In vitro characterization of L-type calcium channels and their contribution to firing behavior in invertebrate respiratory neurons

J. David Spafford¹, Tyler Dunn¹, August B. Smit², Naweed I. Syed¹, and Gerald W. Zamponi¹

¹Hotchkiss Brain Institute, University of Calgary, Calgary, Canada, T2N 4N1.
²Department of Molecular and Cellular Neurobiology, Research Institute Neurosciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands.

Running title: L-type channels and neuronal activity

Key words: Cav₁ channels/ burst activity/dihydropyridine/ Lymnaea stagnalis/central pattern generator

Revised manuscript: JN-00658-2005

Address correspondence to:
Dr. Gerald W. Zamponi
Department of Physiology and Biophysics
3330 Hospital Dr. NW
Calgary, T2N 4N1
Canada
Tel. (403) 220-8687
Fax. (403) 210-8106
Email. Zamponi@ucalgary.ca

or

Dr. David Spafford
Department of Biology
University of Waterloo
B1 Building, Room 172
200 University Avenue West
Waterloo, Ontario
Canada N2L 3G1
Tel. (519) 888-4567
Fax. (519) 746-0614

Copyright © 2005 by the American Physiological Society.
Summary

L-type calcium channel activity has been associated with a number of cytoplasmic responses, including gene transcription and activation of calcium-dependent enzymes, yet their direct contribution to the electrical activities of neurons has remained largely unexplored. Here we report the cloning and functional characterization of a molluscan L-type calcium channel homolog, LCav1, and investigate its role in coordinating neuronal firing patterns. The LCav1 channel exhibits many hallmarks of vertebrate L-type channels in that it is high voltage activated, slowly inactivating, dihydropyridine sensitive and displays calcium dependent inactivation in recording solutions with standard EGTA concentrations. We show that despite comprising less than ~20% of the total whole cell current in identified Lymnaea respiratory network neurons, the L-type channels are essential for maintaining rhythmic action potential discharges without being involved in synaptic release. Our data therefore suggest an important role of L-type calcium channels in maintaining rhythmical pattern activity underlying breathing behaviour in Lymnaea.
Introduction:

Voltage gated calcium channels are key mediators of a wide range of cellular responses, ranging from regulating neuronal firing patterns to the initiation of neurosecretory events.

The mammalian central nervous system expresses multiple types of voltage gated calcium channels with distinct cellular and subcellular distributions, and highly specific cellular functions (for review: (Catterall 2000; Snutch et al. 2004)). For example, T-type calcium channels are abundantly expressed in dendrites where they contribute to the initiation of burst firing (Perez-Reyes 2003). N- and P/Q-type calcium channels are localized to presynaptic nerve termini where their opening is intimately linked to the release of neurotransmitters (Spafford and Zamponi 2003). L-type calcium channels are typically expressed on cell bodies, where they are thought to initiate the activation of calcium dependent enzymes and gene transcription (Dolmetsch et al. 2001; Weick et al. 2003). However, it remains unknown to what extent L-type calcium channels contribute directly to the electrical properties of the central nervous system. Understanding the exact role of L-type channels in this process has been hampered by the fact that the mammalian CNS expresses both Cav1.2 and Cav1.3 L-type calcium channel isoforms (Hell et al. 1993; Westenbroek et al. 1998). These two channel types exhibit distinct sensitivities to dihydropyridine (DHP) antagonists, with complete inhibition of the Cav1.3 subtype only at high DHP concentrations at which specificity for L-type channels is no longer assured (Koschak et al. 2001; Xu and Lipscombe 2001). For example, DHPs block T-type calcium channels (Shcheglovitov et al. 2005), N-type currents, sodium and potassium currents in the micromolar range (Triggle 2003) and nifedipine has been shown to act as a secretagogue in some type of neurons (Hirasawa and Pittman 2003). Knockout mouse studies have provided only a marginal advantage, as knockout of Cav1.2 is embryonic lethal (Seisenberger et al. 2000) and Cav1.3 does
not display neurological deficits outside of hearing loss, suggesting that compensation from other calcium channel subtypes is likely to occur such that these mice have a relatively normal phenotype (Clark et al. 2003).

In contrast with the vertebrate nervous system, invertebrates express a singleton homolog representing the three major calcium channel families (Spafford et al. 2003b). As a result, invertebrate model systems such as *Drosophila* (Kawasaki et al. 2002), *C. elegans* (Jospin et al. 2002) or *Aplysia* (White and Kaczmarek 1997) have been successfully used to address fundamental aspects of calcium channel physiology. One such model organism, the pulmonate freshwater pond snail *Lymnaea stagnalis*, provides the added advantage of a readily identifiable and well characterized neuronal network that controls respiratory function. We have recently reported the cloning, expression and characterization of the *Lymnaea* Cav2 calcium channel gene that is responsible for neurotransmitter release (Spafford et al. 2003b; Spafford et al. 2003a). Here, we report the cloning, functional and physiological characterization of *LCav1*, a homolog to vertebrate L-type calcium channels. We show that *LCav1* encodes a channel with typical L-type calcium channel properties such as slow inactivation and DHP sensitivity. Utilizing information obtained from pharmacological studies in the tsA-201 cell expression system, we show that *LCav1* is essential for maintaining the efficacy of repolarization during a long spike train. The channel thereby contributes to the synchronization of neuronal firing patterns in the respiratory network that underlies the rhythmic breathing in *Lymnaea stagnalis*.
Materials and methods:

Preparation of full-length LCav1a cDNA for in vitro expression

Full-length LCav1a was created by PCR, on cDNA reverse transcribed from RNA isolated from the CNS of Lymnaea stagnalis, using proofreading Turbo Pfu (Stratagene) polymerase and primers flanking the start and stop codons of the putative open reading frame. Molecular identification and cloning of LCav1a,b,c variants were described previously in (Spafford et al. 2003b) and deposited as GenBank accession numbers (AF484079-81). Two putative, in frame start sites were present in the amino terminus of the full length mRNA for LCav1, creating variants of 2078 amino acids (~237 kDa) or 2190 amino acids (~247 kDa). The longer variant ~247 amino acid was cloned, using primer incorporated 5’ and 3’ restriction sites, into the polylinker of bicystronic vector pIRES2-EGFP (BD Biosciences).

Sequence comparisons and phylogenetic analysis

LCav1a was aligned with invertebrate orthologs and human Cav1 channels by modified progressive pairwise, multiple alignment in PILEUP (UNIX-based, GCG Wisconsin Package 2002, Accelrys, Madison, WI) and visually displayed in PLOTSIMILARITY (Accelrys). Gene tree was generated from PILEUP alignment of Lymnaea and human Cav channels imported into PAUP 4.0. Consensus gene tree generated from the Branch-and-Bound algorithm was tested for robustness in 100 bootstraps and displayed in TREEVIEW 1.6.6 (Rod Page, Glasgow).

Transient transfection of mammalian cells

6 µg of LCav1a in a pIRES2 bi-cystronic EGFP construct, or LCav2a and EGFP (BD Biosciences) was transfected in tsA-201 human embryonic kidney cells together with 6 µg
accessory rat α2-δ1 and rat β1b subunits using a standard calcium phosphate protocol (Spafford et al. 2003a). For this study, a mammalian α2-δ subunit was used in lieu of an comparable, as yet unidentified Lymnaea homolog. We have also coexpressed a rat β1b subunit with LCav1a, which is consistent with the approach taken in a previous characterization of LCav2a in mammalian cells (Spafford et al. 2003a). Cells for transient transfection were plated on glass coverslips at 10% confluence and maintained in a humidified environment of 5% CO2 in standard DMEM supplemented with 10% FBS and 50 U/ml penicillin-streptomycin. 12 hours after transfection, cells were washed in fresh media and allowed to recover at 37°C for another 12 hours. Cells were then incubated at 28°C for 3-6 days before electrophysiological recording.

Whole-cell recording of mammalian cells and Lymnaea VD4 neurons in vitro

Calcium channel activities of Lymnaea neurons and transfected mammalian tsA-201 cells were measured using whole-cell (membrane ruptured) recording technique. In brief, transfected tsA-201 cells were bathed and recorded with barium as the charge carrier (20 mM BaCl$_2$) or calcium (20mM CaCl$_2$), in extracellular solution containing tetraethylammonium chloride (TEA-Cl, 40 mM), MgCl$_2$ (1mM), HEPES (10mM) glucose (10 mM) and CsCl (65 mM), pH 7.2 (adjusted with TEA-OH). For transfected cells, patch pipettes (3-4 MΩ) were filled with intracellular solution containing 108 mM cesium methane sulfonate, 4 mM MgCl$_2$, 10 EGTA, and 9 mM HEPES, pH 7.2 (adjusted with CsOH). The average current size for LCav1a was 156.1 +/- 28 pA (n=17), and 285.5 +/- 39 pA (n=6) for LCav2a. For analysis of calcium-dependent inactivation in low intracellular EGTA, intracellular solutions contained 118 mM cesium methane sulfonate, 4 mM MgCl$_2$, 0.1mM EGTA, and 9 mM HEPES, pH 7.4 (adjusted with CsOH). VD4 neurons were recorded in BaCl$_2$ or CaCl$_2$ (2mM) plus tetraethylammonium chloride (TEA-
Spafford et al., LCav1, 7

Cl, 47.5mM), MgCl\textsubscript{2} (1mM), HEPES (10mM) and 4-aminopyridine (4-AP, 2mM), pH 7.9 (adjusted with TEA-OH). VD4 neurons were recorded with larger bore pipettes (1.5-2 M\textOmega) and calcium plus ATP/GTP containing solution: CsCl (29mM), CaCl\textsubscript{2} (2.3mM), ethylene glycol-bis(\textbeta-aminoethyl ether) N,N',N'-tetraacetic acid (EGTA, 10mM), HEPES (10mM), ATP-Mg (2mM) and GTP-Tris (0.1mM), with pH 7.4 (adjusted with CsOH). Whole cell recordings were made with an Axopatch 200B amplifier (Axon Instruments, Union City, CA). The voltage command generation and data acquisition were carried out using a PC computer equipped with a Digidata 1322A interface in conjunction with pClamp 9.1 software (Axon Instruments). Recorded currents were filtered at 1 kHz using a 4-pole Bessel filter and digitized at a sampling frequency of 2 kHz. Series resistance was compensated by 80%. Current-voltage relationships were obtained by holding cells at -80 mV before stepping to test potentials ranging from -50 mV to +60 mV. The voltage dependence of inactivation was measured at a test depolarization of +10 mV, after pre-pulse holding potentials ranging from -90 mV to +30 mV over 10 s. All solutions were purchased from Sigma-Aldrich, (St. Louis, MO). Nifedipine and BayK 8644 were used from 10 mM stock concentration dissolved in dimethylsulfoxide (DMSO). There were no visible changes associated with the highest DMSO concentration (0.1%) used in working solutions.

Data analysis was carried out using Clampfit (pClamp 9, Axon Instruments) and SigmaPlot 2000 (Jandel Scientific, SPSS science, Chicago, IL.). A standard Boltzmann equation \(I=1/(1+\exp(V-V_h/S)) \) was used to curve fit steady state inactivation where \(I \) is the normalized peak current amplitude, \(V \) is the holding potential, \(V_h \) is the half-inactivation potential and \(S \) is a slope factor. Whole cell current voltage relations were fitted with the equation \(I=G(V-E_{rev})/(1+\exp(V_a-V)/S) \) where \(G \) is the maximum slope conductance, \(I \) is the peak current amplitude, \(V \) is the test potential, \(E_{rev} \) is the reversal potential, \(V_a \) is the half activation potential,
and S is a slope factor inversely proportional the effective gating charge. Time constants for inactivation and recovery from inactivation (τ) were gathered from a monoexponential fit of the raw data. Data statistics were illustrated in figures as mean and standard errors, with numbers of trials in parentheses. Significant differences between mean values were tested using paired and unpaired Student’s t tests and considered significant if $p < 0.05$. Data analysis was carried out using Clampfit (pClamp 9, Axon Instruments) and SigmaPlot 2000 (Jandel Scientific, Chicago, IL).

Microelectrode recording of Lymnaea identified neurons and cultured synapses

Lymnaea neurons for recording were prepared from ~2-3 month old snails raised in laboratory conditions at room temperature, using previously described methods (Syed et al. 1990; Syed et al. 1999). Isolated brains, washed 3x in normal saline with gentamicin, 50 μg/ml, were exposed to trypsin (2 mg/ml) followed by trypsin inhibitor (2mg/ml) or protease (2 mg/ml). Outer and inner sheaths surrounding ganglia were mechanically removed by fine forceps in high osmolarity defined media (20 mM D-glucose). Rhythmical pattern activity from the intact ganglia was recorded as described previously (Syed et al. 1990; Syed et al. 1999). For neuronal culture, cells were isolated and extracted from *Lymnaea* brains by applying gentle suction via a syringe attached to fire-polished glass pipettes (50-90 μm tip diameter). Singlet neurons and synaptic pairs formed between somata of identified *Lymnaea* VD4 and LPeD1 neurons were plated on poly-L-lysine-pretreated coverslips and recorded 18-24 hr after incubation in brain conditioned medium. For sharp electrode recordings, electrical signals were amplified (NeuroData Instrument Corp.) and recorded in standard *Lymnaea* saline (51.3 NaCl, 1.7 KCl, 4.0 CaCl$_2$ and 1.5 MgCl$_2$, buffered in HEPES to pH 7.9) with glass microelectrodes filled with a saturated
solution of potassium sulfate (K$_2$SO$_4$; electrode resistance, 20-40 MΩ). 10 mM CaCl$_2$ replaced external calcium and magnesium ions in experiments with 2.5x normal calcium saline. Resting membrane potentials varied considerably with an average of -75.5mV +/- 19. Spike threshold was relatively constant at -40 to -45 mV, requiring an average of 24 pA to reach threshold. Bursting in VD4 was evoked by injecting 40 pA current above the threshold level (i.e. 64 pA) required to generate single spikes. Drugs were applied by bath exchange (2ml/min) (sharp electrode recordings), or local perfusion by pipette driven by gravity flow (whole cell recording). All drugs effects were named significant if there was substantial (>80%) recovery after washout.
Results:

LCav1 encodes an ancestral L-type calcium channel gene

We isolated a full length cDNA encoding the $L_{Ca}v1a$ calcium channel gene via PCR from cDNA generated from brain enriched tissue of *Lymnaea stagnalis*. The isolated gene is a homolog to members of the mammalian Cav1 calcium channel family (Fig. 1A). Only a singleton Ca$_v$1 homolog that has been identified in *C. elegans* and *Drosophila*, and that a similar feature is likely in *Lymnaea*, but cannot be demonstrated in the absence of detailed genomic analysis. A comparison with mammalian L-type calcium channel sequences indicates a high degree of conservation in the four transmembrane domains, in the calcium channel β subunit interaction site (AID), as well as in the EF hand and IQ motif regions that are thought to be critical for calcium dependent inactivation (CDI) (Catterall 2000; Snutch et al. 2004) (Fig. 1B, 1C). The $L_{Ca}v1$ gene includes a potential alternate splice site in the C-terminal region (Fig. 1C), as well as two putative start sites within the amino terminal region. A full length cDNA construct encoding the splice variant bearing the longer amino and carboxyl-termini ($L_{Ca}v1a$) was assembled and used for functional expression studies.

Functional expression of $L_{Ca}v1a$ and $L_{Ca}v2a$ in tsA-201 cells yields whole cell currents (Fig. 2A) in barium which activate at -20 mV and peaks near +20 mV (Fig. 2B), and which is remarkably similar to what has been described for native barium currents in *Lymnaea* neurons (Byerly et al. 1985). While its voltage dependence of activation is similar to that observed with the synaptic *Lymnaea* Cav2 ($L_{Ca}v2a$) channel, $L_{Ca}v1a$ inactivates and activates with significantly slower kinetics (Figs. 2C, 2D), it shows a 20 mV more depolarized half-inactivation potential (Fig. 2E), and it is significantly slower to recover from inactivation (Fig. 2F). These differences in gating kinetics between $L_{Ca}v1a$ and $L_{Ca}v2a$ channels are reminiscent of what is
observed with mammalian calcium channel subtypes (Yasuda et al. 2004), and suggest that these
two calcium channel subtypes are likely to contribute differentially to electrical activity of
Lymnaea neurons (see below).

We then examined calcium-dependent inactivation (CDI) properties of *LCav1* (Fig. 3). *LCav1a*
displayed a significant degree of CDI observed in standard buffer containing 10 mM EGTA similar
to that observed with classical mammalian L-type calcium channels (Fig. 3B). Correspondingly,*LCav1a* has a high sequence similarity across the region contributing to CDI (see sequence alignment in Fig. 3A). In contrast *LCav2* (Spafford et al. 2003a) and known mammalian non-L type channels, do not bear significant CDI in standard 10 mM EGTA buffer (Liang et al. 2003). Fig. 3C examines CDI of whole cell currents recorded from *Lymnaea* VD4 (visceral dorsal 4) neurons, a cholinergic neuron that forms part of a respiratory pattern generator in the *Lymnaea* brain (Syed et al. 1990;Syed et al. 1999). Consistent with the data obtained in *tsA-201* cells, only the nifedipine-sensitive component of VD4 neurons had observable CDI (Fig. 3C). In *tsA 201*-cells, replacement of barium with calcium reduced peak current amplitude by about 50%, consistent with what is observed with mammalian L-type channels (Fig. 3D).

We then examined the pharmacological properties of transiently expressed *LCav1a* channels (Fig.4). *LCav1a* was sensitive to nifedipine, with half-maximal block occurring at 450 nM when cells were held at -80 mV (Fig. 4B). The nifedipine sensitivity of *LCav1a* is in the same range as that reported for rat L-type calcium channels. Nifedipine block of *LCav1a* was state dependent, as reflected by a -15 mV shift in half-inactivation potential in the presence of 100 nM nifedipine (Fig. 4B, inset). At a concentration of 10 µM, nifedipine completely blocked *LCav1a* channels, while leaving *LCav2a* activity unaffected (Fig. 4C). Similarly, the DHP agonist BAYK 8644 selectively enhanced *LCav1a* currents. In contrast, cadmium similarly
inhibited both channel types almost completely at 30 and 100 µM, with \(\text{LCav2} \) channels being slightly more sensitive to 10µM at lower concentrations compared with \(\text{LCav1a} \). There are two important implications of these data. First, the current enhancement by agonist BAYK 8644 is somewhat unexpected considering that the \(\text{LCav1a} \) sequence contains asparagine and isoleucine residues in positions 981 and 1394, respectively (Fig. 4A). In the corresponding positions, mammalian \(\text{Ca}_{1.2} \) and \(\text{Ca}_{1.3} \) channels contain glutamine and methionine (Fig. 4A) in these positions that have been shown to be essential for DHP agonist activity (Schuster et al. 1996; Wappl et al. 2001; Mitterdorfer et al. 1996). More importantly, our findings obtained with transiently expressed channels allow us to use nifedipine as an effective tool to isolate \(\text{LCav1} \) from \(\text{LCav2} \) channels in neurons.

\(\text{LCav1} \) contributes only a small fraction of total barium current in VD4 neurons

To ascertain the function of \(\text{LCav1} \) calcium channels in \textit{Lymnaea} neurons, we recorded whole cell calcium currents from VD4 neurons in the presence and absence of 10 µM nifedipine. As shown in Fig. 5A, nifedipine reduced peak current amplitude of VD4 whole cell barium currents by ~20%, unmasking a current with rapid inactivation kinetics that is presumably carried by \(\text{LCav2} \). The nifedipine sensitive current component obtained by subtraction of the current traces recorded before and after nifedipine application exhibits a slowly inactivating waveform, consistent with our observations with transiently expressed \(\text{LCav1a} \) (Fig. 2C). Interestingly, previous RNAi knockdown of \(\text{LCav2} \) in \textit{Lymnaea} VD4 neurons unveiled a much faster inactivating current (Spafford et al. 2003b). This kinetic difference could have resulted from the compensatory turning on or off of genes during the four day exposure to RNAi, such as
overexpression of a different splice variant of \textit{LCav1}, upregulation of a faster T-Type channel (\textit{LCav3}) or potentially regulation of genes which might alter \textit{LCav1} kinetics,

In 17 VD4 neurons examined, nifedipine reduced peak current amplitude by $15.77 \pm 1.8\%$, whereas cadmium virtually eliminated all calcium current activity (Fig. 5B). Hence, almost all the calcium current is carried by high voltage activated (\textit{LCav1} + \textit{LCav2}) channels, whereas T-type current that is expected to be cadmium insensitive is negligible. Fig. 5C illustrates in form of averaged data that the nifedipine sensitive component is sustained over the duration of the entire depolarization, consistent with the slower inactivation kinetics of \textit{LCav1}. Upon switching from barium to calcium, the amplitude of the nifedipine sensitive current was reduced by $\sim50\%$ in VD4 neuron, consistent with the heterologous expression data shown in Fig. 3D.

Finally, we attempted to knock down \textit{LCav1} expression in VD4 neurons via \textit{LCav1} antisense of over a four day period (as previously described (Spafford et al. 2003b)). This treatment significantly reduced, but did not completely eliminate the nifedipine-sensitive current (n=8) compared to mismatch controls (not shown). While this is consistent with \textit{LCav1} corresponding to the nifedipine sensitive current component, the incomplete action of this oligonucleotides prevented their further use in the ensuing physiological experiments.

\textbf{\textit{LCav1} channels are required for high frequency burst firing}

To ascertain the contribution of \textit{LCav1} channels to synaptic activity, we isolated VD4 and left pedal dorsal 1 (LPeD1) neurons, paired them to allow the formation of soma-soma synapses, and then carried out dual microelectrode recordings in the absence and the presence of nifedipine. As we described in detail previously, these synapses are functionally equivalent to neurite-neurite
synapses and are thus a convenient model to examine aspects of synaptic transmission (Spafford et al. 2003b; Syed et al. 1999). As shown in Fig. 6A, current injections into the presynaptic VD4 neuron evoke, depending on the amount of current injected, either single spikes, or a rapid burst of action potentials that terminates upon spontaneous repolarization. The postsynaptic neuron responds with single postsynaptic potentials to each single spike, and with compound EPSPs in response to a presynaptic burst discharge. Block of \(\text{LCav1} \) channels with nifedipine does not affect the generation of single spikes, but often results in spike broadening and a loss of afterhyperpolarization (see inset to Fig. 6B), suggesting that block of \(\text{LCav1} \) channels prevents adequate repolarization during a burst. More strikingly, nifedipine prevents high frequency burst activity in the presynaptic neuron, thus leading to loss of synchronous release (Fig. 6A). Normal bursting activity of the presynaptic VD4 neurons is restored upon wash. In the presence of nifedipine, the repolarization amplitude within the burst spike becomes progressively reduced with increasing spike number (Fig. 6B). In addition, the interspike interval is decreased (Fig. 6C), and spike broadening is observed early with the burst (Fig. 6D). It is important to note that partial block of \(\text{LCav1} \) channels with 3 \(\mu \text{M} \) nifedipine or less did not produce a consistent effect on bursting behavior, suggesting that complete or nearly complete block of \(\text{LCav1} \) was necessary for the manifestation of the physiological effects. Collectively, our data indicate that the ability of the presynaptic VD4 neuron to undergo high frequency burst firing is critically dependent on the presence of L-type calcium channels. In contrast, the \(\text{LCav1} \) does not appear to be required for synaptic transmission \textit{per se} (Fig 6E).

One possible mechanism that could account for the \(\text{LCav1} \) mediated effect on bursting activity is a reduction in the activity of calcium activated potassium (K(Ca)) channels due to reduced calcium entry via \(\text{LCav1} \). If so, then application of TEA, a known blocker of K(Ca)
channels (Mathie et al. 1998) should mimic the effect of nifedipine on burst firing in VD4 neurons. This is indeed the case (Fig. 7). Both nifedipine and TEA similarly prevented high frequency bursts in VD4 neuron (Fig. 7A,B). Moreover, the non selective calcium channel blocker cadmium (30 µM) also prevented the occurrence of high frequency bursts (Fig. 7B). Since we have previously shown that depletion of VD4 neurons of LCav2 does not affect their bursting properties (Spafford et al. 2003b), the effects of cadmium on burst activity likely occur via block of LCav1. These data are thus consistent with the idea that the functional effects of nifedipine were indeed attributable to its L-type calcium channel blocking activity, rather than perhaps a non specific action of nifedipine on K(Ca). Indeed, we also could not detect any effect of 10 µM nifedipine on whole cell potassium conductance in VD4 neurons (not shown), again suggesting that nifedipine did not act directly on K(Ca)channels. If calcium entry and subsequent activation of K(Ca) channels is indeed essential for maintaining burst activity, then is should be possible to at least partially overcome the effects of nifedipine by boosting calcium entry through LCav2 channels. To test this hypothesis, we blocked LCav1 channels via nifedipine, and then raised the extracellular calcium concentration from 4 mM to 10 mM, which is expected to raise peak calcium influx by 10-15 % in Lymnaea neurons (Byerly et al. 1985). As shown in Fig. 7 C and D, in the presence of elevated external calcium, the nifedipine induced inhibition of burst firing activity became slightly, albeit significantly attenuated. Although the additional calcium influx mediated by LCav2 could not anywhere completely compensate for the loss of calcium entry via LCav1, these data are consistent with the need for a global rise in calcium and subsequent activation of K(Ca) in order to sustain burst activity.
LCav1 channels synchronize neuronal activity in a respiratory neuronal network

VD4 neurons from part of a neuronal network that controls breathing behavior of Lymnaea stagnalis (Syed et al. 1990; Syed et al. 1999). The functional connectivity of the individual neurons that form this pattern generator has been well characterized and involves a critical interplay between VD4, RPeD1, IP3I neurons (see Fig. 8A). The synaptic connections between conditionally bursting neurons IP3I (expiration) and VD4 (inspiration) are mutually inhibitory and comprise the “half center” of the central pattern generator (CPG). The activities of these two neurons are in turn regulated by RPeD1 which makes biphasic (excitation followed by inhibition) synaptic connections with IP3I, whereas its connectivity with VD4 is mutually inhibitory. Considering the key role of LCav1 channels in high frequency bursting behavior of VD4 neurons, one might predict that coordination of firing behavior among these neurons should be drastically altered in the presence of nifedipine. To examine this possibility, we carried out simultaneous microelectrode recordings from VD4 and RPeD1 neurons in an intact Lymnaea brain preparation in the presence and the absence of nifedipine. In this case, a higher concentration of nifedipine (30 µM) needed to be applied due to access restrictions. Typically, the isolated ganglionic preparations exhibit “fictive” breathing pattern with well characterized, alternating bursting activity in IP3I and VD4 neurons. Because IP3I is located ventrally (RPeD1 and VD4 are situated dorsally), indirect evidence for its activity is generally obtained through its excitatory effect on RPeD1 (Fig. 8A). In a semi intact animal, this alternating bursting in IP3I and VD4 controls pneumostome opening (expiration) and closing (inspiration). As illustrated in Fig. 8B (bottom), 30 µM nifedipine prevented spontaneously occurring respiratory rhythm in the CPG neurons by perhaps exclusively preventing high frequency burst generation in VD4 (Fig. 8B). It is important to note that neither was RPeD1’s spontaneous activity blocked, nor did VD4
cease to burst. However, the coordinated respiratory rhythm was completely perturbed (n=8).

These data indicate that L-type calcium channels contribute significantly to rhythmicity in the intact respiratory network of *Lymnaea stagnalis*.
Discussion

We have recently reported the cloning, expression and functional characterization of LCav2, the synaptic calcium channel of *Lymnaea stagnalis* (Spafford et al. 2003a). Here, we report the cloning and functional characterization of a *Lymnaea* Cav1 channel homolog, and applied this knowledge to address the fundamental role of L-type channels within the context of the function of a respiratory pattern generator. The ability to express and characterize, in isolation, the properties of Cav1 and Cav2 calcium channels is unique to the *Lymnaea* system, and allowed us to identify nifedipine as an experimental tool to eliminate all L-type calcium channel activity in the *Lymnaea nervous* system. Our data show that elimination of L-type calcium channels by nifedipine inhibits repolarization in VD4 burst firing neurons, thus affecting synchronous electrical activity within the respiratory neuronal network. The physiological effects of nifedipine occurred acutely and were reversible upon washout, indicating that they were direct on the calcium channels.

The biophysical characteristics of LCav1 calcium channels are consistent with those expected from an L-type channel, in that the channel exhibits relatively slow gating kinetics, depolarized activation and range, DHP sensitivity and CDI in internal recoding solutions buffered with 10 mM internal EGTA. It is important to note that DHP sensitivity occurred despite the fact that the *Lymnaea* sequences differ from mammalian channels in two key positions that have been linked to DHP agonist sensitivity in mammalian L-type channels (Mitterdorfer et al. 1996; Schuster et al. 1996; Wappl et al. 2001). At this point, it is unclear how DHP binding is coordinated in LCav1, but it is possible that other amino acid residues mediate DHP binding. Ultimately, detailed analyses of the consequence of replacing rat Cav1.2 with corresponding LCav1 sequence may shed further light on this issue.
There appears to be a clear separation in the roles of LCav1 and LCav2 channels. LCav2 channels are essential for the release of neurotransmitter (Spafford et al. 2003b), but do not affect the ability of VD4 neurons to discharge action potential bursts (Spafford et al. 2003b). In contrast, as we show here, blockade of LCav1 does not contribute to synaptic transmission in agreement with previous studies in Aplysia (Edmonds et al. 1990), but instead appears to play an essential role in maintaining rapid spike discharges. As our data indicate, spike repolarization during a burst appears to require the concerted action of L-type calcium channels and K(Ca) channels. Functional signaling between BK K(Ca) and voltage gated calcium channels has been described in the hippocampus (Sun et al. 2003; Tavalin et al. 2004), cerebellum (Womack et al. 2004), neocortex (Sun et al. 2003) and hair cells (Samaranayake et al. 2004). Moreover, biochemical interactions between BK and both Cav1.2 and Cav1.3 calcium channels have been reported, consistent with colocalization of calcium channels and K(Ca) channels (Grunnet and Kaufmann 2004; Liu et al. 2004). Finally, a close association of calcium channels and K(Ca) channels has been described in Helix snails where K(Ca) channel mediated repolarization of U cells does not occur when voltage-gated calcium channels are blocked by cadmium (Crest and Gola 1993).

L-type calcium channels have been linked to a number of important cellular functions, such as the triggering of calcium dependent gene transcription (Dolmetsch et al. 2001; Weick et al. 2003), hormone secretion (Mears 2004), hearing transduction (Hudspeth 2005) and heart and smooth muscle contraction (Kamishima and Quayle 2003). Our data support a unique role of L-type calcium channels in sustaining burst firing activity in neurons within the respiratory central pattern generator of Lymnaea. Hence, L-type calcium channels are likely to be a key factor in controlling the breathing behaviour of Lymnea stagnalis, and may well play a similar role in
other central pattern generators, including in the mammalian CNS. Indeed, there are reports that L-type calcium channel blockers block ictal activity in pilocarpine seizure models (Hadar et al. 2002), and in human epileptic tissue (Straub et al. 2000). In the spinal cords of P7 mice, nifedipine antagonizes rhythmic bursting (Jiang et al. 1999). In dopaminergic neurons, block of L-type calcium channels has been shown to inhibit apamin-induced bursting activity (Shepard and Stump 1999) and calcium-dependent spontaneous oscillations (Durante et al. 2004). The importance of K(Ca) channels in regulating bursting is supported by data obtained from BK null mice. These animals show severely reduced spontaneous tonic and bursting discharges from Purkinje cells and as a consequence, cerebellar dysfunction such as abnormal locomotion and motor coordination (Sausbier et al. 2004). Together with the data presented here, these considerations suggest that the interplay between L-type calcium channels and calcium activated potassium conductances may directly contribute in a significant, and so far unrecognized fashion, to the electrical activities of neurons in both invertebrates and mammals.
Acknowledgments:

This work was supported by operating grants from the Canadian Institutes of Health Research (CIHR) to GWZ and NIS. NIS is CIHR Investigator, and NIS and GWZ, respectively, hold Scientist and Senior Scholar awards from the Alberta Heritage Foundation for Medical Research. GWZ is the recipient of a Canada Research Chair award.
References

Figure legends:

Figure 1 Comparisons of **LCav1a with other calcium channels**
LCav1 is an ortholog belonging to the Cav1 (L-type) family of α1 subunits in the most parsimonious gene tree of calcium channels. *Lymnaea*, like other invertebrates has singleton representatives of the high voltage-activated **LCav1** (Cav1.1-1.4), **LCav2** (Cav2.1-2.3) and low voltage-activated **LCav3** (Cav3.1-3.3) classes. Numbers at branch nodes represent bootstrap values for 100 iterations;

(B) Running average of similarity for aligned singleton Ca_{v}1 homologs from invertebrates (*Caenorhabditis elegans*, *Drosophila melanogaster*, *Lymnaea stagnalis*, *Halocynthia roretzi* and the four human subtypes (Cav1.1-1.4). Above the similarity plot is an illustration of the putative transmembrane topology of **LCav1**, indicating the loci of the Cavβ subunit interaction site (AID), and EF hand and “IQ” motifs known to be involved in calcium dependent inactivation of mammalian channels (D1-D4 indicate the four major transmembrane domains).

(C) Overall structure of the **LCav1**, indicating transmembrane helices (cylinders), a C-terminal PDZ motif and segments (IIIS5,IIIS6, and IVS6) that are associated with dihydropyridine (DHP) antagonist/agonist activity (grey cylinders). Also indicated is the location of an alternate splice site, which creates a C-terminally truncated variant, **LCav1b**. **LCav1b** is truncated by “VTSL” which encompasses four out five of the amino acids for a terminal class I PDZ binding domain which has been shown to be critical for subcellular targetting and pCREB signaling of mammalian L-type channels (Weick et al. 2003;Zhang et al. 2005).

Figure 2 Biophysical properties of transiently expressed **LCav1a and LCav2a calcium channels**

(A) Representative ensembles of barium current traces and (B) current-voltage relations for **LCav1a** and **LCav2a** in response to voltage steps from a holding potential of -80
mV. Individual current voltage relations were arbitrarily normalized to a peak value of 1 to facilitate comparison. Note the overlap in the voltage-dependences of activation. (C,D) Voltage-dependences of the time course of inactivation (C) and activation (D) of the two channel subtypes. Inactivation time constants were determined via exponential fits to raw current data. Note the slower kinetics seen for LCav1a compared with LCav2a. (E) Voltage-dependence of channel availability in form of steady state inactivation curves. Note that LCav1a displays a greater availability for opening compared with LCav2a. The duration of the conditioning pulse was 10 s, the test potential was +10 mV. (F) Recovery from inactivation measured as current elicited by a test pulse applied at various time periods after a 10s prepulse. LCav1a recovers more slowly from steady-state inactivation than LCav2a.

Figure 3 Effects of permeant ion species on channel properties. (A) Sequence alignment of the highly conserved, C-terminal region delimited by the C-terminal EF Hand region and IQ motif, encompassing the calmodulin binding site of human L-type homolog (Ca_v1.2) and the region corresponding to LCav1a (B) Time constants of inactivation obtained for transiently expressed LCav1a channels bathed in recording solution containing either 20 mM barium or 20 mM calcium and with standard, 10 mM EGTA containing, internal recording solution in the patch pipette. (C) Time constant of inactivation of whole cell barium or calcium currents recorded from VD4 neurons with standard EGTA in the patch pipette. The concentration of permeant ion was 2 mM in each case. Note that calcium dependent inactivation is readily apparent for both the LCav1a channel and the nifedipine sensitive current in VD4 neurons. (D) Effect of replacing permeant ion species on peak current amplitude with transiently expressed
LCav1a channels. Data in barium and calcium were obtained for the same cell in each case, and current amplitudes were normalized to that observed in barium.

Figure 4 *Pharmacological profile of transiently expressed LCav1a and LCav2a channels.*

(A) Alignment of LCav1 and human Cav1.2 and Cav1.3 in the IIIS5, IIIS6 and IVS6 region. Shaded residues are known to be critical determinants of DHP sensitivity, residues labeled in black indicate unique residues in LCav1 within the DHP binding site. (B) Dose dependence of nifedipine block of LCav1a channels at a holding potential of -80 mV. The solid line is a fit with the Michaelis-Menten equation. Inset: half inactivation potential obtained before and after application of 100 nM nifedipine. The asterisk denotes statistical significance. (C) Effect of calcium channel agonists and antagonists on peak current amplitudes of LCav1a and LCav2a channels. Note that both dihydropyridine agonists and antagonists can discriminate among the two channel subtypes, whereas cadmium does not. Inset: LCav1a and LCav2a barium current traces generated from a voltage step from -80 mV to +10 mV in the absence/presence of 10 µM nifedipine.

Figure 5 *Pharmacological separation of native LCav1 and LCav2 channels with nifedipine and cadmium.* (A) Representative barium current record elicited by a voltage step to +10 mV from a holding potential of -80 mV in the presence and absence of nifedipine, revealing nifedipine sensitive (LCav1) and insensitive (i.e., LCav2) components in VD4 neurons. (B) Contributions of LCav1a to overall peak barium current amplitude. Note that nifedipine sensitive LCav1 channels contribute less than one fifth of the total peak calcium current. (C) Plot of averaged nifedipine sensitive and insensitive barium current components over the course
of a 140 ms depolarization, with superimposed error bars. Data were obtained from averaging experiments such as that shown in panel A. **(D)** Peak current amplitude of the nifedipine-sensitive current component is approximately twice as large when barium is the external charge carrier over calcium, consistent with our observations with transiently expressed channels (see Fig. 3D).

Figure 6 Role of LCav1 channels in high frequency burst firing (>5 Hz) and synaptic transmission in cholinergic VD4-LPeD1 soma-soma synapses. (A) Representative recording of synaptically-paired neurons before, during and after exposure to 10 µM nifedipine. Note that nifedipine induces a loss of synchronized transmitter release after a few spikes within the burst. **(B)** Repolarization amplitude as a function of spike number within the burst. Inset: Comparison of sample spikes (over 0.8 s) in the presence and absence of nifedipine. Note that often nifedipine treatment widened spike and eliminated the afterhyperpolarization. **(C)** Spike frequency within a burst as a function of spike number. **(D)** Spike half-width as a function of spike number. **(E)** Lack of nifedipine effect on EPSP amplitude in LPeD1.

Figure 7 Contribution of potassium channel activity in repolarization during spike bursts. **(A)** Representative current clamp recordings from VD4 neurons illustrating that blockade of potassium channels (10 mM TEA) or both LCav1 and LCav2 (via 30 µM cadmium) mimic the effect of nifedipine on high frequency burst firing (>5 Hz). **(B)** Effect of TEA and cadmium on the extent of repolarization during a burst. Note that there is a dramatic shortening of repolarization amplitude with TEA and cadmium. **(C)** Representative experiment and **(D)**
summary scatter plot illustrating that 2.5x normal (10 mM vs 4 mM) extracellular calcium offset the nifedipine-induced loss of repolarization during a burst.

Figure 8 Role of LCav1 channels in the synchronization of oscillations in a central pattern generator of the intact brain. (A) Diagram illustrating the organization of the three cell central pattern generator circuit responsible for opening (expiration) and closing (inspiration) of the respiratory orifice (pneumostome). (B) Alternating bursting activity in IP3I (evidenced as an excitatory drive to RPeD1) and VD4 control the activities of the expiratory and inspiratory motor neurons, respectively. The box presents expanded time scale. Nifedipine (30 µM) prevents synchronized oscillations of the central pattern generator by significantly reducing the intensity of high frequency bursts in VD4 (see box), and as a consequence, the patterned rhythmical bursting is completely abolished. It is important to note that the tonic activity in RPeD1 remains unperturbed by nifedipine. The data shown in Fig. 8 are representative of 8 experiments.
Fig. 1 Spafford et al.
Fig. 2 Spafford et al.
Fig. 3 Spafford et al.
A

<table>
<thead>
<tr>
<th>IIIS5</th>
<th>LCa_1a</th>
<th>Ca_1.2</th>
<th>Ca_1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IMLVTFLLNFMFSVMGQLF</td>
<td>IIVITTLFMFACIGQLF</td>
<td>IMIVTTLGMFACIGQLF</td>
</tr>
<tr>
<td></td>
<td>973-992</td>
<td>1032-1053</td>
<td>1029-1048</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IIIS6</th>
<th>LCa_1a</th>
<th>Ca_1.2</th>
<th>Ca_1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YFIIVIYAFFMNIFGVF</td>
<td>FIIYIYAFFMNIFGVF</td>
<td>FIIYIYAFFMNIFGVF</td>
</tr>
<tr>
<td></td>
<td>1087-1106</td>
<td>1146-1165</td>
<td>1143-1162</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IVS6</th>
<th>LCa_1a</th>
<th>Ca_1.2</th>
<th>Ca_1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YFIISFYILCSFLINLFVAV</td>
<td>YFIISFYMLCAFLINLFVAV</td>
<td>YFIISFYMLCAFLINLFVAV</td>
</tr>
<tr>
<td></td>
<td>1388-1407</td>
<td>1456-1475</td>
<td>1455-1474</td>
</tr>
</tbody>
</table>

B

IC50 = 450 nM
n=11

C

Fig. 4 Spafford et al.
Fig. 5 Spafford et al.
Fig. 6 Spafford et al.
Fig. 7 Spafford et al.
A

Expiration (pneumostome open)

Inspiration (pneumostome closed)

B

control

VD4

RPeD1

30 uM nifedipine

VD4

RPeD1

Fig. 8 Spafford et al.