Spatial Frequency Specific Contrast Adaptation Originates in the Primary Visual Cortex

Thang Duong and Ralph D Freeman

Group in Vision Science, School of Optometry, Helen Wills Neuroscience Institute, University of California, Berkeley
Berkeley, California 94720-2020

Running head: Spatial frequency adaptation in the visual pathway

Contact information:

Ralph Freeman
University of California
School of Optometry
360 Minor Hall
Berkeley, CA 94720-2020
freeman@neurovision.berkeley.edu
Abstract

Adaptation to a high contrast grating stimulus causes reduced sensitivity to subsequent presentation of a visual stimulus with similar spatial characteristics. This behavioral finding has been attributed via neurophysiological investigations to processes within the visual cortex. However, some evidence indicates that contrast adaptation phenomena are also found in early visual pathways. Adaptation effects have been reported in retina and lateral geniculation nucleus (LGN). It is possible that these early pathways could be the physiological origin of the cortical adaptation effect. To investigate this, we have recorded from single neurons in the cat's LGN. We find that contrast adaptation in the LGN, unlike that in the visual cortex, is not spatial frequency specific, i.e., adaptation effects apply to a broad range of spatial frequencies. In addition, aside from the amplitude attenuation, the shape of spatial frequency tuning curves of LGN cells is not affected by contrast adaptation. Again, these findings are unlike those found for cells in the visual cortex. Together, these results demonstrate that pattern specific contrast adaptation is a cortical process.

Introduction

Adaptation to sensory stimulation is a common feature of the nervous system. Maintained stimulation generally results in reduced neural response to a given stimulus. In the visual system, this adaptation process has been studied for different aspects of the
stimulus. Contrast adaptation is probably the most frequently investigated phenomenon. The initial work was limited to psychophysical approaches. Prolonged exposure to a high contrast grating stimulus increases the contrast detection threshold for a similar stimulus (Blakemore and Campbell 1969a; b). This change in sensitivity applies only for a narrow range of spatial frequencies centered on that used for the adaptation. The threshold changes are accompanied by perceptual effects in that there is an apparent shift in perceived spatial frequency (Blakemore et al. 1970). These contrast adaptation effects can be interpreted in the context of spatial frequency selective neurons which become fatigued by contrast adaptation (Blakemore and Campbell 1969a; b; Blakemore and Nachmias 1971; Blakemore et al. 1970; Klein et al. 1974).

Neurophysiological studies have been carried out to try to elucidate mechanisms of contrast adaptation and to attempt to localize the site(s) at which the effects occur. Single neuron studies show that cells in the primary visual cortex adjust their operating characteristics to maximize sensitivity when adapted to fixed contrast gratings. Specifically, contrast-response functions surrounding the adaptation levels have steep slopes so that neural sensitivity is very high for small changes in contrast (Movshon and Lennie 1979; Ohzawa et al. 1982; 1985). Contrast adaptation of neurons in striate cortex is similar to that shown psychophysically in that it is selective to spatial content of the adapting stimulus, and it appears to temporarily alter spatial frequency and orientation preference (Dragoi et al. 2001; Dragoi et al. 2000; Movshon and Lennie 1979; Saul and Cynader 1989). An initial adapting stimulus for tens of seconds temporarily moves the preferred orientation and spatial frequency preference away from that of the adapting
values. In the orientation domain, this effect apparently lasts for minutes (Dragoi et al. 2000).

These neurophysiological findings suggest that adaptation is a cortical phenomenon. However, intracellular recordings show tonic hyperpolarization of both LGN and cortical cells during contrast adaptation (Carandini and Ferster 1997; Sanchez-Vives et al. 2000a; b), and this could underlie the adaptation effect. On the other hand, this cellular mechanism does not account for the pattern selective property of contrast adaptation, which has been attributed to intracortical processes (Carandini 2000; Dragoi et al. 2001; Dragoi et al. 2000; Movshon and Lennie 1979; Muller et al. 1999). With respect to sites of contrast adaptation, fMRI measurements in human subjects show clear effects in V1, V2, and V3 (Boynton and Finney 2003; Fang et al. 2005; Larsson et al. 2006). In addition, V4 appears to respond to changes rather than absolute levels of contrast (Gardner et al. 2005). Pathways earlier than V1 have also been studied in single cell neurophysiological experiments. Contrast adaptation effects have been observed in LGN but they are weak compared to those in primary visual cortex. (Ohzawa et al. 1985; Shou et al. 1996). In addition, cortical cells exhibit interocular transfer of contrast adaptation which suggests the visual cortex as a major site of this process (Bjorklund and Magnussen 1981; Blakemore and Campbell 1969a; Selar et al. 1985). Although there is a small degree of binocular interaction in the LGN (Haynes et al. 2005; Xue et al. 1987), it is not clear if it is sufficient for the interocular transfer of contrast adaptation.

While the visual cortex is generally assumed to be the origin of contrast adaptation (Ohzawa et al. 1982; 1985), some reports suggest that early pathways may play a role (Sanchez-Vives et al. 2000a; b; Shou et al. 1996; Smirnakis et al. 1997; Solomon et al. 1988).
2004). In the salamander retina, ganglion cells exhibit contrast adaptation that is specific for spatial scale (Smirnakis et al. 1997). In the monkey, slow contrast adaptation is observed for magnocellular but not for parvocellular cells, and simultaneous recordings of S potentials and LGN action potentials suggest that the effect originates in retinal ganglion cells (Solomon et al. 2004). Aside from the obvious possibility of species differences, it is not clear whether contrast adaptation observed in striate cortex originates from amplification of an early visual pathway mechanism. If this is the case, intracortical processes are not necessary to account for adaptation of cortical neurons.

We have conducted direct tests in LGN to determine the extent to which contrast adaptation there can account for that observed in visual cortex. First, we record from LGN neurons to determine if contrast adaptation is pattern selective. To do this, we measure the contrast-response function following adaptation to two separate spatial frequencies: one the same as that used for adaptation and the other different by an octave or more. These two spatial frequencies straddle the peak of the response curve and are at least half an octave away from the peak spatial frequency. For neurons with low-pass response where the peak is not well defined, the two spatial frequencies are arbitrarily picked so that they are at least an octave apart and elicit equal responses. Second, we measure LGN spatial frequency tuning curves following contrast adaptation. We find that contrast adaptation in LGN is not spatial frequency selective. Additionally, we find that the shape of spatial frequency tuning curves in LGN is attenuated, but otherwise not affected by contrast adaptation. These results demonstrate that pattern specific contrast adaptation is primarily a cortical phenomenon.
Experimental procedures

Physiological Preparation

All procedures complied with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. Extracellular recordings are made using epoxy coated tungsten microelectrodes in the LGN of anaesthetized and paralyzed mature cats. Cats are initially anaesthetized with isoflurane (1-4%). After catheterization, a continuous infusion is given of a combination of fentanyl citrate (10µg kg⁻¹hr⁻¹) and thiopental sodium (6mg kg⁻¹hr⁻¹). Bolus injections of thiopental sodium are given as required during surgery. After a tracheal cannula is positioned, isoflurane is discontinued, and the animal is artificially ventilated with a mixture of 25% O₂ and 75% N₂O. Respiration rate is manually adjusted to maintain an end-tidal CO₂ of 34-38mmHg. Body temperature is maintained at 38°C with a closed-loop controlled heating pad (Love Controls, IN, USA). A craniotomy is performed over the LGN, and the dura is resected and covered with agar and wax to form a closed chamber. After completion of all surgical procedures, continuous injection of fentanyl citrate is discontinued, and thiopental sodium concentration is lowered gradually to a level at which the cat is stabilized for one hour or more. The level of anesthetic used is determined individually for each cat. Once a stabilized anesthetic level is reached, the animal is immobilized with pancuronium bromide (0.2 mg kg⁻¹hr⁻¹). EEG, ECG, heart rate, temperature, end-tidal CO₂, and intra-tracheal pressure are monitored for the entire duration of the experiment. Electrode penetrations are made perpendicular to the cortical surface at approximately Horsley-Clarke coordinates A6L9. Electrodes are then advanced until visually...
responsive cells with LGN response characteristics are found (typically over 12mm below the cortical surface).

Visual Stimulation

Visual patterns consisting of sinusoidal gratings or noise patterns are presented on a large CRT at frame rate of 75hz. The 47.8cm diameter CRT is positioned at an optical distance of 41.8cm in front of the cat’s eyes, and is split so that half of the display stimulates the left eye and the other half stimulates the right eye. Luminance from the CRT was calibrated for a linear range with maximum and minimum values of 90cd/m² and 0.1cd/m², respectively.

Extracellular Recording

Single units are isolated in real-time by the shape of their spike waveforms using custom software. An initial estimate of the tuning parameters is made qualitatively by computer-controlled manipulation of drifting sinusoidal gratings. Spatiotemporal receptive fields are measured with a binary m-sequence technique (Reid et al. 1997; Anzai, et al. 1999a,b). The spatial extent of visual stimulation is kept slightly larger than the receptive field size. Temporal frequency tuning curves are measured with drifting sinusoidal gratings at 50% contrast. Spatial frequency and contrast tuning curves are measured at optimal temporal frequencies, typically between 4 and 15 cycles per second, determined for each cell.
Adaptation Paradigm

For each cell, three adaptation experiments are performed. These experiments utilize an adaptation paradigm similar to those employed in previous studies (Movshon and Lennie 1979; Ohzawa et al. 1982; 1985). The first experiment measures the effect of adaptation on the contrast tuning curve at the same spatial frequency as that used for adaptation. In this experiment, the adapting stimulus is presented at 50% contrast for 60 seconds followed by a series of randomized test presentations at contrast levels between 0 and 100% for 1 second each. A top-up adaptation stimulation precedes each test stimulation to maintain desired adapting levels (Movshon and Lennie 1979) as illustrated in Figure 1A. The adapted contrast tuning curve is obtained from first harmonic responses.

The second experiment determines the effect of adaptation on the contrast tuning curve measured at a different spatial frequency than that used for adaptation (see Figure 1B). The adapting and test spatial frequencies are separated from the peak by at least half an octave. Both spatial frequencies are chosen so that they elicit approximately equal firing rates. The adapting, stimulating, and top-up parameters for this experiment are similar to those for the first.

The third experiment establishes the effect of adaptation on the spatial frequency tuning curve (see Figure 1C). For each cell, we measured a spatial frequency tuning curve at 50% contrast following adaptation to a spatial frequency half an octave above the peak. We repeated this procedure for another spatial frequency half an octave below the peak. We employed a similar adaptation scheme as that used in the first experiment.
Results

To examine the effects of contrast adaptation on response characteristics of LGN cells, we compare the unadapted with the adapted spatial frequency and contrast tuning curves.

The response of a typical neuron in the LGN to an adapting grating is shown in Fig. 2A. In this case and for another 40 cells, we presented a sinusoidal grating of 50% contrast drifted at optimal temporal frequency for 60 seconds. The PSTH of Fig. 2A shows a typical exponential decay pattern indicated by the solid line. Most neurons exhibit similar exponential decay patterns in response to the onset of an adapting grating. We fit this decay with the function:

\[r(t) = (A - B)e^{-\tau t} + B \]

where \(r(t) \) is the spike response at time \(t \), \(A \) is the maximum response, \(B \) is the adapted response, \(t \) is time since stimulus onset, and \(\tau \) is the adaptation time constant. The average normalized adapted response (defined as \(\frac{B}{A} \)) for our population of 38 cells is 79.44±3.67% of the unadapted level which is consistent with an earlier report (Shou et al. 1996) in which a similar protocol was used. A histogram which shows the distribution of adapted response levels for our population of cells is presented in Fig. 2B (top). A similar histogram of the adaptation time constant is shown in Fig. 2B (bottom).

To confirm that the adaptation effects are reversible, we measured the recovery process in six cells by first testing unadapted response characteristics. We then adapted each cell, waited for at least 10 minutes during which the cell was not stimulated, and then retested
the response characteristics using the original stimulation protocol. Data for one of these
control tests are shown in Fig. 2C and D. Initial (filled circles; solid lines; Fig. 2C and D)
and recovery data (unfilled circles; dotted lines; Fig. 2C and D) for spatial frequency (C)
and contrast tuning (D) functions are closely matched. The other five control tests
yielded similar results.

Contrast adaptation in primary visual cortex of the cat has been shown to alter contrast-
response functions. The adapted contrast tuning function shifts towards the right of the
unadapted measurement (Ohzawa et al. 1982; 1985). A similar response characteristic
has been reported for M-cells in the monkey LGN (Solomon et al. 2004). To explore this
effect directly in the cat’s LGN, we determined the change in contrast-response functions
before and after adaptation. Figure 3A, B, C, and D show contrast-response functions of
four representative cells before and after adaptation. Filled circles and solid lines
represent unadapted contrast-response functions. Unfilled circles and dashed lines
represent adapted contrast-response functions. The lines represent the best hyperbolic
nonlinearity fits given by the equation (Albrecht and Hamilton 1982):

\[
r(c) = \frac{R_{\text{max}} c^n}{c^n + C_{50}^n} + B
\]

(2)

where \(r(c) \) is the response to contrast \(c \), \(R_{\text{max}} \) is the maximum response of the cell, \(C_{50} \)
is the contrast for which the discharge rate is half maximum, and \(B \) and \(n \) are free
parameters. In general, \(R_{\text{max}} \) and \(C_{50} \) represent the response and contrast gain of the cell,
respectively (Albrecht and Hamilton 1982). According to equation (2), a right or
leftward shift in the contrast tuning curve corresponds, respectively, to an increase or
decrease in C_{50}. For 14 of 26 cells, we find a small reduction in R_{max} and for 21 out of 26
cells, an increase in C_{50} is observed after adaptation, as illustrated in Fig. 3A and B. For
12 of 26 cells, either no change or an increase is found in R_{max}, and for 5 of 26 cells, there
is no change or a small decrease in C_{50} as shown in Fig. 3C and D. A comparison of
adapted and unadapted R_{max} and C_{50} for our population of LGN cells is shown in Fig. 4A
and B. Unadapted and adapted R_{max} values appear equally distributed along the unity
line, and there is a small decrease (7.7±6.9%) in the average value after adaptation (Fig.
4A) (different from 0; $p<0.3$). On the other hand, C_{50} increases substantially following
adaptation by an average of 37.25±10.30% (Fig. 4B) (significantly different from 0;
$p<0.001$). These results confirm that adaptation effects are expressed by neurons in the
LGN.

Contrast adaptation of cortical neurons is selective for spatial frequency. Therefore,
adaptation to a grating of a given spatial frequency has minimal effect on the contrast-
response function tested at a different spatial frequency (Movshon and Lennie 1979;
Muller et al. 1999). This is a central feature of contrast adaptation in visual cortex and it
is important to determine if this applies to neurons in the LGN. We tested our population
of cells using a similar paradigm as that used for visual cortex (see Experimental
procedures). Figure 5A, B, C, and D shows the same data as in Fig. 3A, B, C, and D
with an additional adaptation condition in which the spatial frequency of the adapting
grating is different but the spatial frequency of the test stimuli remains the same. Results
of this additional test (Fig. 5A, B, C, and D, unfilled triangles and dotted lines) show
clearly that the effect of contrast adaptation is independent of the adapting spatial
frequency. This is demonstrated by the finding that contrast-response functions are closely similar following adaptation to two widely different spatial frequencies.

For a subset of our LGN cell population (n=23), we determined responses for two conditions. In one, the same spatial frequency is used for adaptation and for determining contrast-response functions. For the second condition, the test spatial frequency differs from that used for adaptation by more than an octave. Results for these two conditions are presented in Fig. 6 for R_{max} (A) and C_{50} (B) values. The horizontal axes denote R_{max} and C_{50} values for contrast tuning curves measured after adaptation to the same spatial frequency as that of the test. Vertical axes denote R_{max} and C_{50} values for contrast tuning curves measured after adaptation to a different spatial frequency than that of the test stimulus. The diagonals are unity lines. The data show that most points cluster around the unity lines for both R_{max} and C_{50}. Therefore, the effects of contrast adaptation on R_{max} and C_{50} are independent of the adapting spatial frequency.

The other aspect of contrast adaptation in the visual cortex that must be addressed has to do with the observation that changes are observed in tuning properties. Temporary alterations in orientation (Dragoi et al. 2001; Dragoi et al. 2000; Muller et al. 1999) and spatial frequency tuning (Movshon and Lennie 1979; Saul and Cynader 1989) of cells in the visual cortex have been observed as a consequence of contrast adaptation. We want to determine if contrast adaptation has similar effects on spatial frequency responses in LGN. To address this question, we measured the spatial frequency tuning curves before and after adaptation to two different spatial frequencies separated by an octave or more. Figure 7A, B, C and D shows data from four representative LGN neurons. Unadapted (filled circles, solid lines) and two adapted spatial frequency tuning curves (unfilled
circles, dashed lines and unfilled triangles, dotted lines) are included. The adapted tuning curves were measured with two different adaptation spatial frequencies that are at least one octave apart. The arrows above the plots denote the adapting spatial frequencies, which consist of one above (unfilled triangle, dotted line) and one below (unfilled circle, dashed line) the tuning peaks. For these two of the four example cells (Fig. 7A and B) and for 14 out of 19 cells, adaptation decreases the amplitude of the spatial frequency tuning curve while keeping the tuning peak and width approximately constant. The other two example cells (Fig. 7C and D) and the remaining neurons show either an increase in amplitude or no change and relatively constant width and peak values.

To quantify the effects of adaptation on spatial frequency tuning, we fit each tuning curve with a Gaussian function:

$$r(f) = Ae^{-(f-\mu)^2/2\sigma} + B$$

(3)

where \(r(f) \) is the response at spatial frequency \(f \), \(\mu \) is the mean, \(\sigma \) is the width, \(A \) is the amplitude, and \(B \) is a free offset parameter. The data shown in Fig. 8A and B compare the peaks and widths, respectively, of 19 LGN cells for adapted (vertical axis) and unadapted (horizontal axis) conditions. For each cell, the unfilled and filled circles denote adaptation to low and high spatial frequency conditions, respectively. Therefore, there are two data points for each cell in Fig. 8A and B. For most cells, the peaks and widths remain constant for unadapted and adapted conditions. In other words, adaptation does not change the peaks and widths of the spatial frequency tuning curves (Fig. 8A and B). Linear regression analysis of adapted versus unadapted peak spatial frequencies yields \(R^2=0.79 \), slope=1.04 (not significantly different from 1; \(P>0.5 \)). Regarding tuning
width, we find that it decreases after adaptation for most cells. However, a similar linear regression analysis of adapted versus unadapted spatial frequency tuning widths gives $R^2=0.72$, slope=1.13 (not significantly different from 1; $P>0.75$). Therefore, contrast adaptation does not affect the spatial frequency tuning curves of LGN cells.

Figure 8C and D show the tuning peaks and widths, respectively, for 19 cells after adaptation to spatial frequencies below (horizontal axis) and above (vertical axis) the tuning peaks. These cells clearly cluster along the unity line. Linear regression analysis of the spatial frequency tuning peak for adaptation to high versus low spatial frequencies yields $R^2=0.79$, slope=0.86 (not significantly different from 1; $P>0.75$). Similar linear regression analysis for the width parameter gives $R^2=0.82$, slope=0.92 (not significantly different from 1; $P>0.6$). Therefore, the effect of contrast adaptation on the spatial frequency tuning curves is independent of the adapting spatial frequencies.

Discussion

We have considered here the origin of a common sensory reaction to persistent activation of a neural system. The case we have examined is the effect of a high contrast visual stimulus which temporarily reduces and alters sensitivity to a stimulus in the visual pathway. While previous investigations of contrast adaptation have generally considered it to be based on cortical circuits, a careful examination of the literature shows that there is a clear effect at the LGN level. In particular, Ohzawa et al. (1985) (see Fig. 5) show that most cells in the LGN adapt to some extent although not nearly to the degree of neurons in the visual cortex. Subsequent studies using different approaches confirm this result (Sanchez-Vives et al. 2000b; Shou et al. 1996; Solomon et al. 2004). Results are
not uniform and in one, contrast adaptation is reported to be absent in LGN cells (Mante et al. 2005). However, data are shown for only one cell so it is not clear how that conclusion was reached. In any case there is sufficiently clear evidence of contrast adaptation in LGN to consider the possibility that the effects observed in visual cortex have their origin in early visual pathways. This could be initiated at the ganglion cell stage of the retina. To rule this out, we have conducted tests which show that adaptation effects in LGN are clearly different than those found in visual cortex. A strong indicator is that adaptation is not spatial frequency specific in LGN. We conclude that the origin of spatial frequency specific contrast adaptation and presumably other types of pattern specific visual adaptation is in the visual cortex.

Visual adaptation to high contrast gratings has perceptual consequences in humans. First, adaptation increases the contrast detection threshold for a stimulus of a similar pattern. This only holds for a narrow range of orientations and spatial frequencies surrounding that of the adapting pattern (Blakemore and Campbell 1969b). Second, apparent subjective contrast levels are reduced following adaptation (Barrett et al. 2002; Ross and Speed 1996; Snowden and Hammett 1996; 1992). Third, discrimination thresholds may be enhanced by contrast adaptation (Abbonizio et al. 2002; Greenlee and Heitger 1988; Maattanen and Koenderink 1991). These perceptual consequences have been attributed to fatigue of neuronal channels which decreases their subsequent response strengths. This decrease in strength, in turn, has an effect on perception (Blakemore and Campbell 1969a; b; Blakemore et al. 1973; Blakemore and Nachmias 1971; Blakemore et al. 1970; Klein et al. 1974).
The neural basis of these perceptual contrast adaptation effects is thought to be located in primary visual cortex. Fatigue of neurons in cortex is mediated by a tonic hyperpolarization that accompanies contrast adaptation (Carandini and Ferster 1997; Sanchez-Vives et al. 2000a, b). However, similar hyperpolarization processes have been demonstrated in LGN neurons (Sanchez-Vives et al. 2000a, b). In addition, S potential recordings in the LGN implicate retinal origins of adaptation effects (Solomon et al. 2004). Therefore, potential mechanisms of contrast adaptation may be located in early pathways as well as in the primary visual cortex. Neural fatigue alone, however, cannot completely account for contrast adaptation of cortical neurons because this process is specific to the adapting pattern (Carandini 2000). This pattern specificity is thought to be essential in order to account quantitatively for perceptual consequences of contrast adaptation in humans (Jin et al. 2005; Klein et al. 1974). Our data show that, unlike cortical neurons, LGN cells do not exhibit spatial frequency specific adaptation. Therefore, cortical mechanisms must be responsible for generating spatial frequency specific adaptation. Presumably, this also applies to pattern specific adaptation in general.

We should note that retinal ganglion cells in the salamander exhibit slow contrast adaptation of a similar time course and magnitude as that found for visual cortex (Smirnakis et al. 1997). Furthermore, this effect does not transfer over spatial scale. Two factors may account for the difference between this result and our present findings. First, white noise at different spatial scales was used in the salamander experiments, in contrast to our drifting grating stimulations. Second, sophisticated retinal circuits have been found in lower order animals that may not exist in cats and primates (Barlow et al.
1964; Barlow and Levick 1965; Fried et al. 2002). Therefore, it is possible that the difference between our results and those on salamander retina may be species based.

Acknowledgment

This work was supported by research and core grants (EY01175 and EY03176) from the National Eye Institute
References

Figure Legends

Figure 1:

Stimulation protocol for the three adaptation experiments. Contrast response functions are measured for the same (A) or for different (B) spatial frequencies as those used for adaptation. (C) illustrates the protocol used to measure the spatial frequency tuning curve after adaptation.

Figure 2:

A. A post stimulus time histogram (PSTH) of the response to an onset of a 50% contrast drifting grating for a representative LGN cell. The solid line denotes the best fitted exponential decay function (see Experimental Procedures). B. Histogram of the response after adaptation (bottom) normalized as a percent of the response before adaptation and the time constant (top) defined as the time required to reach 90% of the maximum adaptation level. The mean response after adaptation is 79.44±3.67% as indicated by the arrow. C. Control (dotted lines and unfilled circles) and recovery (solid lines and filled circles) spatial frequency tuning curves (D) Similar control data for contrast tuning. Both sets of data (C and D) were obtained for identical stimulation conditions separated by 10 minutes.

Figure 3:

Contrast response functions before and after adaptation for four representative LGN cells. Filled and unfilled circles denote responses in the unadapted and adapted conditions, respectively. Solid and dotted lines are the best hyperbolic nonlinearity fits to the data points. Spatial and temporal frequencies for the test stimuli are: (A) 0.26cpd and 14hz,
(B) 0.5cpd and 10hz, (C) 0.07cpd and 12hz, and (D) 0.3cpd and 7hz. The adapting grating has the same temporal and spatial frequencies as the test.

Figure 4:

Change in contrast tuning parameters due to adaptation. A. R_{max} for the adapted versus unadapted conditions. B. C_{50} in the adapted versus unadapted conditions.

Figure 5:

Same data as in Fig. 3 with an additional adaptation condition in which adapt and test spatial frequencies are different, denoted by the unfilled triangles and dotted lines. For these additional experiments the test spatial and temporal frequencies and adapting temporal frequencies are the same as in Fig. 3, and the adaptation spatial frequencies are (A) 0.1cpd, (B) 0.1cpd, (C) 0.53 cpd, and (D) 0.02cpd.

Figure 6:

Comparison of R_{max} (A) and C_{50} (B) for two conditions. One is adaptation to a different spatial frequency than that of the test. The second condition is adaptation to the same spatial frequency as that of the test.

Figure 7:

Spatial frequency tuning curves for four representative cells before adaptation (filled circles, solid line), after adaptation to a spatial frequency below the peak (unfilled circles, dashed line) and after adaptation to a spatial frequency above the peak (unfilled triangles, dotted line). The lines denote the best Gaussian function fits to the data (see Results).
Spatial frequency tuning curves for both conditions of adaptation are almost identical for all four cells. Temporal frequencies of the adapting and test stimuli are (A) 10Hz, (B) 7Hz, (C) 7Hz, and (D) 10Hz.

Figure 8:

Difference in spatial frequency tuning curve parameters in three conditions: unadapted, adapted to low spatial frequencies, and adapted to high spatial frequencies. A. Adapted (vertical axis) versus unadapted (horizontal axis) spatial frequency tuning peak (μ parameter, see Results). Unfilled and filled circles denote adaptation to a spatial frequency below (low) and one above (high) the peak, respectively (N=19). B. Adapted (vertical axis) versus unadapted (horizontal axis) spatial frequency tuning width (σ parameter, see Results). Unfilled and filled circles denote adaptation to a spatial frequency below (low) and a spatial frequency above (high) the peak, respectively (N=19). C. Spatial frequency tuning peaks after adaptation to a high (vertical axis) spatial frequency versus a low (horizontal axis) one, respectively (N=19). D. Spatial frequency tuning widths (σ parameter, see Results) after adaptation to a high (vertical axis) spatial frequency versus a low (horizontal axis) one, respectively (N=19).
Figure 5

(A) and (B) show the response (spikes/sec) against contrast (%) for different conditions. (C) and (D) depict similar data but with different parameters.
Figure 8

A
Adapted peak (c/deg) vs Unadapted peak (c/deg)

B
Adapted width (c/deg) vs Unadapted width (c/deg)

C
Adapted to high peak (c/deg) vs Adapted to low peak (c/deg)

D
Adapted to high width (c/deg) vs Adapted to low width (c/deg)