Large-scale Organization of Preferred Directions in the Motor Cortex II: Analysis of Local Distributions

Thomas Naselaris¹, Hugo Merchant¹²⁶, Bagrat Amirikian¹², and Apostolos P. Georgopoulos¹²³⁴⁵,*

¹Brain Sciences Center, Veterans Affairs Medical Center, Minneapolis, MN, 55417; Department of ²Neuroscience, ³Neurology and ⁴Psychiatry, University of Minnesota Medical School, ⁵Cognitive Sciences Center, University of Minnesota, Minneapolis, MN, 55455; ⁶Instituto de Neurobiología UNAM, campus Juriquilla, Querétaro Qro. México 76230.

*To whom correspondence should be addressed.

E-mail: omega@umn.edu
Abstract

The spatial arrangement of preferred directions (PD) in the primary motor cortex has revealed evidence for columnar organization and short range-order. We investigated the large-scale properties of this arrangement. We recorded neural activity at sites on a grid covering a large region of the arm area of the motor cortex while monkeys performed a 3D reaching task. Sites were projected to the cortical surface along anatomically defined cortical columns, and a PD was extracted from each site with directionally tuned activity. We analyzed the resulting two-dimensional surface map of PDs. Consistent with previous studies, we found that any particular reaching direction was re-represented at many points across the recorded area. In particular, we determined that the median radius of a cortical region required to represent the full complement of reaching directions is at most 1 mm. We also found that for the majority of regions of this size, the distribution of PDs within them exhibits an enrichment for the representation of forward and backward reaching directions (see companion paper). Finally, we found that the error of a population vector estimate of reaching direction constructed from neural activity within these regions is small on average, but varies significantly across different sections of the motor cortex, with the highest levels of error sustained near the fundus of the central sulcus, and lowest levels achieved near the crown. We interpret these findings in the context of two well-known features of motor cortex, namely, its highly distributed anatomical organization, and its behaviorally-dependent plasticity.
Introduction

The spatial organization of the primary motor cortex (M1) has been analyzed chiefly in the context of its representation of muscles, joints, and body parts (Andersen et al. 1975; Asanuma and Rosen 1972; Cheney and Fetz 1985; Cheney et al. 1985; Donoghue et al. 1992; Fetz and Cheney 1978, 1980; Fischl et al. 1999; Gould et al. 1986; Humphrey and Reed 1983; Huntley and Jones 1991; Kwan et al. 1978; Park et al. 2001; Penfield and Boldrey 1937; Penfield and Rasmussen 1950; Schieber and Hibbard 1993; Strick and Preston 1978; Waters et al. 1990). Throughout several decades of mapping studies, experimenters have used a variety of techniques for electrically activating regions of the motor cortex, and then attempted to relate the sites of activation with evoked muscle contractions or movements of body-parts about specific joints. However, this historical emphasis on mapping somatotopic representations in the motor cortex belies the fact that M1 is not simply a map of the body’s musculature. M1 maintains a representation of higher order features of movement, most notably the direction of reaching (Caminiti et al. 1991; Georgopoulos et al. 1982; Georgopoulos et al. 1984; Georgopoulos et al. 1986; Schwartz 1994). A large percentage of cells in the arm region of the motor cortex generate patterns of discharge that vary systematically with respect to the reaching direction of the arm (Schwartz et al. 1988). Given the precedent set by years of research on the somatotopic organization of M1, it is natural to ask how the spatial organization of M1’s directional representation is structured.

A cell’s representation of reaching direction is characterized by its preferred direction (PD), which is the direction of reach at which the cell’s discharge rate peaks (Georgopoulos et al. 1982; Georgopoulos et al. 1986; Schwartz et al. 1988). We investigated the spatial organization of direction representation by extracting PDs from activity at recording sites on a grid covering the arm area of M1 of two rhesus macaques engaged in a 3D center-out task (Georgopoulos et al. 1986).

Previous research on this topic has focused on the spatial organization of PDs over small (< 1mm) distances (Amirikian and Georgopoulos 2003; Ben-Shaul et al. 2003; Georgopoulos et al. 1984). These studies analyzed PD differences as a function of the displacement of recording sites along single electrodes, and revealed evidence for
short-range correlations and columnar organization. However, the data used in those studies did not allow for direct observation of the layout of PDs across the tangential dimension of the cortex (parallel to the cortical surface). The goal of the current study was to assemble a surface map of PDs that would reveal this layout, and to analyze this map for large-scale patterns or trends.

Using methods detailed in the companion paper, and in (Naselaris et al. 2005), we constructed, for each monkey, a surface map of PDs that extended from near the fundus of the central sulcus to the exposed part of the pre-central gyrus. These maps are, to our knowledge, the first depiction of the surface layout of the 3D PD’s in the motor cortex. Of the many ways in which such maps could be analyzed, we focus our analysis in this paper on questions raised by the preceding paper. As such, our emphasis in this work will be to describe the distribution of PDs within local regions of the map, and to characterize the effect that these distributions have on the decoding of reaching direction from local populations. Questions regarding the possibility of orderly variation of PDs within such regions will be the topic of a separate work.

In the preceding paper, we demonstrated that the distribution of PDs extracted from cells dispersed across the motor cortex has a characteristic structure defined by two salient properties: 1) a broad distribution of PDs across the directional continuum, and 2) an enrichment for forward and backward reaching directions. These findings raised an important question: are these features of the global distribution replicated locally, or do each of the properties of the global distribution derive from spatially segregated cortical domains? To answer this question, we partitioned the map into local, overlapping subregions, and analyzed the distribution of PDs within each region. We found that the distribution of PDs within local regions of size at most 3mm^2 replicate the salient features of the global distribution, exhibiting a broad representation of the full 3D continuum of reaching directions, and an enrichment of the representation for forward and backward reaching directions. We also used the neural population vector to measure error in decoding the direction of reach from neural populations within local regions. We found that these errors are quite small on average, but vary significantly due to changes in the breadth of the local distribution. Thus, M1 appears to be organized into localized territories, each of which contains a representation sufficient to determine the direction of
reach, many of which favor reaches in the forward direction. We argue that these results are consistent with the highly divergent nature of motor cortical projections to motoneuronal pools (Georgopoulos 1988, 1996), and with the capacity of motor cortical circuits for behaviorally-dependent reorganization. We also discuss the implications of these results for neuroprosthetic design using motor cortical signals.

Methods

Behavioral Task

All neural data used in these studies were collected from two monkeys (monkeys A and B from preceding paper) performing a 3D center-out reaching task. Details are provided in the preceding paper, and in previous publications (Georgopoulos et al. 1986; Schwartz et al. 1988).

Mapping procedure

All recordings were obtained from the arm region of the M1. The recorded area was contained within a region that extended 3-4 mm along the central sulcus, and 7-12 mm in the direction perpendicular to the central sulcus. This region was centered ~15 mm from the midline along the medial-lateral axis. Microstimulation (3 ms biphasic pulses for 30 ms at 5-20 µA) within the boundaries of this region evoked contractions of proximal and/or distal arm muscles.

The techniques used to construct a map of recording sites have been described in detail elsewhere (Naselaris et al. 2005). Briefly, an array of 16 electrodes was passed through the arm region of M1 while monkeys engaged in the reaching task. Prior to insertion, electrodes were coated in a fluorescent dye. Once the top of neural activity was identified, electrodes were advanced at 150 µm increments until they reached white matter. Raw extracellular potentials were recorded at each site with a sampling frequency of 60 kHz, and high-pass filtered at 0.5 kHz.

After the experiment, the monkey was sacrificed and the recorded area of the cortex was blocked and sectioned every 50 µm. Registered digital fluorescence and Nissl-stained images of each slice were used to reconstruct the trajectories made by the electrodes passing through the cortex.
Electrode penetrations passed from the exposed surface of the precentral gyrus, through the crown and into the anterior bank of the central sulcus (CS). Recording sites were transformed into a “flattened” coordinate system that had the effect of unfolding the cortical surface about the crown of the CS. In all of the maps to be presented, the top/bottom borders of the map are orthogonal to the CS, with the fundus of the CS located on the far left. The left/right borders of the maps are parallel to the CS, with the most medial positions at the top of the maps. In these surface maps, recording sites are projected to the surface along the line defined by neighboring anatomical columns, as revealed by inspection of Nissl-stained sections.

Neural Recordings and Calculation of PDs

The raw extracellular potentials recorded at each site were converted into multi-unit activity (MUA) by applying a 40 – 70 µV amplitude threshold. The exact threshold was determined manually and separately for each recording site. At each recording site, MUA was used to calculate a single PD, employing the same multiple linear regression analysis (Georgopoulos et al. 1986) described in the preceding paper. Cells were included in the database on the basis of a bootstrap test for significance of directional tuning (Lurito et al. 1991). Because the directional tuning of motor-cortical cells is a well-replicated and robust finding, we used a one-tailed significance criterion (p < 0.1). PDs extracted from MUA were used in all of the analyses presented here. To validate the use of MUA, we selected a subset of our recording sites (data presented in the preceding paper for monkeys A and B) and used Plexon software (Plexon Inc., Dallas, TX) to obtain single unit activity (SUA). Each site yielded an average of ~2 distinguishable cells. A comparison of PDs extracted from SUA of cells at one site to those extracted from MUA at the same site showed a negligible difference (median angular deviation was 18°, which is within the margin of error for estimating a cell’s PD; comparison was based upon 848 SUA PDs extracted from 524 sites).

Analyses of the Spherical Distribution of PDs

Spherical Coordinates: A PD is a unit vector, and may be considered as a point on the surface of a sphere with its center at the starting position for the reaching movements. In
this consideration, a PD is specified by a pair of polar angular components \((\theta, \phi)\).
\(\theta \in [0, 180]\) gives the angular deviation of the PD from the north pole \((\theta = 0)\).
\(\phi \in [0, 360]\) gives the counter-clockwise angular deviation in the plane from the axis that points directly toward the monkey \((\phi = 0)\). Thus, a reaching direction in the horizontal plane starting at the center position and moving directly toward the monkey’s body is given by the \((\theta, \phi)\) pair \((90^\circ, 0^\circ)\), whereas a reach directly away from the body is given by \((90^\circ, 180^\circ)\).

Models of PD distributions: The parametric density estimation procedures described in the preceding paper was used to estimate PD distributions contained within local regions of the map of recording sites.

Model selection: Local distributions of PDs were classified as uniform, unimodal, or bimodal by applying successively appropriate statistical tests. First, we determined whether the hypothesis of a uniform distribution could be rejected in favor of a unimodal (Rayleigh test, \(p < 0.05\)), or bimodal (Bingham test, \(p < 0.05\)) alternative. A distribution for which uniformity could be rejected by either of these tests was considered non-uniform; otherwise, the distribution was labeled uniform (for lack of a more appropriate model). A distribution for which uniformity was rejected only by the Rayleigh test was considered unimodal. A distribution for which uniformity was rejected only by the Bingham test was considered bimodal. In cases where uniformity was rejected by both tests, we used a likelihood-ratio bootstrapping procedure (McLachlan and Peel 2000) to test for bimodality against the null hypothesis of a unimodal distribution. In this procedure, distributions were fit with both unimodal and bimodal mixture models \((\text{Banerjee et al. 2003}); \text{see preceding paper for details of fitting procedure}\), and \(L_1\) and \(L_2\), the likelihood of the data under the unimodal and bimodal models, respectively, were used to construct a log-likelihood ratio for the data: \(L = -\log(L_1/L_2)\). Then, 1000 random sets of PDs were generated from the distribution defined by the parameters of the unimodal fit to the original data. Each of these generated sets were fit by a unimodal and a bimodal mixture model, and the log-likelihood ratio under these models, \(L'\), was determined. If \(L\) was found to be significantly \((p < 0.05)\) larger than \(L'\), the distribution
was considered bimodal; otherwise, it was considered unimodal. The procedure is described in detail in (McLachlan and Peel 2000).

Population Vector

Let \(r_i(d) \) be the average of all firing rates observed for cell \(i \) while the monkey performed a reach in direction \(d \). The neuronal population vector for this direction was calculated as \(NPV(d) = \sum r_i'(d) \cdot p_i \), using the normalized firing rates, \(r_i'(d) = \frac{r_i(d) - b_i}{k_i} \), where \(p_i \) is the preferred direction of cell \(i \), and \(b_i \) and \(k_i \) are the baseline and gain terms defined in the preceding paper. The error of the neuronal population vector is expressed as the angle between \(NPV(d) \) and \(d \).

Results

The distribution of preferred directions

We analyzed PDs extracted from MUA at 981 recording sites distributed across the surface of the primary motor cortex in two monkeys (monkey A: 495 sites, monkey B: 486 sites). We refer to the collection of PDs from all sites for a single monkey as the global population, and refer to its distribution as the global distribution (this is to be contrasted against local populations and local distributions). In the preceding paper, it was shown that the distribution of PDs extracted from the single-unit activity of a subset of the sites considered here displayed a characteristic structure. Here, we repeated our analysis of the PD distribution for PDs extracted at the larger number of sites for which MUA was available.

An equal area projection plot of each PD, and a non-parametric estimate of the global distribution for both monkeys is shown in Fig. 1. These plots bear out the salient aspects of the global distribution of PDs revealed in the preceding paper, and demonstrate that the main results hold regardless of whether PDs are extracted from single or multi-unit activity.
As in the preceding paper, we quantified the characteristics of the global PD distribution using a two-component mixture model (Banerjee et al. 2003):

\[g(x) = \sum_{i=1}^{2} \alpha_i f(x | \kappa_i, \mu_i). \]

In this model, \(g(x) \) gives the density of PDs in the neighborhood of the reaching direction \(x \). The components of the model are weighted von Mises-Fisher distribution functions, where \(i = 1 \) denotes the forward component, and \(i = 2 \) denotes the backward component. We refer to the \(\mu \) parameter of each component as its “primary direction”, as it specifies the direction of reach about which the PDs in each component are clustered. The polar components of a primary direction are denoted \(\mu(\theta) \) and \(\mu(\phi) \); the angle between the forward and backward primary directions is given by \(\omega = \cos(\mu_1 \cdot \mu_2) \). \(\kappa \) is a concentration parameter that determines the intensity of clustering within each component. \(\alpha \) is the component weight, and may be interpreted as the prior probability that a randomly selected PD will belong to a given component. Fitted values of the model parameters are given in Table 1.
Table 1. *Parameters of the mixture model of the global distribution of each monkey.*

<table>
<thead>
<tr>
<th>Monkey</th>
<th># MUA sites</th>
<th>α_1</th>
<th>κ_1</th>
<th>μ_1 (deg.) (θ, ϕ)</th>
<th>α_2</th>
<th>κ_2</th>
<th>μ_2 (deg.) (θ, ϕ)</th>
<th>ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>495</td>
<td>0.47</td>
<td>3.33</td>
<td>(41.2, 143.9)</td>
<td>0.53</td>
<td>0.9</td>
<td>(157.5, 319.5)</td>
<td>161.1</td>
</tr>
<tr>
<td>B</td>
<td>486</td>
<td>0.42</td>
<td>5.14</td>
<td>(79.3, 189.3)</td>
<td>0.58</td>
<td>1.02</td>
<td>(143.0, 358.7)</td>
<td>136.8</td>
</tr>
</tbody>
</table>
The non-uniform structure of the PD distribution leads naturally to questions about the spatial distribution of PDs. Given what is known about somatotopic organization in M1, it is possible that two peaks in the global distribution are generated by PDs that are clustered together in distinct, spatially separated cortical regions. Another possibility is that the features of the global distribution are replicated locally, so that the distribution of PDs in any local region of M1 may have the same properties as the distribution of PDs taken from across all regions of M1. To test between these possibilities, we examined the surface map of PDs. We first determined a functionally meaningful size for a “local region” of cortex. We then analyzed the distribution of PDs within these local regions by applying the mixture model separately to PDs taken from such regions situated at points on a regular grid covering the cortical surface. Mixture models of order higher than two were not considered because the global distribution shows strong evidence for only two components.

Before presenting an analysis of the map of PDs, it is important to note that the recording sites in our sample were spread across all cortical layers. In order to determine whether different cortical layers exhibited appreciable differences in the structure of their PD distributions, we separated recording sites into subpopulations according to whether they occupied the superficial (layers 2 and 3), middle (layer 5), or deep (layer 6) layers of the cortex. The PD distributions for these layer-specific subpopulations were then analyzed separately. We found that the basic structure of the global distribution, described above, remained unchanged across layers. Therefore, the cortical layer(s) occupied by sites from a particular local region was not considered in subsequent analyses.

A surface map of preferred directions in M1
Surface maps of PDs are shown in Fig. 2 and 3. To construct these maps, the position of each recording site containing a significant PD was projected to the cortical surface along its local anatomical column. The cortical surface was then unfolded about the central sulcus (Naselaris et al. 2005). In these unfolded surface maps, the left/right borders run parallel to the central sulcus, with the most medial position located at the top. The
top/bottom borders are orthogonal to the central sulcus, with the fundus located on the far left, and the crown located near the center of each map. We will refer to these as the s-axis (parallel to the sulcus) and m-axis (nearly parallel to the midline), respectively (the illustration at bottom of Fig. 2 shows the relation of the axes to the anterior/posterior and medial/lateral axes). The θ and ϕ components of the PDs are given by separate, registered maps.

An obvious feature of the maps is the re-representation of polar angles at locations across the full extent of the recorded region, as well as the heterogeneous mix of angles within any localized sub-region. Despite this widely distributed representation of polar angles, variation in the number of local PDs pointing in specific directions may also be appreciated. It is unclear from simply observing the surface map whether these variations reflect significant biases toward specific directions within localized cortical regions.

Another method for viewing the spatial pattern of PDs is to categorize each PD into one of eight octants that divide the sphere into equal areas, and then plot the category membership of each PD at its respective site on the surface map. These maps are shown in Fig. 4. The impression given by these octant maps is consistent with the maps of the polar angular components: any given octant is represented at widely scattered points on the map, and any given local region of the map contains multiple octants.

The spatial scale of PD dispersion

The PD maps presented above indicate that the distribution of PDs within local regions of the map may be dispersed across the full directional continuum. We estimated the size of the local region in which the full complement of PDs is represented by counting the number of empty octants within a radially expanding circular border centered on each recording site on the map. The result of this analysis (Fig. 5) indicates that the median radius of the cortical patch containing all octants is $\sim 1 \text{ mm}$. It is important to note that because we could not sample all cells within regions of this size (in our experiments, the average number of samples for such regions was ~ 40), this figure represents an *upper bound* on the size of the region required to fill all octants. Thus, we can assert that PD distributions in local regions with radius *at most* 1 mm replicate the structure of the global...
distribution in their covering of the sphere. In what follows, we will use the term “local region” to refer to any contiguous patch of cortex with a surface area of \(\pi \approx 3 \text{ mm}^2 \).

To estimate the number of cortical columns that would be required to fill all eight PD octants, we also counted the number, within each circular region, of cortical-column sized (80 \(\mu \text{m} \) diameter) patches that contained a recording site. This count revealed that the median number of cortical columns required to fill out all eight octants is at most 50 (Fig. 5).

Assessment of the non-uniformity of local distributions

Having determined the size of the local region required to cover all octants of the sphere, we analyzed local distributions from across the recorded area to determine whether the enrichment of forward and backward reaching directions that is seen globally is also present locally. We examined distributions of PD populations within square-shaped, overlapping local regions with a side of 1.6 mm, spaced at 400 \(\mu \text{m} \) intervals (surface area \(\sim 2.5 \text{ mm}^2 \)). Statistical tests were applied in series to classify each local distribution as uniform, unimodal, or bimodal. Fig. 6 shows the map of local distribution types. The maps demonstrate a preponderance of non-uniform local distributions (monkey A: 70\%, \(n = 87 \); monkey B: 86\%, \(n = 163 \)), with the majority of local regions being bimodal (monkey A: 53\%, \(n = 66 \); monkey B: 53\%, \(n = 100 \)).

Comparison of local to global primary directions

The primary direction(s) estimated in each non-uniform local region are shown under an equal area projection in Fig. 7. It is evident from this figure that the local primary directions cluster in the forward and backward directions, similar to the global primary directions. The histogram of \(\omega \)'s for bimodal local regions underscores this similarity; each histogram shows a distinct peak near the \(\omega \) for the corresponding global distribution (see Table 1). The local median \(\omega \) for monkey A is 157\(^\circ\); for monkey B, the local median \(\omega \) is 141\(^\circ\).

Fig. 7 demonstrates the variation of the local primary directions about their global counterparts. We denote the angle between a local primary direction and its global counterpart as \(\xi_i \), where \(i = 1 \) refers to the forward direction, and \(i = 2 \) to the backward.
Averaging across bimodal regions in both monkeys, the mean ± s.d. for ξ_1 is $25 \pm 15^\circ$; for ξ_2, it is $43 \pm 23^\circ$ ($n = 164$). In both cases, this is significantly less than the 90° of angular deviation that would be expected from a uniform distribution of local primary directions (t-test, $p < 0.01$).

In most unimodal local regions (71%), the single-component model of the local distribution identifies a local primary direction (also shown in Fig. 7) that is closest to the forward global primary direction ($\bar{\xi}_1 = 29 \pm 13^\circ$, $n = 84$). Interestingly, the local primary directions obtained by fitting the two-component mixture model to local distributions classified as uniform also show significantly smaller deviation from the global primary directions than would be expected by chance ($p < 0.01$; $\bar{\xi}_1: 34.9 \pm 23.4$, $\bar{\xi}_2: 48.8 \pm 22.9$, $n = 59$). This implies that local regions defined as uniform also contain enhancements in the forward and backward directions which are too weak to be detected by a significance criterion of $p < 0.05$.

Assessment of local concentration parameters and component weights

The median κ_1 component of the bimodal local distributions was significantly larger than the median κ_2 ($p < 0.01$, two sample sign-test), consistent with the relative sizes of these parameters in the global distribution. For Monkey A, the median κ_1 and κ_2 was 4.2 and 2.0, respectively. For Monkey B, medians were 6.5 and 2.6. The median sizes of the local κ’s are larger than their global counterparts (see Table 1); this result is most easily explained by the variation in local primary directions, which will have the effect of “spreading out” the global distribution.

The distribution of local α’s was consistent with the nearly equal weights estimated for the forward and backward components of the global distribution (see Table 1). For monkey A, the median $\alpha_1 = 0.49$; for monkey B, the median was 0.57.

Spatial variation in decoding accuracy

We have demonstrated that, on average, all octants of the sphere are represented by the distribution of PDs within a local region. This finding implies that a reasonably accurate estimate of reaching direction should be obtainable from the population activity.
generated by cells contained within a local region. To test this hypothesis, we calculated the error of the neuronal population vector (NPV) applied to the population activity of cells within a radially expanding circular border centered on each recording site. Fig. 8 demonstrates that the average NPV error for local populations (cells contained within a circular surface patch of radius 0.8-1 mm) comes within roughly one standard deviation of the error sustained by the global population (dashed lines in Fig. 8). It is again important to note that these calculations represent an upper bound on the error; a more dense sampling of activity within the local regions would most likely reveal a much sharper decrease in NPV error as a function of the local region size.

To determine whether the variation in NPV error across local regions was spatially mapped, we calculated the NPV for local populations within the same set of overlapping square patches used above. Given that NPV error decreases with the number of cells used to construct the NPV, we applied a bootstrapping procedure to control for correlated fluctuations in the number of recording sites. We constructed 10^3 “shuffled” PD maps. In the shuffled maps, PDs from the original map were randomly assigned to a different recording site. For each of the shuffled maps, NPV error was measured in each local region. The distribution of NPV errors, in each local region of the shuffled maps, was then compared to the error obtained from the corresponding local region in the original PD map. Fig. 9 displays the surface area covered by the local regions in which NPV error was significantly less than (blue areas) or greater than (red areas) the NPV errors obtained at the same location in the shuffled maps ($p < 0.05$). Consistent across both monkeys is an area near the crown in which NPV error is significantly suppressed, and an area covering the fundus in which NPV error is significantly inflated. For monkey A, the average error in the suppressed local regions is $8.3 \pm 1.2^\circ$, in the inflated regions it is $22.7 \pm 6.8^\circ$. For monkey B, the errors are $14.2 \pm 8.4^\circ$, and $37.1 \pm 10.8^\circ$, respectively.

Because the significant variations in NPV error are independent of sample size, they may be related to differences in the amount of dispersion in the local PD distributions. This assumption is consistent with the fact that both monkeys exhibit overlapping uniform regions near the crown, and overlapping non-uniform regions near the fundus (Fig. 5). To test the assumption explicitly, we compared the NPV error to a measure of the local clustering of PDs: $\sigma \equiv \alpha_1 \cdot \kappa_1 + \alpha_2 \cdot \kappa_2$. This intuitive measure of
clustering will increase as κ increases, and weights the amount of clustering in each component of the model by its overall contribution to the distribution (α). Fig. 10 shows that much of the variation in NPV error can be explained by variation in the clustering of the underlying population of PDs ($r = 0.69; p < 0.01$).

Discussion

We have analyzed the large-scale spatial organization of M1 in the context of its representation of reaching direction. We obtained PDs from multiple recording sites across a large extent of the arm representation in M1, and projected each site along its anatomical column, resulting in a two-dimensional map of PDs along the cortical surface. Our analysis of this map has revealed the following fundamental properties of the motor cortical representation of reaching direction: (1) any given reaching direction is represented at multiple sites from across the full extent of the arm region of M1; (2) the majority of localized, contiguous cortical regions with surface area of at most $\sim3 \text{ mm}^2$ contain a representation of the full 3D continuum of reaching directions; (3) the distribution of PDs within most regions of this size contain an enrichment of the representation for the same forward and backward “primary” directions; (4) variations in the breadth or dispersion of local PD distributions account for systematic differences in the decoding error associated with particular local regions; this error is lowest for regions near the crown, and highest for regions in the fundus of the central sulcus.

Previous studies have focused on short-range structure, comparing the differences in PDs at sites separated by small ($< 500 \mu m$) distances. The main results of these studies were the following: (1) cells within vertical columns of diameter $\sim80 \mu m$ contain a representation of similar ($< 45^\circ$ of angular deviation) reaching directions (Amirikian and Georgopoulos 2003; Georgopoulos et al. 1984); (2) cells displaced along the tangential dimension by $< 150 \mu m$ are highly likely (significantly more likely than random) to represent similar reaching directions (Amirikian and Georgopoulos 2003; Ben-Shaul et al. 2003); (3) cells displaced at larger ($\sim400 \mu m$) distances are highly likely to represent divergent reaching directions ($> 120^\circ$ of angular deviation) (Amirikian and Georgopoulos 2003).
This list of recent findings refines our picture of the neural representation of 3D reaching in the motor cortex. The motor cortex may be considered as an assemblage of overlapping regions with a surface area of ~3 mm². Within these regions, the diversity of cells’ PDs is sufficient to represent any given direction of reach. In many such regions, we find an enrichment for forward and backward reaching. The spatial organization of PDs within these regions is non-random: PDs are organized into columns, and they are correlated across very small distances along the tangential dimension, beyond which their arrangement appears to have a periodic structure.

In that which follows, we will attempt to relate these features of directional organization to known facts regarding motor-cortical projections to motoneuronal pools, and use-dependent plasticity in the motor cortex.

Somatotopic organization and the organization of preferred directions

Work on primary motor cortex in the past several decades reflects a growing appreciation of the distributed nature of somatotopic representation in this area (Asanuma and Rosen 1972; Donoghue et al. 1992; Gould et al. 1986; Kwan et al. 1978; Sanes and Schieber 2001; Schieber 2001; Schieber and Hibbard 1993). Assessment of the anatomical convergence (Andersen et al. 1975; Darian-Smith et al. 1990; Jankowska et al. 1975) and divergence (Shinoda et al. 1981) of cortico-spinal inputs, and the application of sensitive tools (such as stimulus-triggered and spike-triggered averaging) for revealing connections between M1 neurons and muscle activity, have helped to define two main aspects of distributed somatotopy: 1) single cells in M1 make weighted contributions to multiple muscles, typically 3 (Cheney et al. 1985; Donoghue et al. 1992; McKiernan et al. 1998; Park et al. 2001; Shinoda et al. 1981), and 2) a single muscle is represented in repeated fashion at multiple locations across M1 (Asanuma and Rosen 1972; Donoghue et al. 1992; Gould et al. 1986; Kwan et al. 1978).

How are these aspects of M1’s somatotopic organization linked to its representation of reaching direction? We have shown that cortical patches with a median surface area of at most 3 mm² are sufficient to encompass the full range of reaching directions. Given the divergent nature of the somatotopic organization, the cells contained within a local region will have access to not one, but a group of muscles.
Under such an arrangement, each cell could make a contribution to an arm reach in the
direction of its own PD by making a differentially weighted contribution to the activation
of the muscles accessible by the local region. The divergence of somatotopic
representation thus provides an ideal substrate for translating the directional signal
generated by a local region. This interpretation of motor-cortical organization was the
basis of the original explanation for how directional signals generated by the cortex could
be translated into a reaching movement (Georgopoulos 1988; Schwartz et al. 1988), and
has received some measure of experimental (Lewis and Kristan 1998) and theoretical
(Georgopoulos 1988, 1996) support.

Another fact about the somatotopic organization of M1 is characterized by the
familiar motor homunculus. Large-scale gradients in the somatotopic organization can be
uncovered if thresholding and classification methods are applied in constructing the
motor map. A commonly used example of such a method is threshold-intracortical
microstimulation (tICMS), which has been used to study somatotopic organization in
anesthetized animals. In tICMS, sites on the map are stimulated at current amplitudes
just large enough to evoke movement about a single joint (Asanuma and Rosen 1972;
Kwan et al. 1978). The application of tICMS allows researchers to identify each
stimulated site with a single joint or body part, in spite of the fact that many muscles,
joints, and even complex movements are likely to be activated by larger stimulation
amplitudes.

It may be tempting to draw an analogy between “primary” directions and
“dominant” muscles detected by tICMS: the primary directions in a local region are those
most likely to be represented, whereas the dominant muscles are those that are easiest to
detect. This analogy fails in the face of our observation that the enrichment of the
representation for forward and backward reaching directions occurs in local regions
spread across the arm region in M1. Thus, similar primary directions exist in local
regions that are most likely “dominated” by different muscle representations.

Comparison with preferred orientation maps in primary visual cortex (V1)
There are two important similarities between the spatial organization of PDs in M1 and
that of orientation preference in V1 (Hubel and Wiesel 1977, 1974). First, M1 exhibits
short-range correlations between PDs (Amirikian and Georgopoulos 2003; Ben-Shaul et al. 2003). Such correlations are consistent with the smooth variation of orientation preference observed in V1. Second, we have shown here that the size of the cortical module containing the full complement of PDs is of the same order as the size of a hypercolumn in V1, which contains a full set of iso-orientation lines. Some have attributed these features of visual cortical organization to the competing principles of continuity and coverage (Swindale et al. 2000); it is possible that these ideas could be generalized to account for spatial organization in the motor cortex as well.

In V1, preferred orientations within a hypercolumn display a pinwheel organization (Blasdel 1992; Bonhoeffer and Grinvald 1991). Orientation is a one-dimensional parameter, whereas PDs are two-dimensional; therefore, pinwheel organization could not, even in principle, be replicated exactly in the motor cortex. Further analysis and experiments—such as the use of optical imaging in the motor cortex—will be required to determine whether there is anything similar to pinwheel organization in the motor cortex.

Plasticity in the motor cortex and the distribution of PDs

In the preceding paper, we conjectured that the enrichment of the motor cortical representation for forward and backward reaching directions may simply reflect an increase in the incidence of reaches in these directions, relative to other directions, in the everyday life of the monkey. Because the repetition of specific movements leads to an enlargement of the cortical territory devoted to representing that movement (Nudo et al. 1996), this conjecture predicts that the representation of the primary directions should be widespread. Our findings are certainly consistent with this prediction: forward and backward primary directions are a significant feature of local distributions scattered across the entirety of our recorded area. A direct test of this conjecture, however, would require a characterization of the statistics of the natural reaching behavior of the monkey, and a thorough sampling of PDs taken before and after intentional manipulation of these statistics. To our knowledge, such an experiment has not yet been attempted.
Spatial Distribution of Decoding Error

It would have been difficult to predict—from currently known facts about M1 structure—a local minimum in the NPV error near the crown. It would be worth exploring the relationship between NPV error and the pattern of motor-cortical outputs (Darian-Smith et al. 1990), such as those to area 5, which are known to derive primarily from the crown of the central gyrus (Caminiti et al. 1985). Regardless of the cause of this variation, the finding also has a potentially practical application. Neuroprosthetics systems currently under design utilize neural signals extracted from the motor cortex (Taylor et al. 2002). Our finding suggests that a desirable location for recording electrodes in these systems is near the crown of the central sulcus, and that the surface area spanned by an array of these electrodes need be at most about 3 mm2.
FIGURE CAPTIONS

FIG. 1) The global distribution of preferred directions. Top Row) Equal area projection plot of PDs. For each monkey, the circle on the left corresponds to reaches made from the center position toward the body; the right circle corresponds to reaches away from the body. Bottom Row) Equal area projection plots of the non-parametric estimate of PD density. Grayscale indicates the density of PDs at each node of a finely spaced grid covering the surface of the sphere. Black dots indicate the global primary directions identified by the two-component mixture model.

FIG. 2) Surface maps of the preferred directions, monkey A. Unfolded surface maps of PDs. Recording sites are marked by colored squares. The θ component of each PD (top row) is coded on a linear color scale (blue = 0°, red = 180°); the φ component of each PD (bottom row) is coded on a circular color scale (red = 0°/360°). The inset shows a line drawing of the surface of the recorded hemisphere. The axes in the upper left are anterior/posterior (a) and medial/lateral (l). Recording sites were confined to the area within the dashed parallelogram, the borders of which are aligned with the s and m axes.

FIG. 3) Surface maps of the preferred directions, monkey B. Conventions are the same as for Fig. 2

FIG. 4) Octant maps of preferred directions. Each PD is colored according to its membership in one of 8 octants that partition the surface of the sphere into equal areas. The colored rings indicate the position of each octant on the surface of the sphere; perspective is that of the monkey looking at the targets.

FIG. 5) Spatial scale of PD dispersion The number of empty octants was counted for the set of PDs within a circular region of a given radius (abscissa) centered at each recording site. The minimum, median, and maximum number of empty octants (left axis)
as a function of radius is shown by the green, blue, and red lines, respectively. The black line shows the average number of column-sized (80 µm diameter) patches within each circular region that contained a recording site (right axis).

FIG. 6) **Surface maps of distribution type** This map was constructed by partitioning the cortical surface into overlapping squares spaced at 400µm with a side of 1.6 mm. The distribution of PDs in each region is classified as uniform (black), unimodal (blue), or bimodal (red).

FIG. 7) **The distribution of local primary directions** A) A mixture model was fit to the distribution of PDs in each local region defined as non-uniform. The primary direction(s) from each of these local regions are shown under an equal area projection, where red dots indicate the forward hemisphere and black dots the backward hemisphere. Primary directions for the global distribution are shown as large green dots. B) Histogram of \(\alpha \), the angle between the forward and backward primary direction in each bimodal local region.

FIG. 8) **Spatial scaling of population vector error** A population vector estimate of reaching direction was derived from activity at all sites within a given radius (abscissa) of each recording site on the surface map. For a fixed radius, population vector error was averaged across all reaching directions and all sites (ordinate axis; error bars give standard deviation across sites). The dashed line indicates the global error obtained by using activity from all recording sites.

FIG. 9) **Regions of large and small neural population vector error** Blue and red regions superimposed on the surface map of recording sites (black dots) indicate regions of significantly small (blue) or large (red) NPV error, as determined by a bootstrapping procedure.
FIG. 10) NPV error and PD clustering NPV error is plotted against a measure of PD clustering, constructed from the component weights and concentration parameters of the mixture model fits to each local distribution.
REFERENCES

Fischl B, Sereno MI, Tootell RB, and Dale AM. High-resolution intersubject averaging and a coordinate system for the cortical surface. *Hum Brain Mapp* 8: 272-284, 1999.

