For consideration as an ‘ORIGINAL ARTICLE in the Journal of Neurophysiology

Pre-synaptic efficacy directs normalization of synaptic strength in layer 2/3 rat neocortex following paired activity

N.R. Hardingham¹, ²*, G.E. Hardingham³, K.D. Fox² & J.J.B. Jack¹

Running title: Pre-synaptic efficacy directs normalization of synaptic strength

¹The University Laboratory of Physiology,
Oxford University,
Parks Road,
Oxford. OX1 3PT, UK

²The School of Biosciences
Cardiff University
Museum Avenue
Cardiff
CF10 3US, UK

³Centre for Neuroscience Research,
Royal (Dick) School of Veterinary Studies,
University of Edinburgh,
Summerhall Square
Edinburgh
EH9 1QH, Scotland, UK

*Corresponding author

Address for correspondence:

Dr. N.R Hardingham
BioSi 3, The School of Biosciences
Cardiff University
Museum Avenue
Cardiff
CF10 3US

Tel. +44 (0)2920 874629
Fax +44 (0)2920 874744
e-mail : sbinrh@cardiff.ac.uk

Copyright © 2007 by the American Physiological Society.
ABSTRACT

Paired neuronal activity is known to induce changes in synaptic strength which result in the synapse in question having different properties to unmodified synapses. Here we show that in paired layer 2/3 excitatory connections in young adult rat cortex paired activity acts to normalize the strength and quantal parameters of connections. Paired action potential firing produces long term potentiation (LTP) in only a third of connections, while a third remain with their amplitude unchanged and a third exhibit long term depression (LTD). Furthermore, the direction of plasticity can be predicted by the initial strength of the connection: weak connections potentiate and strong connections depress. A quantal analysis reveals that changes in synaptic efficacy were predominantly presynaptic in locus, and that the key determinant of the direction and magnitude of synaptic modification was the initial release probability \((P_r) \), which correlated inversely with change in \(P_r \) after pairing. Furthermore, distal synapses also exhibited postsynaptic increases in efficacy, while more proximal inputs did not. This may represent a means by which distal synapses preferentially increase their efficacy in order to achieve equal weighting at the soma. Paired activity thus acts to normalize synaptic strength, via both pre and post synaptic mechanisms.
INTRODUCTION

Paired bursts of pre and post synaptic action potentials are believed to be a physiological mechanism of plasticity at many central synapses (Markram and Tsodyks 1996; Paulsen and Sejnowski 2000). Paired recordings from hippocampal cultures and cortical slices have suggested that the direction of synaptic plasticity that paired activity produces is dependent on the order of the presynaptic and postsynaptic spikes (Bi and Poo 1998; Markram et al. 1997). Pairing presynaptic spikes shortly before postsynaptic spikes produces LTP, whilst pairing postsynaptic spikes before presynaptic spikes produces LTD, with less temporal spike constraint (Bi and Poo 1998; Feldman 2000; Markram et al. 1997). The initial strength of the synapse may also dictate whether a synapse potentiates, with weaker synapses potentiating preferentially over stronger ones (Bi and Poo 1998). The relative timing of the presynaptic and post-synaptic spikes could be reflected by both the amplitude and kinetics of calcium transients in spines, with larger, more transient calcium signals producing LTP and smaller, longer lasting ones producing LTD (Cormier et al. 2001; Hansel et al. 1997; Ismailov et al. 2004; Koester and Sakmann 1998; Yang et al. 1999).

Pairing pre- before post-synaptic spikes has been shown to induce both LTP and LTD in individual layer 2/3 pyramidal neurons of young rodent cortex (Ismailov et al. 2004; Zhou et al. 2005). These studies both used extracellular stimulation and involved the simultaneous stimulation of multiple synapses, so were unable to address properties of individual inputs. In layer 5 cortical pyramids pairing postsynaptic action potentials (APs) with EPSPs produced LTP at proximal synapses but LTD at distal synapses (Sjostrom and Hausser 2006). This effect was attributed to dendritic action potential backpropagation as dendritic depolarization converted LTD to LTP at
the more distal synapses (Sjostrom and Hausser 2006). The diverse effects of paired activity on individual EPSPs raises the question of whether properties of a connection are important in determining the type of plasticity exhibited by the individual layer 2/3 connections. A proportion of layer 2/3 connections from 3 week old cortex have been shown to conform to a simple binomial release model when subjected to a quantal analysis (Hardingham et al. 2006), enabling one to look at initial quantal parameters and changes in both pre and postsynaptic quantal parameters after plasticity.

Here we show that in layer 2/3 pyramidal connections paired activity produces equal proportions of cells showing LTP and LTD. We find that those connections which exhibit LTP are of smaller mean amplitude than connections which show LTD. Quantal analysis reveals that plasticity is mostly pre-synaptic and those connections which potentiate are weaker presynaptically compared to those that depress. Pairing thus acts to normalize the synapses’ presynaptic strength. Moreover, distal synapses potentiate by a larger magnitude than proximal ones, and do so by additional postsynaptic mechanisms.
METHODS

Slice preparation and intracellular recording

All recordings were made from brain slices taken from 19-27 day-old Sprague-Dawley rats. Animals were killed by cervical dislocation and para-sagittal slices of visual cortex (400 µm thick) were prepared by conventional methods (Hardingham and Larkman 1998). Slices were maintained at 23°C in artificial cerebrospinal fluid (ACSF) containing (mM): 119 NaCl, 3.5 KCl, 1 NaH₂PO₄, 2.5 CaCl₂, 1 MgSO₄, 26 NaHCO₃ and 10 glucose, bubbled with 95% O₂ and 5% CO₂.

Whole-cell voltage recordings were made from the somata of adjacent pairs of pyramidal neurons within layer 2/3 (predominantly layer 2) of visual cortex using an AxoProbe 1A amplifier (Axon Instruments), selected by near-infrared differential interference contrast (DIC) video microscopy (Dodt and Zieglgansberger 1990) using a Zeiss Axioskop upright microscope equipped with a x40 water immersion objective at 23°C or 35°C. Recording pipettes contained (mM): 110 potassium gluconate, 10 KCl, 2 MgCl₂, 2 Na₂ATP, 10 EGTA, 2 CaCl₂ and 10 Hepes, adjusted to pH 7.3 and 290 mOsmol and were of resistance 2-5MΩ. Prior to seal formation, neurons were selected as being pyramidal by the presence of a prominent apical dendrite. Subsequently, the neuron could be identified as a pyramid by its asymmetric spikes with faster rise phases than decay phases, typical of pyramidal neurons in this layer (Mason et al. 1991; McCormick et al. 1985). Series resistance measurements were measured by bridge balance settings and were between 20 and 40 MΩ. Series resistances and pipette capacitances were compensated during a recording and recordings rejected if resistance changed by over 20%. Resting membrane potentials were -68 ± 3mV and input resistances were in the range 100 – 250MΩ.
Single or paired action potentials at a 50ms interval were elicited (by current injection) in one neuron and on-line spike–triggered averaging was used to detect any resultant excitatory postsynaptic potential (EPSP) in the other neuron. If no EPSP could be detected, the pair of cells was tested for a connection in the other direction. Once a synaptic connection had been identified, single action potentials were induced in the pre-synaptic cell at 0.1 Hz by injection of short (5-10 ms) pulses of depolarizing current. Post-synaptic responses were amplified, low-pass filtered at 2 KHz, digitized at 5KHz using a CED (Cambridge Electronic Design) 1401 A/D board and recorded on a PC for analysis off-line. Post-synaptic neurons were held at membrane potentials more negative than -70 mV to ensure that EPSPs were dominated by AMPA receptor mediated currents but holding current was rarely necessary. Slices were continually perfused with ACSF during recording.

After control periods of recording (normally 100 trials), a paired action potential protocol was applied to the connection (Sup. Fig. 1). Postsynaptic action potentials were timed so that they fired 5ms after presynaptic action potentials. Trains of 20 paired action potentials were evoked in the cells at 20Hz. 10 trains fired at 0.5Hz made up a group of paired action potentials (200 paired A.Ps). 3 of these groups (at 1 per minute) were induced in the cells (600 paired action potentials in all) and connections were recorded again thereafter at 0.1 Hz until recording instability occurred. Mean amplitudes of 60 minutes of post pairing data were normalized to control periods of recording to give amplitude changes.

Measurement of EPSP amplitude

For each EPSP recorded the peak amplitude from each spike-triggered sweep was measured off-line using a computer routine that compared the average voltage during
a 0.4–2 ms period of baseline potential with the average voltage during a period of the same duration at the EPSP peak. For each EPSP, the measurement windows were determined from the averaged EPSP waveform. Measurements of noise were obtained using the same time windows used to measure the EPSP, but implemented in an area of baseline remote from the EPSP. At least three separate noise measurements were taken for each EPSP, from non-overlapping parts of the baseline, to calculate the mean noise SD (standard deviation). This noise SD was subtracted from the EPSP SD using the equation:

\[(\text{EPSP SD})^2 = (\text{SD of combined EPSP + noise})^2 - (\text{noise SD})^2\]

To verify that the post synaptic changes in EPSP amplitude we observed in these experiments were changes in AMPA currents we sought to verify that the EPSPs we were recording at -70mV were exclusively AMPA mediated. In 50 µM APV, EPSPs were on average 1.06 ± 0.04 times their control value (n=5). Therefore NMDA receptors do not appear to contribute significantly to EPSPs recorded in these cells at -70mV.

Paired pulse ratios (PPRs) were measured at a 50ms interval and second EPSPs were measured in the same way as the first EPSP in a pair of stimulations. PPRs were defined as being 2nd EPSP/ 1st EPSP

Selection of EPSP data

Only EPSP recordings remaining stable for at least 100 consecutive trials of the control period of recording were included in the final data set. Stable periods of data were defined as those where the mean and SD, taken over successive epochs of 50
trials, remained close to their values for the first epoch. The SD was required to remain within 30% of its initial value; while the mean amplitude was required to remain within 3 times the standard error of the first epoch (± 0.5 SD). A study in the hippocampus has suggested that there could be significant drifts in quantal size over time (Larkman et al. 1997), which were sometimes associated with inverse changes in release probability; with no net effect on the mean amplitude (unpublished observations). This possibility is minimized by imposing stability criteria on the SD as well as on the mean amplitude, as for a binomial process changes in release probability only minimally affect the SD, whereas changes in quantal size have a much greater effect on the SD.

Extracting quantal parameters

Histograms of amplitude frequency distributions of EPSPs from stable periods of data often (28 from 50 recordings) contained regularly spaced peaks, indicative of a quantal release of neurotransmitter at the synapses. It has been shown that neocortical synapses appear to operate with similar release probabilities, which are target derived (Koester and Johnston 2005) and so can be approximated with a simple binomial model (Hardingham et al. 2006). Therefore the working hypothesis was that the EPSP amplitudes were drawn from a simple binomial distribution characterized by the number of release sites N, release probability P_r and quantal size Q (Larkman et al. 1997). Experimental noise was represented as a Gaussian with standard deviation σ_n. We incorporated an offset S to allow for the fact that the mean amplitude of failures may differ slightly from zero, due to extracellular field effects (Stricker et al. 1996). Finally, we included a parameter σ_0 representing quantal variance, which could be Type 1 or flat (Type 1 and type 2 combined), whichever was the better fit.
Models were fitted to stable experimental data samples from control and post-pairing periods of recording of at least 100 trials (range 100 to 1650 trials, mean 166 ± 32 trials) using the method of maximum likelihood (Press et al. 1993). The noise σ_n was obtained by fitting a single Gaussian function to a noise distribution measured from the post-synaptic neuron. For a given number of release sites N, the continuously-variable parameters (P_r, Q, Q_r, S) were then fitted to the data so as to maximize the likelihood (L_n) of the model fit. The optimal N was defined to be that with the highest L_n. Starting from $N=1$, N was increased until it was either four times larger than the N value with the highest L_n so far encountered, or 20, whichever occurred first.

Locating a global maximum in a multi-dimensional parameter space is a non-trivial matter. It was performed with the FMINSEARCH algorithm from MATLAB's Optimisation Toolbox. To guard against being misled by a local maximum, every fit was repeated with ten different randomly-chosen starting positions in the parameter space. During development, the performance of this algorithm was validated against a simulated annealing algorithm (Press et al. 1993) implemented in C++, repeated with three different cooling regimes (J.C.Read, unpublished).

Adequacy of fitted model

To test whether the proposed fit was acceptable as a model of the experimental data, seven goodness-of-fit statistics were considered: the Kolmogorov-Smirnov D statistic (Press et al. 1993), the sum of the squared differences between the model and data cumulative distributions, and the χ^2 statistic for five different bin sizes. The power of the χ^2 statistic depends strongly on the bin size employed. With too few bins, the test is too coarse to catch local deviations of the data from the model predictions.
Conversely, if too many bins are used, the number of data-points falling in any one bin is small and subject to large sampling fluctuations, so the statistic again tolerates poor fits. The optimal number of bins depends on the data-set. By using a range of different bin numbers (20, 30, 50, 75 and 100) for each data-set, we ensured that each data set would be exposed to a rigorous test. The distributions of these statistics under the null hypothesis, that the experimental data had actually been drawn from the fitted model, were obtained by Monte Carlo simulation (implemented in MATLAB on a PC). 5000 sets of simulated data, each the same size as the experimental data-set, were generated from the fitted model, and the seven goodness-of-fit statistics were calculated for each simulated data-set. For each statistic, we calculated what proportion (f) of simulated data-sets yielded higher values of the statistic (indicating worse fits) than the experimental data. A value of f greater than 5% means that the null hypothesis cannot be rejected at the 5 % level on the basis of the statistic. Finally, we applied an additional test, using the proportion of events which failed to evoke a simulated EPSP, p_{fail}. The Monte Carlo distribution of failure rates could then be compared to the p_{fail} observed experimentally. The failure rate test is a two-tailed test, so the null hypothesis is accepted at the 5 % level provided that the experimental p_{fail} lies in between the 2.5 % and 97.5 % quantiles of the Monte Carlo distribution. The quantal model describing each period of experimental data was not accepted if any of our tests provided evidence to reject the null hypothesis at the 5 % level. For 22 from 50 of our recordings we were unable to obtain a satisfactory binomial model, similar to the proportion reported by (Koester and Johnston 2005) to conform to a binomial model. This was either as a result of the fitting algorithm being unable to compute an optimal solution, or because the model failed on one or more of
the rigorous statistical tests. Correlations between experimental parameters were tested using linear regressions.
RESULTS

Paired activity depresses strong connections and potentiates weak connections

The purpose of the investigation was to study the effect of paired pre- and post-synaptic activity on connections between layer 2/3 cortical pyramids. The pairing protocol consisted of 600 paired action potentials in bursts of 20 (details of protocol in methods), similar to that used by (Markram and Tsodyks 1996). From a total of 78 connections recorded before and after paired activity, 50 were judged to be sufficiently stable during the control period and had sufficient post pairing data recorded to be included in the final data set. From these 50 connections, 16 showed long lasting potentiation in mean amplitude after pairing (threshold of a 20% increase in EPSP amplitude, mean increase of 109 ± 20%, Fig. 1a, amplitude all p<0.001 compared to baseline), 20 connections showed long term depression (threshold of 20% decrease in amplitude, mean decrease 33 ± 2%, Fig. 1a, amplitude all p<0.001 compared to baseline)) whilst 14 showed no change in mean amplitude (no change (nc), Fig. 1a). Therefore, a protocol designed to produce LTP if recorded extracellularly produced a heterogeneous response in individual cells.

To determine whether similar heterogeneous responses to the pairing protocol would also be seen at more physiological temperatures we also carried out 11 further experiments at 35°C using the same pairing protocol, and found the occurrence of LTP and LTD to be very similar, with 3 occasions yielding LTP, 4 no change in amplitude and 4 LTD (data not shown). Therefore, individual cortical cells produce heterogeneous responses to an LTP protocol independent of temperature.

We investigated whether various basic properties of the connections could predict the direction of plasticity observed in recordings. The first observation we made was that connections of smaller mean amplitude were more likely to potentiate,
whilst those of greater mean amplitude were more likely to depress (Fig. 1b). This therefore meant the variance of the population amplitude distribution decreased significantly after pairing (Fig. 1c, \(p<0.05\) using Levine’s test (Levene 1960)). Consistent with this finding, we found a negative correlation between initial EPSP amplitude and the normalized change in EPSP amplitude after pairing (\(r=0.42, p<0.01\), Fig. 1d). We next looked at the relationship between the connection failure rate and change in amplitude after pairing. We found a strong positive correlation between failure rate of a connection and the increase in EPSP amplitude after pairing (\(r=0.68, p<0.001\), Fig. 1e).

We also looked at various other measures of initial presynaptic strength at these synapses and how these parameters were related to changes in EPSP size. Paired pulse ratio (PPR, EPSP\(_2\) / EPSP\(_1\)) is often used as a gauge of presynaptic release probability (\(P_r\)), with high values referring to low release probabilities (Bender et al. 2006; Markram and Tsodyks 1996; Volgushev et al. 1997). We found a weaker positive correlation between initial paired pulse ratio at a 50ms interpose interval and change in mean amplitude after pairing (\(r=0.37, p<0.05\), Fig. 2a).

The skew of an amplitude distribution can also give an indication of the release probability of a connection (by comparing mean and median values), with high values of skew referring to low release probabilities (Ledermann 1980). There was a positive correlation between initial skew of amplitude distribution and change in mean amplitude after pairing (\(r=0.39, p<0.01\), data not shown).

Together, these results suggest presynaptic strength determines the direction and magnitude of plasticity a connection exhibits in response to paired pre- and postsynaptic neuronal firing. After paired activity, weak connections become stronger, and strong connections become weaker.
Quantal analysis reveals P_r is the critical determinant of plasticity

It has been shown that connections at this synapse and developmental stage can be described with a simple binomial model (Hardingham et al. 2006). A quantal analysis of the recordings was carried out to look in more detail at the contribution of initial individual synaptic parameters (N and P_r) to the presynaptic regulation of plasticity, and also how the parameters changed following potentiation or depression. Twenty eight of the 50 connections (over half the overall data set) had simple binomial fits successfully applied to control periods of recording and post pairing periods of recording. These 28 included 9 connections which showed LTP, 10 which showed LTD and 9 which showed no change in mean amplitude. Values of quantal size (Q), release probability (P_r) and number of release sites (N) were assigned to each connection pre and post pairing. Two further validations of the quantal peaks in histograms recorded from this synapse are their continued existence at a lower Mg$^{2+}$ / Ca$^{2+}$ ratio and release probability (Q 1Ca$^{2+}$ / 4Mg$^{2+}$) = 0.93 ± 0.07 Q 2.5Ca$^{2+}$ / 1Mg$^{2+}$, n=8 (Hardingham et al. 2006) (Figure 4) and their presence in histograms of the response to a second stimulation 50ms after the first stimulation at a lower release probability (Q response to the second stimulation = 0.87 ± 0.04 Q first stimulation (at a lower P_r, Sup. Fig. 2, n=10). We were confident in the accuracy of the simple binomial fits, as the correlation between the measured failure rate and the failure rate the simple binomial model assigned to the connection was very good, both in the control periods of recording and post pairing (Sup. Fig. 3). The mean quantal variance of those connections that were fitted successfully (27 ± 2%), was lower than those that could not be fitted (45 ± 4%), suggesting that low quantal variance was an important property for binomial fitting. These levels of quantal variance are in close
alignment to those found in similar age recordings in the hippocampus (Jonas et al. 1993) where quantal variance of successfully fit data sets was 22% and there was also a similar proportion of successfully fitted data to the present study (≈50%) (Jonas et al. 1993).

A graph of release probability plotted against skewness of amplitude distribution in the present study was linear and passed through the y axis (zero skew) at a P_r of 0.57 ($r=0.67$, $p<0.001$, data not shown). Those connections which did not show significant changes in mean amplitude after pairing showed little change in quantal parameters (Sup. Fig. 4). As a result, histograms of EPSP amplitudes both before and after the pairing protocol had similar peak spacings and histogram shape (Sup. Fig. 4).

We found another strong negative correlation between initial P_r and change in mean amplitude after pairing ($r=0.66$, $p<0.001$, Fig. 2b), consistent with the observations of Fig. 1. There was no correlation between initial Q value for the connection and change in mean amplitude ($r=0.28$, ns, Fig. 2c), nor number of release sites of the connection and change in mean amplitude (not shown, average N for the EPSPs was 2.5 ± 0.2, range 1 to 6). This mean N value is in close proximity to the number of anatomical contacts that were identified between layer 2/3 pyramids in rat cortex of comparable age (2.8 ± 0.7, range 1-4, (Feldmeyer et al. 2006)). As the variance in N for the population of connections is relatively small, failure rate can be used as a non-derived measure of presynaptic strength (for a simple binomial process, failure rate = $(1-P_r)^N$). Change in release probability after pairing was also negatively correlated with initial release probability ($r=0.69$, $p<0.001$, Fig. 2d). As well as determining whether connections potentiate, initial values of P_r also predict by how much P_r can increase.
As has already been stated, connections were split into three groups, those which exhibited LTP after pairing, those which showed LTD and those which did not change in mean amplitude (nc). Series resistances were not different between the three groups of cells (not shown), one possible explanation of why some cells potentiated whilst others depressed. We were interested to investigate if there were differences between mean synaptic parameters of these three groups of connections.

In control periods of recordings, cases of LTP had lower P_r values (0.26 ± 0.03) than connections showing no change in mean amplitude (0.47 ± 0.04) which in turn had lower P_r values than cases of LTD (0.69 ± 0.06, p all <0.05) Fig. 2e). Consistent with this, initial PPRs of connections that potentiated were also significantly greater than connections that depressed (p<0.05, Sup. Fig. 5a). Changes in PPR after pairing were also negatively correlated with changes in mean amplitude after pairing ($r=0.41$, p<0.01, Sup. Fig. 5b). However changes in mean amplitude after pairing were better correlated with either changes in release probability ($r=0.89$, p<0.001, Sup. Fig. 5c), or connection failure rate ($r=0.73$, p<0.001, Sup. Fig. 5d) and equally well by skew ($r=0.41$, p<0.01, not shown) as by PPR. This is consistent with the correlations shown in Figs 1e, 2a & 2b; that is to say connection failure rate or derived release probability appear to be more accurate indicators of presynaptic strength than PPR or skew. The variance of PPR values for all 50 connections was also lower after pairing (not shown, Levene’s test, p<0.05). When release probabilities of the three populations of connections were compared after pairing, they showed no differences (all p>0.05, Fig. 2e). There were differences in initial connection failure rates and skewness of amplitude distributions between cells exhibiting LTP and LTD, whilst again there were no significant differences post pairing (Fig. 2f & Sup. Fig. 5e). The variance of the failure rate went down in a similar manner to the connection mean amplitude after
pairing (Levene’s test, p<0.01). We also compared both the somatic pre and post-synaptic action potential width of these three groups as it has been reported that a broader post-synaptic action potential favours LTD (Zhou et al. 2005). There were no differences between the groups of cells. Connections which showed LTD had total mean spike widths of 3.8 ± 0.2ms presynaptic neuron and 3.8 ± 0.2 ms postsynaptic neuron. Connections which showed LTD had mean spike widths of 3.9 ± 0.2 ms presynaptic and 4.0 ± 0.2 ms postsynaptic.

These data strongly state that the release probability of a connection dictates the direction of the plasticity that paired activity produces. Paired activity thus results in homogenization of amplitude and presynaptic strength within a population of connections.

Potentiation occurs predominantly by presynaptic mechanisms

The sixteen connections that showed LTP were examined to look at changes in EPSP properties in more detail and also changes in quantal parameters after LTP. Potentiations were stable during the hour of recording after LTP induction (little short term plasticity, Fig. 3a). Potentiations varied greatly in magnitude, from 32 to 319%, with a mean of 109 ± 20%. Connections that potentiated exhibited smaller mean amplitude and greater transmission failures than other connections (mean amplitude 176 ± 39µV in control periods for LTP connections compared to an average of 484 ± 69µV for all connections (p<0.001) and failure rate of 0.54 ± 0.04 compared to average of 0.30 ± 0.06 for all connections, Fig. 2e). Mean amplitudes of inputs which potentiated increased to 314 ± 58µV after pairing compared to the population mean of 410 ± 45µV after pairing (p>0.05, NS). Potencies of connections (a measure of
postsynaptic strength, mean amplitude divided by success rate of transmission; i.e. an EPSP of 200 µV with a failure rate of 0.5 would be of potency 400 µV) which potentiated went from 378 ± 72 µV to 456 ± 85 µV (p<0.05), an increase of 32 ± 13% compared to a much larger 109 ± 20% increase in mean amplitude. Failure rates went down significantly after potentiation (from 0.54 ± 0.04 in control periods to 0.31 ± 0.04 after pairing (Fig. 2e)). These results all suggest largely increases in presynaptic function are responsible for the potentiation. Failure rates of potentiating connections post-pairing became comparable to other connections (0.26 ± 0.04 (NS)). Skew values and paired pulse ratios of potentiating EPSPs also decreased after pairing (Sup Fig. 5). These data all suggest a large presynaptic component to potentiation at these synapses.

Normalized CV²/amplitude plots can give an indication of the locus of changes in synaptic efficacy. Gradients steeper than unity are considered predominantly presynaptic whilst those less steep than unity considered predominantly postsynaptic (Malinow and Tsien 1990). Trajectories depend on initial and final values of Pr as well as postsynaptic contributions to potentiation. Normalized 1/CV² plots of LTP data most often had trajectories steeper than the unity line, again indicating predominantly presynaptic potentiations, though there was substantial heterogeneity between individual lines (Fig. 3b) suggesting the locus varied between different connections. The mean normalized increase in 1/CV² (to 3.18 ± 0.41) was greater than the mean increase in amplitude (2.09 ± 0.20) implying a predominant presynaptic locus for the LTP. Three connections had a CV² trajectory less than the unity line, suggesting significant postsynaptic increases. Quantal analysis techniques were corroborative with these observations: The other potentiations were largely presynaptic. The mean locus of the potentiation was 82 ± 8% presynaptic (m
change, Fig. 3c) and 18 ± 8% postsynaptic (Q change, Fig. 3c). An example of a largely presynaptic LTP is shown in Fig. 3d, and an example of a mixed pre-/postsynaptic potentiation in Sup. Fig. 6a. The predominant presynaptic change after LTP referred to a mean increase in quantal output \((m, \Delta N*Pr)\) of 91 ± 19%, going from initial values of 0.47 ± 0.05 to post pairing 0.85 ± 0.09 (Fig. 3c). This was largely via an increase in \(Pr\) (0.26 ± 0.04 to 0.44 ± 0.05, Fig. 2e). Only one of the connections had a best fit value of \(N\) which increased after pairing. This could also be satisfactorily explained by a simple binomial model with an increase in \(Pr\) (with \(N\) constrained). There is strong evidence against existence of silent synapses at this age (Rumpel et al. 2004) and our data are consistent with this. It would therefore seem that the increase in \(m\) seen after LTP was brought about by an increase in \(Pr\) (Fig. 3c).

As has already been stated, \(Pr\) values of LTP connections were lower than \(Pr\) values of other connections in control periods (p<0.05) but not after pairing (Fig. 2e, NS)

Postsynaptic changes occur at the more distal synapses

We were interested in why there was a 10 fold range in the magnitudes of potentiation. As has been already stated, a number of connections exhibited postsynaptic changes in addition to the ubiquitous presynaptic changes. We found a correlation between magnitude of potentiation and magnitude of postsynaptic change \((r=0.68, p<0.05, \text{Fig. 4a})\) in addition to the almost expected correlation between magnitude of potentiation and presynaptic change \((r=0.67, p<0.05, \text{data not shown})\).

We were interested why a certain minority of connections increased via postsynaptic modifications as well as presynaptic changes, so we looked at various properties of
EPSPs showing these postsynaptic changes and established how they differed from other connections.

Rise time (10-90% EPSP amplitude rise time) is a measure of the distance of the synapses from the soma (Magee and Cook 2000). EPSPs from distal synapses have slower rise times at the soma than proximal ones and decay by a greater amount from their initial amplitudes in neocortical pyramidal neurons (Williams and Stuart 2002). We found that EPSP rise time was not correlated with initial EPSP amplitude, release probability nor quantal size of connection (Sup Fig. 7). EPSP Rise time was also not correlated with series resistance of the recording (not shown).

Average rise times of connections which potentiated were not different to those which depressed or those that did not change in mean amplitude, and did not significantly change during the course of the experiments (Fig. 4b). However, when only connections that showed potentiation were considered, we found a correlation between EPSP rise time and magnitude of potentiation (r=0.52, p<0.05, Fig. 4c). We were concerned that the rise time / degree of potentiation correlation might be due to the inclusion of EGTA in the electrode filling solution causing increased calcium buffering at proximal synapses and reducing the potentiation at these synapses. Therefore, we repeated a set of experiments without EGTA or Ca²⁺ in the electrode solution (efs) and found the same rise time / potentiation magnitude correlation (rise time to potentiation) was still present (r=0.97, p<0.05, Fig. 4c). Combining the zero EGTA / zero Ca²⁺ efs with the EGTA/Ca²⁺ efs data improved the rise time / potentiation magnitude correlation (r=0.57, p<0.01, not shown) suggesting that the electrode solution did not have an effect on the physiology. There was also a similar probability of occurrence of the various forms of plasticity with zero EGTA / zero
Ca$^{2+}$ efs (12 experiments, 4 LTP, 4 LTD and 4 no change in amplitude). The lack of effect of EGTA was perhaps to be expected because neurones contain a large amount of buffered calcium therefore a physiological electrode filling solution would indeed contain both calcium and calcium buffer. Many experimenters investigating synaptic transmission and plasticity have used EGTA intracellularly when using whole-cell techniques (Choi et al. 2003; Kullmann and Nicoll 1992; Schubert et al. 2003) and have observed both pre and post-synaptic changes in LTP (Kullmann and Nicoll 1992). Effects of EGTA on synaptic release have been documented for layer 5 cells (without any Ca$^{2+}$ in the electrode (Ohana and Sakmann 1998)) but in our hands control experiments with no pairing protocol produced little change in mean amplitude after an hour of recording (only 1 ± 12 % depression on average, n=10, data not shown).

We also found a correlation between initial EPSP rise time and postsynaptic change after LTP ($r=0.75$, $p<0.01$, Fig. 4d), though no correlation between EPSP rise time and presynaptic change ($r=0.01$, NS, Fig. 4e). Therefore it seems that distal synapses are able to potentiate by a greater magnitude, via additional postsynaptic mechanisms. This may explain the lack of correlation between rise time / initial amplitude and rise time / initial Q for recorded EPSPs (Sup Fig. 7, NS) as more distal synapses can show greater potentiation and thus compensate for their more remote location. To confirm these observations, EPSPs were split in half, into the most proximal inputs and the more distal inputs. The two groups were compared for amplitude changes after LTP, presynaptic changes and postsynaptic changes. The magnitude of the LTP and postsynaptic component of LTP were larger for distal inputs than proximal inputs (both $p<0.05$), whilst the presynaptic component was comparable ($p>0.05$, NS, Sup. Fig. 8). When all connections were considered
(including non potentiating connections), we found a positive correlation between EPSP rise time and postsynaptic change after pairing \((r=0.40, p<0.05, \text{not shown})\), and a negative correlation between initial \(Q\) value and postsynaptic change \((r=0.4, p<0.05, \text{not shown})\).

LTD also occurs via predominantly via a reduction in quantal content

A \(33 \pm 2\%\) reduction in mean amplitude was seen in 20 connections (40\%) an hour after the pairing protocol (Fig. 5a). Connections which showed LTD had larger initial EPSP amplitudes than average \((790 \pm 139 \mu V \text{ compared to the population average of } 484 \pm 69 \mu V (p<0.05))\), which depressed to \(512 \pm 94 \mu V\) after pairing, compared to the population average of \(410 \pm 45 \mu V\) (NS). They also showed fewer transmission failures (failure rates were \(0.15 \pm 0.04\) in the control period compared to a population average of \(0.30 \pm 0.06\) (p<0.05), after pairing failure rates increased to \(0.25 \pm 0.06\) post pairing compared to a population average of \(0.26 \pm 0.04\) (NS, Fig. 2e).

There is evidence for both pre- (Torii et al. 1997) and post-synaptic (Eder et al. 2002) components to neocortical LTD. Normalized \(CV^2 / \text{amplitude}\) plots for individual experiments in the present study mostly had trajectories steeper than the unity line, suggesting a similar predominantly presynaptic mechanism to the LTD, but again there was considerable heterogeneity between individual plots with a number of lines above the diagonal (Fig. 5b). The mean normalized reduction in \(1/CV^2\) was to \(45 \pm 6\%\) the control value compared to a reduction in amplitude of \(33 \pm 2\%\). Therefore there seems to be a mixture of both pre and postsynaptic depression at the 2/3
synapse. Potencies of connections which showed LTD went from $854 \pm 130 \mu V$ to $608 \pm 88 \mu V$ ($p<0.001$), consistent with an appreciable postsynaptic component to the depression.

When a quantal analysis was performed on these connections which showed LTD, the reduction in mean amplitude was found to be largely via a significant reduction in m (found on 80% of occasions, $p<0.01$, Fig. 5c), but depression in Q was also commonly observed (60% of occasions). There were comparable reductions in individual synaptic parameters N, P_r and Q but none were significant on their own (Fig. 5c). Changes in m after LTD could again in all cases be adequately described by reductions in release probability with N held constant but could not always be described by changes in N (with P_r held constant). These results are again consistent with the observations of (Rumpel et al. 2004) An example of a largely presynaptic LTD is given in Fig 5d; an example of a largely postsynaptic LTD is given in Sup. Fig. 6b.

Relationships between EPSP rise time and magnitude or locus of depression did not exist as for the LTP data (not shown) so therefore it was unclear why some depressions were presynaptic and others postsynaptic.
DISCUSSION

The main findings of this study are that at 3 week old layer 2/3 cortical synapses, the release probability of a connection determines whether the synapse will potentiate or depress in response to paired neuronal activity. Potentiation occurs via predominantly presynaptic mechanisms, while additional postsynaptic mechanisms operate for more distal synapses.

Normalization of synaptic strength following paired activity

We show that in layer 2/3 neurons paired activity is acting to reset the presynaptic strength to intermediate values (to P_r values of around 0.5). Potentiation occurs predominantly by increases in P_r and there appears to be an upper limit to attainable values of P_r. This is consistent with the observation that only weak, relatively undeveloped connections are capable of potentiation. However the reasons why the strength of layer 2/3 synapses normalize in response to paired activity are unclear. Between the ages of 2 and 4 weeks there has been shown to be a switch from paired pulse depression to paired pulse facilitation in the cortex, which indicates a net reduction in release probability over this period (Reyes and Sakmann 1999). For this
to happen there would need to be greater levels of depression than potentiation. Activity dependent scaling has been shown to occur postsynaptically in neocortical neurons (Turrigiano et al. 1998); here we show a means by which scaling occurs presynaptically.

Results from other studies have also suggested a normalization of connection strength after pairing. Connections of smaller mean amplitude have been shown to potentiate preferentially in hippocampal cultures (Bi and Poo 1998). In a previous report where both LTP and LTD were observed in response to the same induction protocol (in layer 2/3 rat visual cortex), initial paired pulse ratio (PPR), a measure of presynaptic strength, was shown to predict the direction of the plasticity in individual cells (Volgushev et al. 2000; Volgushev et al. 1997), whilst changes in PPR after pairing were negatively correlated with initial PPR values. Similar heterogeneous directions of plasticity from paired neuronal firing have been reported at adult corticostriatal synapses (Akopian et al. 2000). In the present study, a quantal analysis of layer 2/3 cortical connections shows that the initial P_r of a connection determines more accurately whether the connection potentiates or depresses than PPR ($r=0.65$, $p<0.001$ for P_r compared to $r=0.37$, $p<0.05$ for PPR). We also found negative correlations between initial PPR and change in PPR after pairing ($r=0.82$, $p<0.001$).

A similar negative correlation between initial P_r and change in P_r after LTP to this study has been previously found in the hippocampus (Larkman et al. 1992). High initial values of P_r may reflect previous saturation of LTP at the connections so therefore only subsequent depression of the connection is possible (Akopian et al. 2000). Conversely, low values of P_r may reflect previous history of LTD so there is therefore larger scope to potentiate (Akopian et al. 2000).
Other factors have been implicated in determining the direction of plasticity that layer 2/3 neurones exhibit in response to paired activity. Postsynaptic action potential width has been proposed to be a determining factor of direction of plasticity in the entorhinal cortex (Zhou et al. 2005) and differing kinetics of postsynaptic calcium transient are proposed to be a determinant in the immature visual cortex (Ismailov et al. 2004). Our data show postsynaptic action potential width is not a critical determinant in the 3 week old visual cortex. We can not rule out the possibility that postsynaptic calcium transients in our postsynaptic neurons varied in cells showing different responses to paired activity. However this seems unlikely as the major determinant of plasticity direction is presynaptic strength. Different levels of calcium elevation in spines have been shown to cause opposite directions of plasticity (Cormier et al. 2001) yet reports have also been made that identical calcium transients can produce LTP and LTD in different cells (Neveu and Zucker 1996).

The locus of synaptic plasticity following paired activity

The locus of long term potentiation at central synapses is still a much debated topic. Locus may depend on the synapse being studied, the stage of development recorded at, the timescale of the measurements, the composition of the intracellular and extracellular solutions being used and the induction protocol used (for recent reviews see (Malenka and Bear 2004; Malinow 2003). In the neocortex, LTP is predominantly presynaptic although postsynaptic modifications have been reported (Hardingham and Fox 2006; Markram and Tsodyks 1996; Volgushev et al. 2000; Volgushev et al. 1997). Potentiation is again believed to be presynaptic at the mossy fibre synapse in the hippocampus (Weisskopf and Nicoll 1995) but many reports have been made of postsynaptically expressed LTP at the hippocampal Schaffer Collateral or at least a
mixed pre/post locus (Malenka and Bear 2004; Malinow 2003; Nicoll 2003). LTP in response to a burst of stimulations at cortical synapses has been shown to be a redistribution of synaptic efficacy over the burst rather than a net increase in synaptic efficacy, consistent with a largely presynaptic locus (Markram and Tsodyks 1996). The fidelity of the postsynaptic response to bursts is more preserved in hippocampal LTP, consistent with a more postsynaptic locus of expression (Buonomano 1999; Selig et al. 1999). Many previous cortical plasticity studies have been carried out at room temperature and results are consistent with more physiological temperatures in many respects including both synaptic properties and plasticity outcomes eg (Ismailov et al. 2004; Volgushev et al. 1997; Zhou et al. 2005). The present study has confirmed a predominant presynaptic mechanism for both LTP and LTD at the cortical layer 2/3 synapse.

As postsynaptic calcium transients have been shown to be responsible for both LTP and LTD (Bender et al. 2006), this would indicate the involvement of a retrograde messenger to produce both reductions and increases in presynaptic function. Nitric oxide has been strongly implicated in LTP in supragranular layers of cortex (Hardingham and Fox 2006; Haul et al. 1999; Nowicky and Bindman 1993). Endocannabinoids have been implicated in presynaptic cortical LTD in layer 2/3 cortex (Bender et al. 2006; Sjostrom et al. 2004, 2003). Paired activity could produce both messengers simultaneously. Presynaptic targets of nitric oxide (eg guanylyl cyclase) could become desensitized following recent LTP inducing activity. The direction of synaptic plasticity could depend on the relative size of responses to the two retrograde signals. If the release probability is low, the potentiating response of nitric oxide could dominate, while if release probability is high the response to nitric oxide may be saturated and the depressing response of endocannabinoids could
dominate. In this way the differing responses of neurons to the same protocol could be explained.

In the present study, whilst presynaptic modifications were ubiquitous at the synapses studied, postsynaptic modifications were restricted to distal synapses. Distal synapse amplitude has been shown to be larger at the synaptic terminal than at more proximal sites, both in cortex and hippocampus, whilst EPSPs are of more similar size at the soma regardless of synapse location (Andrasfalvy and Magee 2001; Magee and Cook 2000; Smith et al. 2003; Williams and Stuart 2002). These results are consistent with the lack of correlations between EPSP rise time (location) and somatic amplitude or \(Q \) (postsynaptic efficacy) in the present study (Sup Fig. 7). It has been proposed that distal synapses may be initially larger in amplitude due to a greater number of AMPA receptors at the synapses (Andrasfalvy and Magee 2001; Smith et al. 2003). Distance dependent scaling of this form could be explained by distal synapses being preferentially potentiated, or potentiated by a greater magnitude than proximal ones. Results in this study suggest that increased potentiation of distal synapses does indeed occur and that it does so by additional postsynaptic modifications to the normal presynaptic changes.

This is markedly different to that reported at the same neurons at two distances along the apical dendrite where potentiation was shown to be smaller at distal synapses (Froemke et al. 2005). However one must take into account the fact that a large number of the excitatory synaptic inputs to these neurons (85-90\%) are on the basal and apical oblique dendrites (Larkman 1991) which were not investigated by Froemke et al. Modelling studies indicate that the range of rise times for EPSPs we recorded are within those predicted for basal and apical oblique inputs (Trevelyan and Jack 2002) & unpublished observations (Trevelyan). The longer rise time EPSPs
would be located on the terminal ends of the dendrites. Since their amplitude at the soma is similar to the more proximal input EPSPs, they must be generated by synaptic conductances at least as large as the more proximal EPSPs. As the local input impedance is greater in the terminal dendritic region, the local voltage excursion will be much greater than for more proximal inputs (for theoretical examples see (Jack et al. 1975; Redman 1973). This predicted larger local voltage excursion might be more likely to cause greater calcium entry, particularly through voltage dependent calcium channels. The size of postsynaptic calcium transients caused by bursts of action potentials along the basal dendrites in layer 5 neurons from 3-4 week old rats has now been shown to be larger distally than more proximally (Kappa and Stuart 2006). Whether these larger distal calcium transients also occur in layer 2/3 and whether they can recruit additional postsynaptic modifications remains to be seen.

ACKNOWLEDGEMENTS

Work supported by the Welcome Trust, the MRC and the Royal Society
FIGURE LEGENDS

Figure 1

Paired action potentials normalize layer 2/3 connections. (a) Example action potentials and EPSPs from paired recordings. Scale bars 75ms and 50mV (APs) and 75ms and 1mV (EPSPs) Centre: proportion of connections which potentiated (right), did not change in amplitude or depressed (left) to a paired action potentials protocol. Bottom: the normalized change in mean amplitude is shown for each connection on a logarithmic scale. (b) EPSP amplitudes in control periods of recording (bottom) and after the paired action potentials protocol (top) on a log scale. (c) The variance of the population of EPSP amplitudes is statistically smaller after pairing (p<0.05). (d) EPSP amplitude is negatively correlated with change in mean amplitude after pairing (linear regression, r=0.42, p<0.01) (e) Failure rate is positively correlated with change in mean amplitude after pairing (linear regression, r=0.68, p<0.001)
Initial release probability of a connection predicts the change in mean amplitude observed after pairing. (a) Initial PPR (50ms interpulse interval) is positively correlated with change in mean amplitude after pairing (n=36, r=0.37, p<0.05). Example traces of EPSPs showing PPD (left, scale bars 0.2mV and 50ms) and PPR (right, scale bars 0.5mV and 50ms) are shown. (b) P_r of amplitude distribution gives a strong indication of whether a connection will potentiate or depress ($r=0.66$, $p<0.001$). (c) Q however gives no indication of whether a connection will potentiate or depress ($r=0.24$, NS). (d) Change in P_r after pairing are negatively correlated with initial P_r value ($r=0.63$, $p<0.001$). (e) Mean P_r values after pairing (right) are much more homogenous than initial P_r values of connections showing LTP and LTD (left). P_r values from connections which showed LTP, no change in mean amplitude (nc) or LTD were all significantly different before pairing ($p<0.05$), but not so afterwards. (f) Initial failure rates were also different for LTP, nc and LTD connections in control periods of recording, but not afterwards. Failure rate also significantly went down after pairing in LTP cases ($p<0.001$). Raw traces show failure and non failure trials can be clearly identified.

Figure 3

Potentiation involves predominantly presynaptic enhancements. (a) In a subset or recordings (16 from 50), a paired action potentials produced a long lasting increase in EPSP mean amplitude. Increases in amplitude were $109 \pm 20\%$ and stable over the recordings. Averaged raw data shows an EPSP which potentiated, in control period of recording and after pairing (b) Normalized $1/CV^2$ / mean amplitude plots showed considerable heterogeneity between connections, but the mean gradient was steeper than unity, suggesting predominantly presynaptic mechanisms. (c) Mean changes in
amplitude, m (N^*P_r), N, P_r and Q after LTP. Only changes in mean ($p<0.001$), m ($p<0.001$) and P_r ($p<0.05$) were significant after LTP. (d) An example of a presynaptic LTP with simple binominal model fits in control periods (left) and potentiated recordings (right).

Figure 4

Postsynaptic changes are correlated both with magnitude of LTP and rise time of EPSP. (a) The largest magnitude potentiations coincided with substantial postsynaptic modifications in addition to presynaptic changes ($r=0.68$, $p<0.05$). (b) Rise times of connections which showed LTP, no change in mean amplitude or LTD were not different from one another and did not change over the time of recordings. (c) Rise time was correlated with potentiation magnitude both with (filled symbols, $r=0.52$, $p<0.05$) or without EGTA and Ca^{2+} in the recording electrode (open symbols, $r=0.97$, $p<0.05$). (d) Rise time was correlated with percentage change in Q after pairing (d, $r=0.75$, $p<0.001$) but not change in m, presynaptic strength (e).

Figure 5

Depression also involves predominantly presynaptic changes. (a) In a subset of recordings (20 from 50), a paired action potentials produced a long lasting reduction in EPSP mean amplitude. Reductions in amplitude were $33 \pm 2\%$. Averaged raw data shows an EPSP which depressed, in the control period of recording and post pairing. (b) Normalized $1/CV^2$ / mean amplitude plots showed considerable heterogeneity between connections, but the mean gradient was again steeper than unity (open symbols), suggesting predominantly presynaptic mechanisms. (c) Mean changes in amplitude, m (N^*P_r), N, P_r and Q after LTP. Only changes in amplitude ($p<0.001$)
and m \((p<0.01)\) after LTD were significant. (d) An example of a largely presynaptic LTD with simple binomial model fits in control periods (left) and depressed recordings (right).

SUPPLEMENTAL FIGURE LEGENDS

Supplemental Figure 1

The paired action potentials induction protocol

(a) Action potentials are fired in the cell so that the presynaptic neuron fires several ms before the postsynaptic neuron (b) Bursts of 20 paired action potentials are evoked in the neurons at 20Hz. (c) 10 trains of bursts are evoked in the neurons at 0.5Hz (d) 3 groups of trains are evoked in the neurons at 1 per minute, giving a total of 600 paired action potentials.

Supplemental Figure 2

Quantal peaks in histograms are present in responses to multiple stimulations.

Paired pulse stimulation twice in 50ms (a) produces amplitude frequency histograms to the second stimulation (b) with different peak frequencies but similar quantal spacings to the first pulse stimulation (c & d)
Supplemental Figure 3

Observed failure rate correlates with predicted failure rate. Correlations between observed failure rate and predicted failure rate of binomial models are very good both in (a) control periods of recordings ($r=0.97$, $p<0.001$) and (b) post pairing ($r=0.97$, $p<0.001$).

Supplemental Figure 4

Some connections show no change in mean amplitude after pairing.

(a) Connections which showed no long lasting change in mean amplitude after the pairing protocol. Averaged raw data shows little change in amplitude from control period of recording to post-pairing (b) Results of quantal analysis show no significant change in any parameter. (c) Example of raw data and binomial fits of a connection before and after pairing shows similar shape and quantal spacings.

Supplemental Figure 5

How various measurements of presynaptic strength change after pairing

(a) How paired pulse ratio (PPR) of EPSPs change over the recordings. The three values for each of the 3 cell groups (LTP, nc & LTD) are taken at the start of the experiment, straight after pairing and at the end of the recording. (b) Change in PPR values of connections after pairing is positively correlated with change in mean amplitude ($r=0.41$, $p<0.01$). (c) Change in assigned P_r values of connections after pairing is
strongly positively correlated with change in mean amplitude ($r=0.88, p<0.001$). (d) Change in failure rate of connections is also strongly positively correlated with change in mean amplitude ($r=0.70, p<0.001$). (e) Skew of amplitude distributions in control periods of recording is quite different for cells which potentiate and those which depress ($p<0.05$, skew values were between 2.23 and -1.39). The skew of those cells which showed no change in mean amplitude is between the two. Skew values post pairing are very comparable in the three groups of cells.

Supplemental Figure 6

Postsynaptic changes observed in LTP and LTD. An example of a predominantly postsynaptic (a) LTP and (b) LTD, control periods on left and post pairing on the right.

Supplemental Figure 7

Rise time is not correlated with initial quantal parameters. Initial rise time of connections is not correlated with initial (a) mean amplitude (b) release probability (c) quantal size

Supplemental Figure 8

Distal synapses show increased potentiation and increased postsynaptic modifications. Comparisons of (a) magnitude of LTP (b) Increase in Q and (c) increase in P, for proximal (<3ms rise time) and distal connections (>4ms rise time).
Increases in amplitude and Q between the distal and proximal sets are statistically different ($p<0.05$).

REFERENCES

Neveu D and Zucker RS. Postsynaptic levels of [Ca2+]i needed to trigger LTD and LTP. *Neuron* 16: 619-629, 1996.

Figure 1. Paired action potentials normalizes layer 2/3 connections. (a) Example action potentials and EPSPs from paired recordings. Scale bars 75ms and 50mV (APs) and 75ms and 1mV (EPSPs) Centre: proportion of connections which potentiated (right), did not change in amplitude or depressed (left) to a paired action potentials protocol. Bottom: the normalized change in mean amplitude is shown for each connection on a logarithmic scale. (b) EPSP amplitudes in control periods of recording (bottom) and after the paired action potentials protocol (top) on a log scale. (c) The variance of the population of EPSP amplitudes is statistically smaller after pairing (p<0.05). (d) EPSP amplitude is negatively correlated with change in mean amplitude after pairing (linear regression, r=0.42, p<0.01) (e) Failure rate is positively correlated with change in mean amplitude after pairing (linear regression, r=0.68, p<0.001)
Figure 2. Initial release probability of a connection predicts the change in mean amplitude observed after pairing. (a) Initial PPR (50ms interpulse interval) is positively correlated with change in mean amplitude after pairing (r=0.37, p<0.05). Example traces of EPSPs showing PPD (left, scale bars 0.2mV and 50ms) and PPR (right, scale bars 0.5mV and 50ms) are shown. (b) P_r of amplitude distribution gives a strong indication of whether a connection will potentiate or depress (r=0.66, p<0.001). (c) Q however gives no indication of whether a connection will potentiate or depress (r=0.24, NS). (d) Change in P_r after pairing are negatively correlated with initial P_r value (r=0.63, p<0.001). (e) Mean P_r values after pairing (right) are much more homogenous than initial P_r values of connections showing LTP and LTD (left). P_r values from connections which showed LTP, no change in mean amplitude (nc) or LTD were all significantly different before pairing (p<0.05), but not so afterwards. (f) Initial failure rates were also different for LTP, nc
and LTD connections in control periods of recording, but not afterwards. Failure rate also significantly went down after pairing in LTP cases (p<0.001). Raw traces show failure and non failure trials can be clearly identified.
Figure 3. Potentiation involves predominantly presynaptic enhancements. (a) In a subset of recordings (16 from 50), a paired action potentials produced a long lasting increase in EPSP mean amplitude. Increases in amplitude were 109 ± 20% and stable over the recordings. Averaged raw data shows an EPSP which potentiated, in control period of recording and after pairing (b) Normalized 1/CV² / mean amplitude plots showed considerable heterogeneity between connections, but the mean gradient was steeper than unity, suggesting predominantly presynaptic mechanisms. (c) Mean changes in amplitude, \(m \) \((N^+P_r) \), \(N \), \(P_r \), and \(Q \) after LTP. Only changes in mean \((p<0.001) \), \(m \) \((p<0.001) \) and \(P_r \) \((p<0.05) \) were significant after LTP. (d) An example of a presynaptic LTP with simple binomial model fits in control periods (left) and potentiated recordings (right).
Figure 4. Postsynaptic changes are correlated both with magnitude of LTP and rise time of EPSP. (a) The largest magnitude potentiations coincided with substantial postsynaptic modifications in addition to presynaptic changes ($r=0.68$, $p<0.05$). (b) Rise times of connections which showed LTP, no change in mean amplitude or LTD were not different from one another and did not change over the time of recordings. (c) Rise time was correlated with potentiation magnitude both with (filled symbols, $r=0.52$, $p<0.05$) or without EGTA and Ca$^{2+}$ in the recording electrode (open symbols, $r=0.97$, $p<0.05$). (d) Rise time was correlated with percentage change in Q after pairing (d, $r=0.75$, $p<0.001$) but not change in m, presynaptic strength (e).
Figure 5. Depression also involves predominantly presynaptic changes. (a) In a subset of recordings (20 from 50), a paired action potentials produced a long lasting reduction in EPSP mean amplitude. Reductions in amplitude were 33 ± 2%. Averaged raw data shows an EPSP which depressed, in the control period of recording and post pairing. (b) Normalized 1/CV^2 / mean amplitude plots showed considerable heterogeneity between connections, but the mean gradient was again steeper than unity (open symbols), suggesting predominantly presynaptic mechanisms. (c) Mean changes in amplitude, m (N*Pr), N, Pr, and Q after LTP. Only changes in amplitude (p<0.001) and m (p<0.01) after LTD were significant. (d) An example of a largely presynaptic LTD with simple binomial model fits in control periods (left) and depressed recordings (right).