. N-type current was defined as the component of the remaining whole-cell current sensitive to block by 1 μM ω-Conotoxin GVIA. P-type current was defined as the component of the remaining whole-cell current sensitive to block by 100 nM ω-Agatoxin IVA. Q-type current was defined as the component of the remaining whole-cell current sensitive to block by 2 μM ω-Conotoxin MVIIC. Since N- and P-type currents were already blocked, the effects of ω-Conotoxin MVIIC on those current types did not confound our data. MVIIC-sensitive currents were only assessed in cells where ω-Conotoxin
GVIA and ω-Agatoxin IVA were already applied. R-type current was defined as the component of the current remaining in the presence of all four blockers. Each blocker was applied and the peak current amplitude was allowed to stabilize for 2-4 minutes prior to data acquisition. Peak current was monitored periodically during drug application by a ramp voltage protocol from –110 mV to +50 mV @ 0.5 mV/ms. Following stabilization of the peak current amplitude in the drug solution, data acquisition began. The next blocker was then added and the current was allowed to stabilize again prior to data acquisition. In control cells, current rundown was typically less than 10% and followed a linear progression during an experiment of similar duration using identical voltage protocols.

We first tested whether the increase in total current involved a specific increase in L-type current by examining the size of the nifedipine-sensitive current. If the percentage of the whole-cell current carried by L-type Ca$^{2+}$ channels is increased in the PS1-deficient neurons, the percentage of the current blocked by the dihydropyridine, nifedipine (5 μM) should be increased in these neurons as well. As shown in Figure 2A-D, our pharmacological analysis supported this hypothesis and demonstrated that PS1 (-/-) neurons were more sensitive to block by 5 μM nifedipine, suggesting a specific increase in L-type Ca$^{2+}$ current amplitude. For PS1 (+/+) neurons, the percentage of the whole-cell current blocked by nifedipine was 33.8 ± 2.5% (n=31) compared to 44.4 ± 2.4% (n=37; p=0.003, Student’s t test) for PS1 (-/-) neurons (Figure 2C). A similar result was obtained when the total current blocked by nifedipine was analyzed. For PS1 (+/+) neuron the total current blocked by nifedipine was 101.8 ± 9.2 pA (n=31) compared to 165.8 ± 15.1 pA for PS1 (-/-) neurons (n=37; p=0.001, Student’s t test).

To address the possibility that HVA Ca$^{2+}$ channel subtypes in addition to L-type contribute to the phenotype of increased whole-cell HVA Ca$^{2+}$ current in PS1-deficient neurons,
we conducted pharmacological experiments designed to isolate P-, N-, Q- and R-type channels as described above. Using the P-type specific Ca\(^{2+}\) channel blocker, \(\omega\)-Agatoxin IVA (100 nM) we found that the percentage of the whole-cell current carried by P-type Ca\(^{2+}\) channels is increased in the PS1-deficient neurons as well. As shown in Figures 2E and F, the component of the whole-cell current blocked by \(\omega\)-Agatoxin IVA (100 nM) was greater in PS1 (-/-) neurons compared to wild-type neurons (6.1 ± 1.3 %; n=14 vs. 12.9 ± 2.6%; n=9; \(p=0.02\), Student’s \(t\) test). A similar trend was obtained when the total current blocked by \(\omega\)-Agatoxin IVA was analyzed. For PS1 (+/+) neuron the total current blocked by \(\omega\)-Agatoxin IVA was 17.8 ± 4.3 pA (n=14) compared to 31.1 ± 5.3 pA for PS1 (-/-) neurons (n=9; \(p=0.07\), Student’s \(t\) test).

Using the additional specific Ca\(^{2+}\) channel blockers, \(\omega\)-Conotoxin GVIA (1 \(\mu\)M; N-type) and \(\omega\)-Conotoxin MVIIC (2 \(\mu\)M; Q-type), we found no significant changes in the amplitudes of N- or Q-type channels as summarized in Table 1. The contribution of R-type or resistant channels was also unchanged.

Since PS1-deficiency (-/-) significantly impairs intracellular Ca\(^{2+}\) homeostasis (Yoo et al. 2000; Leissring et al. 2002; Yang and Cook 2004), we were interested in the relationship between decreased intracellular Ca\(^{2+}\) stores and the observed alterations in Ca\(^{2+}\) current amplitude. Therefore, we repeated these experiments under several conditions in which intracellular Ca\(^{2+}\) levels could be experimentally manipulated. In the first set of experiments, we repeated the original experiment described in Figure 1 in the presence of 10 mM intracellular BAPTA. This concentration of BAPTA is sufficient to buffer any intracellular Ca\(^{2+}\) signal. If the observed increase in Ca\(^{2+}\) current amplitude is related to PS1-dependent impairment of intracellular Ca\(^{2+}\) signaling, then we predicted that WT PS1 (+/+) neurons recorded in the presence of 10 mM BAPTA would have a whole-cell Ca\(^{2+}\) current phenotype that was similar to
untreated PS1 (-/-) neurons. We further predicted there would be no effect of this experimental manipulation on the PS1-deficient neurons since the intracellular Ca\(^{2+}\) level was already reduced in these neurons. As shown in Figure 3, this was indeed the case. WT PS1 (+/+) neurons dialyzed with 10 mM BAPTA had peak Ca\(^{2+}\) current amplitude that is significantly larger relative to untreated WT PS1 (+/+) neurons (472.7 ± 45.8 pA; n=22 vs. 270.7 ± 16.5 pA; n=71; p<0.005, Scheffe' test; Figure 3A). Chelation of intracellular Ca\(^{2+}\) with BAPTA produced an increase in Ca\(^{2+}\) current amplitude that was comparable to the increase caused by PS1-deficiency (Figure 3A). By contrast, there was no effect of 10 mM BAPTA on peak current amplitude in the PS1 (-/-) population (Figure 3A, p=N.S., Scheffe' test). Average peak current density in the BAPTA treated WT PS1 (+/+) neurons was also significantly larger relative to untreated WT PS1 (+/+) neurons (52.4 ± 4.4 pA/pF; n=22 vs. 29.6 ± 2.0 pA/pF; n=71; p<0.005, Scheffe' test; Figure 3C). There was no effect of 10 mM BAPTA on peak current density in the PS1 (-/-) population (Figure 3C, p=N.S., Scheffe' test).

The use of caffeine offers another well-established experimental manipulation to alter intracellular Ca\(^{2+}\) homeostasis and we tested whether the effects of caffeine were different in the PS-1 deficient mice. To test this idea, we chronically exposed WT PS1 (+/+) neurons to 500 µM caffeine for 10-12 hours prior to the electrophysiology experiment. Caffeine exposure was maintained during the electrophysiology experiment by the inclusion of 500 µM caffeine in the background solution and the external recording solution. This treatment should result in the chronic depletion of Ca\(^{2+}\) from intracellular stores. Again, if the observed increase in Ca\(^{2+}\) current amplitude is related to PS1-dependent impairment in intracellular Ca\(^{2+}\) signaling, then we predicted that WT PS1 (+/+) neurons that have been chronically exposed to caffeine should have a whole-cell Ca\(^{2+}\) current phenotype that is similar to PS1 (-/-) neurons. As shown in Figure 4,
this was indeed the case. WT PS1 (+/+) neurons that were been chronically exposed to 500 \(\mu \)M caffeine had a peak current amplitude that was significantly larger relative to untreated WT PS1 (+/+) neurons (434.4 \pm 55.7 \ pA; n=23 vs. 270.7 \pm 16.5 \ pA; n=71; \ p<0.005, \text{Scheffe' test}; \text{Figure 4A}). Chronic caffeine exposure produced an increase in \(\text{Ca}^{2+} \) current amplitude that was comparable to the increase caused by PS1-deficiency (Figure 4A). By contrast, there was no effect of caffeine treatment on peak current amplitude in the PS1 (-/-) population (Figure 4A, \(p=N.S., \text{Scheffe' test}) \). Average peak current density in the caffeine treated WT PS1 (+/+) neurons was also significantly larger relative to untreated WT PS1 (+/+) neurons (41.7 \pm 4.5 pA/pF; n=23 vs. 29.6 \pm 2.0 pA/pF; n=71; \ p<0.005, \text{Scheffe' test}; \text{Figure 4B}). There was no effect of caffeine treatment on peak current density in the PS1 (-/-) population (Figure 4B, \(p=N.S., \text{Scheffe' test}) \). More specifically, the magnitude of L-type \(\text{Ca}^{2+} \) current was increased in the caffeine treated PS1 WT (+/+) neurons to a level similar to that observed for the untreated PS1 (-/-) neurons as shown in Figure 5. We observed no effect of chronic caffeine exposure on the magnitude of the L-type \(\text{Ca}^{2+} \) current in the PS1 (-/-) neurons (Figure 5).
DISCUSSION

Our results provide strong evidence suggesting that PS1-deficiency alters the activity of L- and P-type Ca\(^{2+}\) channels in mouse cortical neurons. Peak Ca\(^{2+}\) current amplitude and peak current density was increased in cortical neurons in the absence of PS1. The increase in Ca\(^{2+}\) channel activity appeared to be mediated by a selective increase in Ca\(^{2+}\) flux mediated by dihydropyridine-sensitive L-type Ca\(^{2+}\) channels and a smaller increase in \(\omega\)-Agatoxin IVA-sensitive P-type Ca\(^{2+}\) channels. These findings suggest that PS1 regulates neuronal intracellular Ca\(^{2+}\) homeostasis by influencing calcium signaling from both intracellular and extracellular sources.

Potential mechanisms for the upregulation of L- and P-type Ca\(^{2+}\) channel activity

The mechanism by which PS1-deficiency increases Ca\(^{2+}\) channel activity in cultured cortical neurons is not clear but our data allow us to speculate on several potential mechanisms. First, it has been recently reported that the \(\beta\)-subunit of the voltage gated Na\(^+\) channel is a target for PS1/\(\gamma\)-secretase dependent cleavage (Kim et al. 2005; Wong et al. 2005). Although PS1-dependent cleavage of a Ca\(^{2+}\) channel subunit has not yet been reported in the literature, it is possible that one or more of the subunits comprising the L- and P-type Ca\(^{2+}\) channels may be substrates for PS1-dependent cleavage resulting in alterations in channel function. It has been reported that neuronal class C L-type Ca\(^{2+}\) channels are proteolytically cleaved by calpain resulting in full-length and short isoforms with different functional properties (Hell et al. 1993; Wei et al. 1994; Klöckner et al. 1995; Hell et al. 1996). The full-length isoform gives rise to a channel with 4-6 fold lower conductance than the short-form, which is truncated at the C-terminus (Wei et al. 1994; Klöckner et al. 1995). It is conceivable that PS1 might similarly cleave the L-type Ca\(^{2+}\) channel in cortical neurons. However, if this was the case, one would
expect the full-length form to be most abundant in PS1-deficient neurons, resulting in reduced peak current amplitude. However, peak Ca\(^{2+}\) current amplitude is increased in PS1-deficient neurons, not decreased. Therefore, it is unlikely that PS1-dependent cleavage of the channel protein can account for our findings.

Second, Ca\(^{2+}\) channel expression in the plasma membrane may be upregulated as a result of PS1-deficiency. This possibility cannot be ruled out based upon our current data, however, the new channels would have to available in a pool near the plasma membrane, awaiting rapid insertion based upon the data obtained in our recordings of wild-type neurons dialyzed with 10 mM BAPTA. In these experiments, Ca\(^{2+}\) current amplitude was increased to PS1 (-/-) levels within a time frame less than our five-minute dialysis period. This time frame would appear too rapid for the generation and insertion of new channel proteins but does not rule out a readily available pool of channels. Future experiments aim to address this issue more fully using immunohistochemistry and/or western blotting approaches.

Third, the PS1-dependent decrease in intracellular Ca\(^{2+}\) levels may alter the activity of voltage-gated plasma membrane Ca\(^{2+}\) channels. It is well established that intracellular Ca\(^{2+}\) plays a pivotal role in regulating a number of critical functions in the central nervous system (CNS) including axonal outgrowth and targeting, learning and memory, neuronal excitation, and neurotransmitter release (Forscher 1989; Catterall 1999; Rizzuto 2001; Rose and Konnerth 2001). Ion channel activity is also regulated by intracellular Ca\(^{2+}\) signals. As a specific example, L-type Ca\(^{2+}\) channels are strongly inhibited following activation of a subset of muscarinic acetylcholine receptors coupled to phospholipase C (PLC) activation and subsequent release of IC Ca\(^{2+}\) from IP\(_{3}\)-sensitive stores (Howe and Surmeier 1995; Stewart et al. 1999). Therefore, it is possible that the observed changes in Ca\(^{2+}\) channel activity may result from reduced intracellular
Ca\(^{2+}\) signals in the PS1 (-/-) neurons. Our BAPTA and caffeine data would support this idea and suggest that PS1-dependent dysregulation of intracellular Ca\(^{2+}\) homeostasis is intimately related to the increase in peak current amplitude.

Finally, since PS1 effects a variety of other pathways including development, protein trafficking, apoptosis and neurogenesis, it must be considered that the effects of PS1-deficiency on voltage-gated Ca\(^{2+}\) channel activity may be via a much more indirect chain of events.

Functional Significance of HVA Ca\(^{2+}\) Channel Regulation

HVA Ca\(^{2+}\) channels are the primary regulators of excitability and input integration at the cell soma and dendrites and contribute to neurotransmitter release at synapses in the central nervous system (Catterall 2000; Meir et al. 1999; Hille 2001). At the soma, voltage-gated L-type Ca\(^{2+}\) channels help to maintain longer lasting depolarizations to reduce firing threshold and regulate repetitive firing as well as shaping regenerative action potentials. In addition, Ca\(^{2+}\) flux via L-type HVA Ca\(^{2+}\) channels localized at the soma has been show to regulate gene transcription (Gallin and Greenberg 1995; Finkbeiner and Greenberg 1998). Voltage-gated P-type Ca\(^{2+}\) channels initiate neurotransmission at fast synapses (Catterall et al., 2000). Under normal conditions, HVA Ca\(^{2+}\) channels, which mediate Ca\(^{2+}\) influx, are tightly regulated by a number of intracellular signal transduction mechanisms to ensure proper function of central neurons. These channels and the regulatory mechanisms that govern them are important determinants of neuronal activity. Based on the central role of voltage-gated Ca\(^{2+}\) channels in regulating neuronal excitability, synaptic potentials and neurotransmission, alterations in the physiological properties or neurotransmitter regulation of HVA Ca\(^{2+}\) channels in cortical neurons may have an enormous impact on cortical function. Thus, our results suggest a novel means by which PS1 may
significantly influence neuronal excitability and ultimately synaptic transmission.

Significance of PS1 in Regulating Calcium Signaling

A growing number of studies argue that PS1 regulates intracellular Ca\(^{2+}\) signaling. Every FAD-related PS1/2 mutation that has been examined displays altered intracellular Ca\(^{2+}\) signaling (LaFerla 2002). Regarding PS1 FAD mutations, the data are consistent with the idea that Ca\(^{2+}\) levels in the endoplasmic reticulum (ER) are elevated (Guo et al. 1996, 1999b, 1999a; Parent et al. 1999; Begley et al. 1999; Leissring et al. 1999a, 2000, 2002; Yoo et al. 2000; Schneider et al. 2001; Herms et al. 2003; Stutzmann et al. 2004). Conversely, PS1-deficiency leads to lower Ca\(^{2+}\) levels in the ER (Leissring et al. 2002; Nakajima et al. 2001). PS2-deficient cells, by contrast, display no defect in intracellular Ca\(^{2+}\) homeostasis (Leissring et al. 2002). Importantly, new findings strongly suggest that APP metabolism may play a significant role in mediating the effects of PS1 on intracellular Ca\(^{2+}\) signaling. Gamma-secretase inhibitors, which block PS1 activity (Wolfe 2001), reduce both A\(\beta\) production and ER Ca\(^{2+}\) stores. Also, APP-deficiency appears to mimic the effects of PS1 deficiency on ER Ca\(^{2+}\) levels (Leissring et al. 2002). Thus on one hand, reduced intracellular Ca\(^{2+}\) levels are associated with reduced levels of A\(\beta\), while on the other hand, evoking Ca\(^{2+}\) increases (Querfurth and Selkoe 1994) or increasing synaptic activity stimulates A\(\beta\) production (Kamenetz et al. 2003). Do such findings suggest Ca\(^{2+}\) signaling controls PS1 activity and subsequently mediates APP metabolism? Conversely, does PS1 activity regulate Ca\(^{2+}\) signaling? Currently, there are no satisfactory answers to such questions.

A large literature uniformly supports the idea that intracellular calcium signaling is influenced by PS1 function (Ito et al. 1994; Begley et al. 1999; Guo et al. 1999a; Leissring et al. 1999a, 1999b, 2002; Yoo et al. 2000; LaFerla, 2002; Herms et al. 2003; Stutzmann et al. 2004; Yang & Cook, 2004) and has been validated using a wide variety of preparations including,
Xenopus oocytes (Leissring et al. 1999b), fibroblasts (Leissring et al., 2002), neurons (Yoo et al. 2000, Yang & Cook 2004), and hippocampal slices (Herms et al. 2003). Overall the findings from different labs are quite concordant. Yet, there are differences, as well. For example, in slices intracellular stores have been reported to increase in PS1 KO neurons, rather than decrease as observed by us (Yang & Cook, 2004) and others (Yoo et al., 2000). Although it is possible such differences are due to methodological issues, a more interesting possibility arises from the implications of the data reported herein. Our findings show that PS1 deficiency increases the entry of calcium from extracellular sources. Yet, we and others have also reported that PS1 deficiency reduces cytoplasmic calcium signals derived from intracellular calcium stores (Yoo et al., 2000, Yang & Cook, 2004). We interpret these data to show that impaired intracellular calcium signaling leads to a compensatory increase in calcium entry mediated by voltage-gated calcium channels. It is quite likely that the compensatory action of voltage-gated calcium channels in PS1 KO neurons is attenuated in younger neuronal cultures where the expression of these channels is delayed. By waiting to carry out our experiments in more mature neurons we were able observe the effects of PS1 deficiency on calcium channels, while in younger cultures the effects of PS1 deficiency on ER calcium stores could be revealed with less apparent opposition from extracellular calcium sources. Thus, it is possible that the intracellular calcium response observed in PS1 neuronal KO slices (Herms et al., 2003) were mediated by changes in the influx of calcium from extracellular sources.

Taken collectively, it appears PS1 activity and Ca$^{2+}$ signaling interact in complex and, as yet, poorly understood ways. Based upon the recent suggestion that Aβ is associated with feedback inhibition of synaptic activity (Kamenetz et al. 2003) it is tempting to speculate that PS1 activity and the Ca$^{2+}$ signaling systems in neurons might participate in some form of dual
feedback regulation. The observed effects of PS1 on voltage-gated Ca2+ channels could contribute to such feedback regulation.

Our data suggest that decreased intracellular calcium signaling induced by PS1 loss-of-function, in turn increases voltage-dependent Ca2+ channel activity. Thus, PS1 may influence intracellular Ca2+ homeostasis by counter-regulation of multiple components of the Ca2+ signaling system in neurons. This idea is consistent with other findings that nifedipine reduces H\textsubscript{2}O\textsubscript{2}-induced toxicity in PS1-deficient neurons (Nakajima et al. 2001). One possible functional consequence of such processes is that the normal activity of PS1 may limit the neurotoxicity mediated by HVA Ca2+ channels in response to a variety of toxic insults thought to be associated with multiple neurodegenerative disorders, as well as aging.
ACKNOWLEDGEMENTS

We thank Marjorie E. Steakley for excellent technical assistance and Drs. R. Foehring and W. Armstrong for critically reading the manuscript.

GRANTS

This work was supported by NIH KO1 Career Development Award MH01669 (ARC), University of Tennessee Center for Neurobiology of Brain Diseases Pilot Award (ARC), NIA AG05136 Alzheimer's Disease Research Center/Project 4 (DGC) and a VA Merit Review Award (DGC).
REFERENCES

Forscher, P. Calcium and polyphosphoinositide control of cytoskeletal dynamics. *TINS* 12: 468-474, 1989.

Guo, Q., Sebastion, L., Sopher, B. L., Miller, M. W., Ware, C. B., Martin, G. M., and Mattson, M. P. Increase vulnerability of hippocampal neurons from presenilin-1 mutant knock-

Li, X. and Greenwald, I. Membrane topology of the *C. elegens* SEL-12 presenilin. *Neuron* 17: 1015-1021, 1996.

Meir, A., Ginsburg, S., Butkevich, A., Kachalsky, S. G., Kaiserman, I., Ahdut, R.,

Wong, H-K., Sakurai, T., Oyama, F., Kaneko, K., Wada, K., Miyazaki, H., Kurosawa, M., De Strooper, B., Saftig, P., and Nukina, N. β-subunits of voltage-gated sodium channels are
novel substrates of β-site amyloid precursor protein –cleaving enzyme (BACE1) and γ-secretase.

FIGURE LEGENDS

Figure 1. HVA Ca2+ currents are increased in cortical neurons from PS1-deficient mice. A and B) Whole-cell Ca2+ current was elicited by a series of depolarizing steps from –70 to 50 mV (250 ms) from a holding potential of –110 mV in PS1 WT (+/+) and PS1 (-/-) cortical neurons. C) Plot of peak current vs. voltage for the data shown in A (black squares) and B (gray squares). D, E and F) Bar graphs depicting statistical summaries of peak current amplitude (D), membrane capacitance (E) and peak current density (F) for populations of PS1 WT (+/+) (n=71), PS1 heterozygous (+/-) (n=94) and PS1 (-/-) (n=28) neurons. Error bars depict standard error of the mean (SEM). An asterisk (*) indicates statistically significant differences of \(p < 0.005 \) as determined by one-way ANOVA followed by post-hoc Scheffe’ analysis. N.S. indicates statistical non-significance.

Figure 2. L- and P-type Ca2+ channel activity is specifically upregulated in PS1 (-/-) neurons. A) Plot of peak current vs. test pulse voltage under control conditions (black squares) and in the presence of 5 \(\mu \)M nifedipine (gray squares) for a representative PS1 WT (+/+) neuron. B) Plot of peak current vs. test pulse voltage under control conditions (black squares) and in the presence of 5 \(\mu \)M nifedipine (gray squares) for a representative PS1 (-/-) neuron. C and D) Bar graphs depicting a statistical summary of the percentage of the whole-cell current (C) and the total pA of whole-cell current (D) that was blocked by 5 \(\mu \)M nifedipine for populations of PS1 WT (+/+) (n=31) and PS1 (-/-) neurons (n=37). E and F) Bar graphs depicting a statistical summary of the percentage of the whole-cell current (E) and the total pA of whole-cell current (F) that was blocked by 100 nM \(\omega \)-Agatoxin IVA for populations of PS1 WT (+/+) neurons (n=14) and PS1 (-/-) neurons (n=14). Error bars depict standard error of the mean (SEM). An
Figure 3. Dialysis with 10 mM BAPTA produces a PS1 (-/-)-like Ca2+ current phenotype in PS1 WT (+/+) neurons. A, B and C) Bar graphs depicting a statistical summary of the peak current amplitude (A), the membrane capacitance (B) and the peak current density (C) for populations of PS1 WT (+/+) neurons (n=94), PS1 WT (+/+) neurons treated with 10 mM BAPTA (n=22), PS1 (-/-) neurons (n=71) and PS1 (-/-) neurons treated with 10 mM BAPTA (n=16). Error bars depict standard error of the mean (SEM). An asterisk (*) indicates statistically significant differences of \(p<0.005 \) as determined by one-way ANOVA followed by post-hoc Scheffe’ analysis. N.S. indicates statistical non-significance.

Figure 4. Chronic exposure to caffeine produces a PS1 (-/-)-like Ca2+ current phenotype in PS1 WT (+/+) neurons. A and B) Bar graphs depicting a statistical summary of the peak current amplitude (A) and the peak current density (B) for populations of PS1 WT (+/+) neurons (n=71), PS1 WT (+/+) neurons treated with caffeine (n=23), PS1 (-/-) neurons (n=94) and PS1 (-/-) neurons treated with caffeine (n=12). Error bars depict standard error of the mean (SEM). An asterisk (*) indicates statistically significant differences of \(p<0.005 \) as determined by one-way ANOVA followed by post-hoc Scheffe’ analysis. N.S. indicates statistical non-significance.

Figure 5. Chronic exposure to caffeine increases L-type channel activity in PS1 WT (+/+) neurons. Bar graph depicting a statistical summary of the \% current block by 5 \(\mu \)M nifedipine for populations of PS1 WT (+/+) neurons (n=11), PS1 WT (+/+) neurons treated with caffeine
(n=10), PS1 (-/-) neurons (n=16) and PS1 (-/-) neurons treated with caffeine (n=8). Error bars depict standard error of the mean (SEM). An asterisk (*) indicates statistically significant differences of $p<0.01$ as determined by one-way ANOVA followed by post-hoc Scheffe’ analysis. N.S. indicates statistical non-significance.
Table 1. **Contributions of L-, N-, P-, Q- and R-type Ca^{2+} channels to the whole-cell current.**

Values are presented as means ± standard error of measurement (SEM; n=number of cells).

Statistically significant differences were determined using student’s *t* test with *p* values as indicated. N.S. denotes statistical non-significance. Drugs were applied sequentially in the order indicated at the following concentrations: Nifedipine (5 µM), ω-Conotoxin GVIA (1 µM), ω-Agatoxin IVA (100 nM), ω-Conotoxin MVIIC (2 µM).

<table>
<thead>
<tr>
<th>Channel Subtype</th>
<th>% Current Blocked</th>
<th>Total pA Current Blocked</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT</td>
<td>PS1-KO</td>
</tr>
<tr>
<td>Nifedipine Sensitive (L)</td>
<td>33.8 ± 2.5</td>
<td>44.4 ± 2.4</td>
</tr>
<tr>
<td>ω-conotoxin GVIA Sensitive (N)</td>
<td>27.3 ± 5.4</td>
<td>21.5 ± 3.3</td>
</tr>
<tr>
<td>ω-agatoxin IVA Sensitive (P)</td>
<td>6.1 ± 1.3</td>
<td>12.9 ± 2.6</td>
</tr>
<tr>
<td>ω-conotoxin MVIIC Sensitive (Q)</td>
<td>10.9 ± 5.0</td>
<td>10.7 ± 5.0</td>
</tr>
<tr>
<td>Toxin Insensitive (R)</td>
<td>39.6 ± 7.9</td>
<td>33.6 ± 5.8</td>
</tr>
</tbody>
</table>
Cook et al. FIGURE 2

A

WT (+/+)

Voltage (mV)

Current (pA)

-80 -60 -40 -20 0 20 40 60

-500 -200 0 200 500

Control

Nifedipine (5 μM)

B

KO1 (+/-)

Voltage (mV)

Current (pA)

-80 -60 -40 -20 0 20 60

-1000 -200 0 200

C

% Current Blocked

WT (+/+)

KO (+/-)

30 20 10 0

10 20 30

D

% Current Blocked

Current Blocked (pA)

WT (+/+)

KO (+/-)

100 50 0

20 50 100

E

% Current Blocked

WT (+/+)

KO (+/-)

5 10 15 20

5 10 15

F

% Current Blocked

Current Blocked (pA)

WT (+/+)

KO (+/-)

10 20 30

5 10 15
Cook et al. FIGURE 3

A

B

C

![Bar charts showing data](image)
Cook et al. FIGURE 4

A

<table>
<thead>
<tr>
<th>Condition</th>
<th>Peak Current Amplitude (pA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>500</td>
</tr>
<tr>
<td>WT + Caffeine</td>
<td>450</td>
</tr>
<tr>
<td>PS1 KO</td>
<td>600</td>
</tr>
<tr>
<td>PS1 KO + Caffeine</td>
<td>650</td>
</tr>
</tbody>
</table>

N.S.

B

<table>
<thead>
<tr>
<th>Condition</th>
<th>Peak Current Density (pA/pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>40</td>
</tr>
<tr>
<td>WT + Caffeine</td>
<td>35</td>
</tr>
<tr>
<td>PS1 KO</td>
<td>50</td>
</tr>
<tr>
<td>PS1 KO + Caffeine</td>
<td>55</td>
</tr>
</tbody>
</table>

N.S.
Cook et al. FIGURE 5