Title: Endogenous D-serine contributes to NMDA receptor-mediated light-evoked responses in the vertebrate retina

Authors: Eric C. Gustafson¹, Eric R. Stevens¹, Herman Wolosker² and Robert F. Miller¹

¹Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455. ²Department of Biochemistry, B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.

Abbreviated Title: D-serine in retinal function

Corresponding Author:
Eric G. Gustafson
Department of Neuroscience
6-145 Jackson Hall
University of Minnesota
321 Church Street SE
Minneapolis, MN 55455
gusta080@umn.edu
Tel: 612-626-5613
Fax: 612-626-2136

6 figures

28 pages
Abstract

We have combined electrophysiology and chemical separation and measurement techniques with capillary electrophoresis (CE) to evaluate the role of endogenous D-serine as an NMDA receptor (NMDAR) coagonist in the salamander retina. Electrophysiological experiments were carried out using whole-cell recordings from retinal ganglion cells and extracellular recordings of the Proximal Negative Response (PNR), while bath applying two D-serine degrading enzymes, including D-amino acid oxidase (DAAO) and D-serine deaminase (DsdA). The addition of either enzyme resulted in a significant and rapid decline in the light-evoked responses observed in ganglion cell and PNR recordings. The addition of exogenous D-serine in the presence of the enzymes restored the light-evoked responses to the control or supracontrol amplitudes. Heat inactivated enzymes had no effect on the light responses and blocking NMDARs with AP7 eliminated the suppressive influence of the enzymes as well as the response enhancement normally associated with exogenous D-serine application. CE was used to separate amino acid racemates and study the selectivity of DAAO and DsdA against D-serine and glycine. Both enzymes showed high selectivity for D-serine without significant effects on glycine. Our results strongly support the concept that endogenous D-serine plays an essential role as a coagonist for NMDARs, allowing them to contribute to the light-evoked responses of retinal ganglion cells. Furthermore under our experimental conditions, these coagonist sites are not saturated so that modulation of NMDAR sensitivity can be achieved with further modulation of D-serine.

Key words: D-serine deaminase, D-amino acid oxidase, glia
Introduction

For the past decade and a half, there has been a shift in thinking associated with D-amino acids. Previously thought to be of little consequence in higher species, it has become clear that some D-amino acids are physiologically relevant in vertebrates. The most convincing case for a functional role of a D-amino acid is that of D-serine which is now thought to serve as an essential coagonist for NMDARs in many regions of the central nervous system. The unique activation properties of NMDARs require the simultaneous binding of glutamate together with a coagonist which binds at the ‘glycine binding site.’ Although it was originally assumed that glycine was the native coagonist for this essential function, recent studies suggest that in many regions of the nervous system D-serine may be the dominant endogenous coagonist (19; 26). D-serine is synthesized in the nervous system from L-serine by the enzyme serine racemase which was initially localized to astrocytes (29). In astrocyte cultures, release of D-serine is mediated by activation of AMPA receptors intrinsic to glial cells (20). Thus D-serine regulation of NMDARs has opened up a new modality for glial participation in the control of neuronal excitability. A recent study, however, has raised the possibility that serine racemase and D-serine may also be found in neurons, so the idea of an exclusive role for D-serine as a mediator for glial-neuronal control has become more clouded (8).

As a component of the central nervous system, the vertebrate retina has been a focus of pioneering studies of glial function and glial-neuronal interactions (21). In the retina, NMDARs are found on ganglion cells, the output cells of the retina, and some amacrine cells (6; 18). Immunostaining methods have localized D-serine and serine racemase to glial cells in the retina, including Müller cells and astrocytes. Functionally, when the enzyme D-amino acid oxidase (DAAO) was added to the bathing medium, whole-cell currents of retinal ganglion cells evoked
by focal application of NMDA were attenuated. Additionally, extracellularly recorded NMDAR-mediated currents were reduced, suggesting that endogenous levels of D-serine may serve a coagonist function in the retina (31).

The light-evoked responses of retinal ganglion cells have prominent NMDAR contributions (13). The chemical identity of the coagonist for NMDAR activation, whether it is D-serine or glycine, has not been clearly established. Preliminary findings suggest that D-serine may play a role as an endogenous coagonist for NMDARs in the retina (31), but evidence favoring this point of view is incomplete and no studies have yet examined D-serine’s role in light-evoked responses of retinal ganglion cells. D-serine has been detected in the retina, but levels of this amino acid are low (15; 23) perhaps because of the presence of DAAO in photoreceptors (30) and Müller cells (1). In addition, the retina is a site in which glycine plays a prominent role as an inhibitory neurotransmitter released by a subset of amacrine cells (12; 17). Thus glycine may be comparatively high in the inner retina--the very region where NMDARs are located.

Complications related to previous work in the retina have come from recent studies related to the actions of DAAO. The enzyme is not selective for D-serine. It is more metabolically active against D-alanine and more importantly has been reported to deplete glycine levels (5). In addition, many commercially available DAAO preparations have been found to contain some level of D-aspartase activity, which may lead to the degradation of NMDA when it is used as an exogenous coagonist for NMDARs (27). Thus, a previous study in the retina, in which DAAO was used to demonstrate reduced sensitivity to exogenously applied NMDA, could have an alternative explanation (31) due to possible contamination in the enzyme preparation with D-aspartase activity. In this study, we have addressed the limitations of prior work based
on DAAO by carrying out experiments using a more selective D-serine degrading enzyme, DsdA. Additionally, we have characterized the selectivity of both DsdA and DAAO against glycine and D-serine using capillary electrophoresis to measure the specificity of action of both enzymes.

We report that light-evoked responses in the retina are attenuated following the application of either of two different D-serine degrading enzymes—including, for the first time, the successful use of the highly selective enzyme DsdA in an intact tissue preparation. Furthermore, this enzymatically based attenuation of the light response of retinal ganglion cells is dependent on activation of NMDARs—since no change is seen when they are applied in the presence of the NMDAR antagonist AP7. These findings strongly support a role for endogenous D-serine as a coagonist of NMDAR contributions to light-evoked activity in the inner retina. Our results also suggest that under the experimental conditions of this study D-serine is the dominant and favored coagonist of NMDA receptors.
Materials and Methods

Electrophysiology: Tiger salamanders (*Ambystoma tigrinum*) were purchased from a dealer (Charles D. Sullivan Co., Nashville, TN) and maintained in circulated cold-water tanks (4°C) with a 12 hour room light/dark cycle. Animal maintenance and experimental protocols were approved by the Institutional Animal Care and Use Committee at the University of Minnesota. Animals were killed by decapitation followed by double pithing.

PNR experiments were performed in the amphibian eyecup preparation after removing the cornea and lens and draining the vitreous (16). Beveled glass microelectrodes, with tip resistances of a few MΩ, were filled with Ringer, mounted on a micromanipulator, inserted into the retina to a depth of 60-100 µm and adjusted to the maximum amplitude of the PNR (3). Amplification was achieved by a Grass P16 amplifier connected to an A/D converter (DigiData 1200) and displayed using a computer controlled by PClamp software (9.0, Molecular Devices, Sunnyvale, CA), sampling at 1 kHz. A small spot of light (110 µm in diameter) from a 12V tungsten-iodide light source was positioned directly over the electrode. During recordings, focal light stimulation alternated with the presentation of a diffuse light stimulus that covered the entire retina. Stimulus intensity was controlled with neutral density filters. The eyecup was continually superfused, at a rate of 1-2 ml/min, with a cooled (19°C), oxygenated, Mg²⁺-free Ringer solution. To maximize the NMDAR contribution to the PNR, a control cocktail solution containing (in µM) 10 NBQX (Tocris, Ellisville, NJ), 10 strychnine, 50 picrotoxinin, and 50 mecamylamine was applied. In these studies all additional pharmacological agents were added to this cocktail Ringer solution.

Whole cell recordings were obtained from identified ganglion cells in a flatmount retina preparation of the tiger salamander (31). Isolated retinas were placed in a perfusion chamber,
ganglion side up. The chamber was continuously perfused with cooled (19°C), oxygenated Ringer at a rate of 1-2 ml/min. Ganglion cells were observed using a water immersion objective. Patch electrodes (5-10 MΩs) were pulled using a P-97 Flaming Brown Pipette Puller (Sutter Instruments, Novato, CA) and filled with an intracellular solution containing, in mM: KCH₃SO₄, 98.0; NaCH₃SO₄, 3.5; MgSO₄, 3.0; CaCl₂, 1/0; EGTA, 11.0; HEPES, 5.0; D-glucose, 2.0; glutathione, 1.0; MgATP, 1.0; NaGTP, 0.5; pH 7.4. Voltage-clamp studies were carried out after adjusting the standing current to zero (average membrane potential = -68.9± 0.9 mV, n=22), using an Axoclamp 700A amplifier with a 10 kHz low pass Bessel filter at a sampling frequency of 4-10 kHz, digitized with a Digidata 1320 and recorded in PClamp 9.0 (all Molecular Devices, Sunnydale, CA). Series resistance was uncompensated.

Light stimulation was provided by a computer-controlled LCD projector system using a tungsten-halogen light source (4); unless indicated otherwise, the diameter of focal light stimuli was 250 µm. The duration of light stimulation was typically two or four seconds and was projected onto the preparation through a 20X microscope objective (Olympus Melville, NY) and focused on the plane of the ganglion cell layer. Responses to the onset and offset of the stimulus were evaluated as peak amplitude in addition to the total charge, which was determined by integrating the light-evoked currents. DAAO and DsdA were delivered in a nominally Mg²⁺-free Ringer solution.

Extracellular Ringer solution contained (in mM) 110 NaCl, 2.5 KCl, 1.8 CaCl₂, 10 HEPES, 5 D-glucose, pH 7.8. Except as indicated, all agents were purchased from Sigma Chemical (St. Louis, MO). D,L-AP7 (100 µM) was used to block NMDAR currents (Tocris, Ellisville, MO). Tissue D-serine degradation was carried out using 100 µg/ml of D-amino acid oxidase (Worthington, Lakewood, NJ) or 10 µg/ml of D-serine deaminase added to the perfusion
medium. Bacterial DsdA, which has been shown to be much more efficient in the removal of D-serine compared to DAAO, was isolated and purified by the methods previously outlined (27).

Capillary Electrophoresis: Ringer samples containing 10 µM of both D-serine and glycine were incubated at room temperature with DAAO (100 µg/ml) or DsdA (10 µg/ml) in low volume (1.6 µL) centrifuge tubes for times ranging from one minute to four hours. Samples were then measured for their amino acid levels using a commercial capillary electrophoresis (CE) instrument with laser-induced fluorescence (LIF) detection (Beckman Coulter P/ACE MDQ), as previously described (23). The samples were fluorescently derivatized at 60°C for 15 minutes with 4-fluoro-7-nitrobenz-2-oxa-1,3-diazole (NBD-F, Molecular Probes, Eugene, OR) before being analyzed by CE using a hydroxypropyl-β-cyclodextrin (HP-β-CD) separation buffer. All data were collected and analyzed using Karat 32 software (Beckman Coulter, Fullerton, CA).

Statistics: CE and electrophysiological data were analyzed in Origin, 7.0 or 7.5 (Northhampton, MA). All results are expressed as the mean ± SEM and a student t-test was used to compare values; a p-value less than 0.05 was considered significant for all statistical analyses.

Results

Light-evoked whole-cell responses are attenuated after degradation of D-serine

Whole-cell recordings of retinal ganglion cells were carried out in the voltage-clamp mode to study the properties of synaptically mediated, light evoked responses. These recordings were most commonly obtained from On-Off ganglion cells, whose light-evoked responses typically consisted of transient peaks at light ON and OFF, with a somewhat slower response decay following the peak as illustrated in Fig 1A. In this example, a Mg²⁺-free Ringer was used to minimize the magnesium block of NMDA receptors which is typically present at the normal resting membrane potential of ganglion cells. The addition of DAAO to the bathing solution
resulted in a reduction of the inward current response to the light stimulus. Figure 1B shows the cumulative data from six experiments and illustrates that the ON response peak amplitude was reduced by $21.8 \pm 4.6\%$ of the control. The total charge, determined by integrating the response, was $25.0 \pm 7.8\%$ less than control. The OFF responses were also reduced with a peak amplitude reduction of $21.8 \pm 4.2\%$ and a reduction in total charge to $28.1 \pm 8.4\%$ of control values ($n=6$). The enzymatic reductions for ON and OFF responses were significant when compared to control levels ($p < 0.05$).

We carried out a series of additional experiments to evaluate the actions of the more selective enzyme DsdA (Fig 1C,D). DsdA attenuated both the ON and OFF responses of retinal ganglion cells. The peak amplitude of the ON response declined by $33.0 \pm 10.0\%$ while the total charge was reduced by $28.8 \pm 5.9\%$. The peak amplitude of the OFF response was reduced by $24.8 \pm 5.6\%$ and the total charge was diminished by $32.0 \pm 7.1\%$ ($n=6$, $p < 0.05$). In these experiments, we also determined whether the addition of exogenous D-serine to the enzyme bathing solution could restore the responses to control levels (Fig 1D). These observations illustrated that, in many cases, the addition of D-serine in the presence of the enzyme increased response amplitudes to levels higher than that of the controls. Heat inactivation of the enzymes, by exposing the enzyme solutions to a boiling water bath for 5 minutes, eliminated the suppressive effects of DAAO and DsdA on the light-evoked currents (not illustrated).

D-serine degradation attenuates extracellularly recorded NMDAR currents

Beveled glass microelectrodes were used to measure the Proximal Negative Response (PNR) in the tiger salamander eyecup. The PNR is a response of the inner retina that reflects activity of third-order retinal neurons, including amacrine and ganglion cells (3). In standard, Mg$^{2+}$-free Ringer, the NMDAR component of the PNR was minimal. Under these conditions,
blocking NMDA receptors with the antagonist AP7 did not significantly reduce the PNR; a decrease of 2.0 ± 3.8% of the peak amplitude was observed under these conditions (n=7; Fig 2D, inset: standard+AP7 vs standard). But when a cocktail of antagonists was added to the bathing medium (picrotoxinin, strychnine, mecamylamine, and NBQX), the PNR was enhanced and the relative contribution from NMDARs was pronounced. The addition of the cocktail itself increased the PNR amplitude, as measured at the peak of the ON response (Fig 2D, light gray vs. black trace) and converted it to a light response that was largely composed of NMDAR-mediated current. When AP7 (100 µM) was added to the cocktail, the ON response of the PNR was reduced by 82.6 ± 4.1% (n = 7, Fig 2D). By using the cocktail as the control bathing solution, we were able to examine an NMDAR-dominated light evoked response of the inner retina with the convenience of extracellular recordings, which provided a more stable recording environment.

We confirmed previous studies of the PNR (carried out using a slightly different cocktail) by demonstrating that enzymatic degradation of D-serine, through the addition of exogenous DAAO (100 µg/ml), reduced the magnitude of the NMDAR-dominated PNR (Fig 2A)(31). To establish that this result was due to the activity of the enzyme, the enzyme was exposed to a boiling water bath for five minutes prior to application, after which application to the retina was devoid of any detectable influence on the PNR amplitude (data not shown).

We studied the actions of DsdA (10 µg/ml) through bath application of the enzyme: DsdA decreased the NMDAR-dominated PNR. Figure 2B shows the results from a D-serine degradation experiment. In the presence of the control cocktail a large PNR response was recorded (black trace). After the addition of DsdA to the Ringer, the PNR response decreased (lower gray trace). Both DAAO and DsdA reduced the PNR amplitude, with an average
reduction of 14.7 ± 2.1% for DAAO and 20.0 ± 3.1% for DsdA when compared to control responses (Fig. 2C; DAAO n = 7, DsdA n = 5; p < 0.05). To confirm that the effect of the enzymes on the PNR was restricted to their degradation of endogenous D-serine and not due to a non-specific action, exogenous D-serine was added to the DAAO and DsdA solutions. The addition of D-serine to the enzyme solutions returned the PNR responses to control levels and, in some cases, led to an enhanced response larger than that of the control (upper, light gray traces, Fig. 2A, B, C). In our experiments, 100 µM D-serine added to the DAAO solution was sufficient to bring the response back to or beyond control values. In contrast, however, it was necessary to use a higher concentration of D-serine (200 µM) to achieve the same results when using the DsdA enzyme. We attribute this need for higher D-serine level in the DsdA enzyme perfusate to the more powerful degradation action of DsdA against D-serine. The ability of D-serine to overcome the reduction of the PNR induced by DAAO and DsdA, coupled with the ineffectiveness of the heat-inactivated enzymes, provides strong evidence that the enzymes act by reducing extracellular endogenous levels of D-serine and thereby reduce the endogenous coagonist of NMDARs.

Confirmation of enzyme specificity

We explored the possibility that the suppressive effects of DAAO and DsdA on the NMDAR-mediated responses of the inner retina could be the result of an action of these enzymes on glycine rather than D-serine. A degradation of glycine by DAAO has been previously reported (5). This determination was essential, as any reduction in glycine by these enzymes would invalidate our conclusions about the role of D-serine vs glycine as an NMDAR coagonist in the retina. We addressed this problem by using capillary electrophoresis (CE) to examine both the time course and specificity of action of the two enzymes on D-serine and glycine. When
added to a Ringer solution containing 10 µM each of D-serine and glycine, DAAO and DsdA both significantly reduced D-serine concentrations while not significantly affecting glycine levels during incubation times from 1 minute to 4 hours (Fig 3B). Although the effects on D-serine versus glycine were similar with the two enzymes, DsdA was more efficient and powerful in its action on D-serine. DsdA led to the complete elimination of the D-serine peak in the electropherogram at the shortest incubation time without significantly affecting the glycine peak (Fig. 3A, B right). In contrast, an identical study with DAAO revealed a much slower, time-dependent drop in D-serine levels, but with no significant influence on glycine (Fig. 3B left). Thus, these studies clearly support the idea that enzymatic reductions in NMDA receptor contributions reflect the action of these enzymes on endogenous D-serine rather than glycine.

PNR amplitude is increased following application of exogenous D-serine

We used the enhanced PNR as a tool for evaluating the level of saturation of the NMDAR coagonist site under our experimental conditions. Figure 4A illustrates a PNR recording in which exogenous D-serine was added to the control cocktail mixture, resulting in an elevation of the PNR amplitude. The PNR enhancement by the addition of D-serine (100 µM) to the control solution led to an increase in this field potential of 14.4 ± 3.9% versus control; washout was sufficient to record a return to the control response (Fig. 4B; n = 6, p < 0.05). Interestingly, response enhancement was also observed after some applications of D-serine added to DAAO or DsdA, enhancing the amplitude beyond the original values of the control (see figure 2B).

Manipulation of D-serine levels has no effect when NMDARs are blocked

Whole-cell recordings from retinal ganglion cells were used to examine the dependence of endogenous D-serine manipulation on NMDAR activity. Fig 5A illustrates an example of
this strategy. A control light-evoked response (5A, black trace) was obtained from an On-Off ganglion cell in Mg\(^{2+}\)-free Ringer. This was followed by the introduction of AP7, to block NMDA receptors; when a steady state response was observed in the AP7 environment, the trace shown in gray was obtained, illustrating a reduction in the On and Off inward currents. This was followed by the addition of the DsdA enzyme to the AP7 bathing which was without any additional influence on the light response. The DsdA+AP7 trace was indistinguishable from the response evoked in AP7 alone. The inset is an expanded timescale from the ON response to illustrate how closely the two traces (gray and light gray) overlap. Figure 5B provides summary data from five experiments carried out identically to that illustrated in 5A; the total charge reduction from NMDAR block was 18.3 ± 8.3% for the ON response and 41.2 ± 16.0% for the OFF response, while the peak amplitude measurements showed a reduction of 21.9 ± 8.3% for the ON and 56.9 ± 9.1% for the OFF response (p > 0.05). Figure 5C illustrates the alternative experiment, in which a control light-evoked response was obtained from an On-Off ganglion cell in a Mg\(^{2+}\)-free Ringer, after which the addition of AP7 reduced the light response and also had a significant effect in reducing the background inward current (or elevation of an outward current) accounting for the response displacement. Superimposed on the AP7 recording is a recording from the same cell obtained after adding 100 µM D-serine to the AP7 bathing solution. Because the two traces virtually superimpose, it is clear that the normally enhancing actions of D-serine on light-evoked currents of ganglion cells require the presence of functional NMDARs. Figure 5D summarizes the five experiments carried out identically to that illustrated in 5C. In summary, when NMDARs are blocked with AP7, neither D-serine nor DsdA modify the response to light. This indicates that the action of D-serine and DsdA is mediated solely through NMDARs.
The AP7 and DsdA reduction in light-evoked responses are indistinguishable

Figure 6 summarizes and compares the effects of AP7 and DsdA from the data presented previously. In all cells studied with AP7 (see fig 5C & D), the reduction in relative total charge of ganglion cell light responses versus those observed in the Mg\(^{2+}\)-free control was 25.3 ± 5.0% (ON) and 42.6 ± 8.2% for the OFF response. These values were not significantly different than the reductions observed following DsdA application (ON reduction of 28.8 ± 5.9% and OFF reduction of 32.0 ± 7.1%). A student t-test comparing the reductions found in AP7 to those with DsdA, revealed p-values = 0.673 for the ON and 0.356 for the OFF.

Discussion

The present study has established that D-serine is a functional endogenous NMDAR coagonist in the salamander retina and is essential for NMDARs to participate in generating synaptic currents in retinal ganglion cells. Bathing the retina in D-serine degrading enzymes (DAAO and DsdA) attenuated light-evoked responses observed in whole-cell recordings of ganglion cells and those of the field potentials reflected in the enhanced PNR. In this study, we have introduced the enzyme D-Serine deaminase (DsDa) to an application involving intact tissue, whereas previous studies used this expressed and purified enzyme preparation to study excitotoxicity in tissue culture preparations (27). We used capillary electrophoresis techniques to separate and quantitatively analyze the relevant amino acid enantiomers and demonstrated that DsdA was more effective than DAAO in reducing D-serine although both enzymes showed high selectivity for D-serine over glycine. Similar to the effects of DAAO, DsdA decreased NMDAR currents in ganglion cells while the heat-inactivated form was without effect. We suggest that the greater sensitivity of DsdA towards D-serine and its higher rate of degradation make it the enzyme of choice over DAAO for rapidly and effectively reducing endogenous D-serine levels when using intact tissue preparations. Given the purity of the DsdA enzyme used in this study, it has the additional merit of being free from other conflicting contaminants, such as the D-aspartase that sometimes can be found in commercial preparations of DAAO (27).

Since DsdA is more effective than DAAO in degrading D-serine, it is natural to ask whether DsdA is present in the brain and retina. While the presence of DAAO in vertebrates has long been known, this enzyme is more selective for D-alanine and D-proline compared to D-serine. DsdA is found in bacteria, but, it is also found in birds. A recent study comparing the two enzyme pathways has been reported based on the use of an HPLC-based technique for
analyzing and comparing the two by-products of D-serine degradation by DAAO (3-hydroxypyruvate) and DsdA (pyruvate). Using this method, the brains of rats and chickens were compared for D-serine metabolites. D-serine degradation in bird brains could be attributed to the actions of both DAAO and DsdA, but in the rat brain D-serine was metabolically restricted to DAAO. However, while it appears that DsdA is an unlikely player in mammalian nervous tissue, it has not to our knowledge been evaluated been evaluated with this more direct, functional technique in amphibians.

In addition to the link between endogenous D-serine and light-evoked NMDAR activation established in this study, we have addressed several major issues that have clouded our understanding about the role of D-Serine in the retina. The current study has established that, at physiological pH conditions, the enzymatic action of DAAO shows high selectivity for D-serine while having little effect on glycine levels. Thus, a previous report on DAAO degradation of glycine presumably reflected the high pH (10.3) used in that analysis (5). In contrast, our study of DAAO selectivity was done using normal Ringer, at physiological pH (7.8). Under these conditions we did not detect any glycine degradation even after several hours of exposure. We also established that when DAAO was applied to the retina, the associated decrease in NMDAR-mediated events was restored with co-application of exogenous D-serine, while the application of the heat-inactivated enzyme did not influence NMDAR currents. The addition of exogenous D-serine to overcome the suppression of NMDAR currents as a result of enzyme application has provided compelling additional evidence that the active form of the enzyme reduced NMDAR currents through its action on the endogenous pool of D-serine. This result extends the observations reported by Stevens et al (2003) in which the inactive form of the enzyme was not
evaluated and, together with identical results found with DsdA, strongly support the idea that endogenous D-serine plays a major role as the NMDAR coagonist.

We determined that the addition of D-serine degrading enzymes consistently and reliably reduced the light evoked response, as measured electrophysiologically in PNR recordings and through WCRs of retinal ganglion cells. The two enzymes resulted in very similar reductions in light responses that could be attributed to NMDAR activation. Since these enzymes have no observed effects on glycine, we conclude that endogenous D-serine plays a major role as an NMDAR coagonist in the salamander retina. While it is important to emphasize that our results do not eliminate the possibility that glycine also serves a companion NMDAR coagonist role, we were unable to find a significant level of residual NMDAR function that was not eliminated through the enzymatic exposures used in this study. Therefore, if glycine plays a significant role as an NMDAR coagonist in the retina, it must be operational under different experimental circumstances than those used in this study. Indeed, we believe that the results of this study have reversed the burden of proof for identifying the endogenous NMDAR coagonist in the retina, by replacing a presumed coagonist, glycine, with D-serine for which strong compelling evidence is now available. However, because of the multitude of different functional states in which the retina is designed to detect visual signals, it is premature to eliminate glycine from any functional role in setting NMDAR sensitivity. Nevertheless, our results provide a compelling case for D-serine as the major coagonist of NMDARs in the retina.

While we think it is unlikely that glycine plays a prominent role as an NMDAR coagonist in the retina, it occupies a place of prominence in retinal function and, for that reason alone, glycine merits some discussion. Glycine is a prominent, inhibitory amino acid in the retina, utilized by a subset of amacrine cells (12; 17). It is widely assumed that, in the brain, glycine
uptake through the GlyT1 transporters, which are localized to astrocytes, serves to regulate the availability of glycine and determines its role as a coagonist of NMDARs (2). In contrast to the brain, the distribution of the GlyT1 transporters in the retina is more complex and may differ across species. In mammalian and chick retinas, it appears that GlyT1 transporters are absent in glia, but are found instead in a subset of glycinergic amacrine cells (25) where, surprisingly, the GlyT1 transporter plays a central role in glycine accumulation in these cells (24), as very little net glycine synthesis is present. In contrast to the mammalian/chick retinas, recent studies in the bullfrog retina have presented evidence for GlyT1 transporters in Müller cells (7) (9).

In the brain, the co-distribution of NMDARs and GlyT1 transporters has been examined at the ultrastructural level (28) and revealed a close correspondence and apposition of these two membrane embedded proteins. This correspondence has raised speculation that the GlyT1 transporters play a special role in setting the background levels of glycine and hence in regulating NMDAR sensitivity. We suggest that a similar relationship may exist in the retina. When the selective GlyT1 transport blocker NFPS (N[3-(4-fluorophenyl)-3-(4-phenylphenoxy)-propyl]sarcosine) was applied to the salamander retina, the coagonist sites reflected in the NMDAR component of ganglion cell light responses were saturated (E.R. Stevens, unpublished observation) strongly suggesting that the GlyT1 transporter served to reduce the external levels of glycine so that NMDAR coagonist sites were not saturated. When these observations are put in the context of the current study, it endorses the following generalization about the relationship between D-serine and glycine as coagonists for NMDA receptors in the retina: under normal conditions, the GlyT1 transporters maintain external glycine levels substantially below the level at which glycine interacts significantly with the coagonist sites of NMDARs. The high affinity of the GlyT1 transporters for glycine uptake combined with the lower affinity of the NMDAR
coagonist sites for glycine (14) reduces external glycine such that D-serine dominates the binding of the coagonist sites and serves to control the relative contribution of NMDARs to the synaptic currents of retinal ganglion cells. Presumably this applies as well to those amacrine cells which have NMDARs, but these cell types were not included in this analysis.

The results of this study have functional implications for the regulation of NMDAR sensitivity in the retina. The consistent potentiation of the PNR following the application of exogenous D-serine argues that, under our experimental conditions, the coagonist sites of the NMDARs are not saturated. Thus, manipulation of D-serine levels above or below this background level should, respectively, enhance or diminish synaptic currents generated by NMDARs. In fact, early experiments examining the role of the coagonist site in retinal ganglion cell NMDARs found evidence that increases in stimulation intensity led to an increase in available coagonist concentration as measured against the competitive coagonist site inhibitor 5,7-dichlorokynurenic acid (11). While this effect was attributed to glycine release from amacrine cells, our results support a different interpretation based on the dominance of D-serine as the major and perhaps only coagonist for NMDA receptors. It is important to note that the coagonist sites of NMDAR can mediate two complimentary but distinct functions. One is to serve as the coagonist with glutamate to open the ion channel, while the other function is manifest when D-serine is below saturation levels, in which case the degree of saturation at this site plays a role in the rate of NMDAR desensitization: saturation of the site decreases the rate of desensitization of NMDARs (10; 32). Thus, both the magnitude and the time course of NMDAR currents are modulated by the degree of saturation at the coagonist site. Yet a third role for the coagonist site was more recently proposed in which saturation at this site stimulated internalization of NMDARs (22), but the functional significance of this effect remains unknown.
The present study has expanded the evidence that D-serine plays a role as a coagonist for NMDARs in the retina and removed some of the experimental ambiguity of previous studies which first proposed a relationship for endogenous D-serine and NMDAR sensitivity. Despite the reportedly low tissue levels of D-serine in the retina (15; 23), degradation of endogenous D-serine reduces NMDAR-mediated currents. Because NMDARs contribute to neuronal excitation in the inner retina (13), it will be important for future studies to determine how the synthesis, storage, release and uptake of D-serine are controlled and how these mechanisms fit into concepts that reflect glial-neuronal interactions.

The original studies of the D-serine synthesizing enzyme serine racemase (SR) localized the enzyme exclusively to astrocytes (29) and observations in the retina supported the localization of SR to Müller cells and astrocytes (31). More recently, Kartvelishvily et al. (2006) have proposed that SR is also found in neurons and this work has placed doubts about whether the enzyme and hence D-serine is exclusively a glial derived modulator of NMDA receptors. It appears that this issue may be related to differences in the specificity of the antibodies used for localization of the racemase enzyme. In addition to the original study of Stevens et al. (2003), a more recent publication by Pow (33) has further supported the idea that SR is found in glial cells in the retina. Thus far, no study of the retina has implicated significant neuronal localization of SR, but clearly, more work will be needed to clarify whether SR and D-serine are exclusively within the operational domain of glial cells.
Acknowledgments

This research was supported by NIH grant R01 EY003014 to RFM and training grant support from T32 EY07133 to ERS and ECG.

22. **Nong Y, Huang YQ, Ju W, Kalia LV, Ahmadian G, Wang YT and Salter MW.**

Figure Legends

Figure 1

Whole-cell recordings of light-evoked responses from retinal ganglion cells are attenuated following enzymatic degradation of endogenous D-serine. A, under voltage clamp conditions, a RGC shows a large inward current to light onset followed by a smaller current at light offset. The addition of 100 µg/ml DAAO to the medium leads to a reduction in the response. B, cumulative data shows that these effects are significant with responses under DAAO treatment showing decreases in total charge of 25.0 ± 7.8% (ON) and 28.1 ± 8.4% (OFF) and in amplitude of 21.8 ± 4.6% (ON) and 21.8 ± 4.2 % (OFF) when compared to controls, n = 6. Full effect of enzyme occurred within 10 minutes of application and washout in Mg²⁺-free Ringer (RTC) returned values to control levels within 15 minutes. C, an example of voltage clamp traces from a RGC showing the attenuation of light-evoked responses following DsdA application. D, bath application of DsdA decreases the total charge by 28.8 ± 5.9% (ON) and 32.0 ± 7.1% (OFF) and decreases the peak amplitude by 33.0 ± 10.0% (ON) and by 24.8 ± 5.6% (OFF). The addition of D-serine (200 µM) to the enzyme solution returned the responses to levels similar to those of control.

Figure 2

PNR amplitude is decreased following the application of D-serine degrading enzymes. A, a representative set of traces shows the reduction of the PNR amplitude following application of DAAO (100 µg/ml) and a subsequent increase following the addition of D-serine to the enzyme solution. B, addition of 10 µg/ml of DsDa similarly affects the PNR amplitude. C, cumulative results for PNR degradation experiments. The application of DAAO led to a significant decrease in PNR amplitude of 14.7 ± 2.1% (n = 7); similarly, DsDa decreased the amplitude by 20.0 ±
3.1% (n = 5). Addition of exogenous D-serine resulted in amplitudes that were indistinguishable from control cocktail levels. In Mg²⁺-free Ringer, the PNR is small (light gray trace) and shows little NMDAR contribution. Addition of exogenous D-serine resulted in amplitudes that were indistinguishable from control cocktail levels. In Mg²⁺-free Ringer, the PNR is small (light gray trace) and shows little NMDAR contribution (inset, black control vs. light gray AP7). In our control cocktail, the PNR increases greatly in amplitude (black trace) and the application of AP7 nearly eliminates the response (dark gray trace and inset: control cocktail black vs. dark gray).

Figure 3

Capillary electrophoresis examination of DAAO and DsDa enzymatic activity. A, electropherograms of NBD-F labeled amino acids levels in a solution containing 10 µM glycine and D-serine with (gray) and without exposure (20 min) to DsDa (10 µg/ml) show its specificity and efficiency of action for D-serine, without affecting glycine. B, cumulative data of the peak area ratio (the integrated peak values divided by an amino acid standard) of glycine and D-serine show a slow and significant reduction of D-serine levels of solutions exposed to D-AAO, while DsDa action proves to be rapid, with no levels detected even with the shortest incubation times. Glycine levels are not affected by either enzyme, even after four hours of incubation.

Figure 4

Application of exogenous D-serine increases the amplitude of the PNR. A, an example set of traces show an increase in amplitude of the PNR response following application of 100 µM of exogenous D-serine (light gray trace). A return to the control cocktail (RTC) decreased the amplitude to near the control level (dark gray). B, cumulative results show a significant increase of 14.4 ± 9.5% in the PNR amplitude when compared to controls, n = 6.

Figure 5
Blockade of NMDARs eliminated the effects of D-serine degradation and application. A, whole-cell, voltage clamp recording shows the reduction in light-evoked response following application of AP7 (black vs. light gray trace). Subsequent addition of DsdA has no effect of the response (dark gray trace). The inset shows an expanded timecourse of the ON response to illustrate the amount of overlap between the AP7 and AP7 + D-serine traces. B, cumulative results from five experiments show the decrease in total charge and peak amplitude of the ON and OFF responses to the light stimulus—total charge decreased (ON) 18.3 ± 8.3% (AP7) and 13.1 ± 7.0% (AP7 + DsdA) and (OFF) 41.2 ± 16.0% (AP7) and 40.0 ± 18.0% (AP7 + DsdA); peak amplitude decreased (ON) 21.9 ± 8.3% vs. 23.9 ± 5.5% and (OFF) 43.1 ± 9.1% vs. 46.2 ± 7.6%. C, voltage clamp responses of a RGC show a decrease in peak amplitude, total charge and standing current following addition of AP7 (black vs. light gray traces). The addition of exogenous D-serine (100 µM) to the AP7 Ringer solution does not alter the response (dark gray trace). D, normalized data show the total charge and amplitude of responses from five experiments. Total charge decreased (ON) 29.2 ± 6.3% (AP7) and 29.8 ± 6.0% (AP7 + D-serine) and (OFF) 43.7 ± 10.2% (AP7) and 36.0 ± 13.3% (AP7 + D-serine); peak amplitude decreased (ON) 28.5 ± 3.5% vs. 26.8 ± 5.1% and (OFF) 51.7 ± 2.3% vs. 46.4 ± 2.8%.

Figure 6

AP7 and DsdA lead to similar decreases in light-evoked current responses. C, cumulative data compare the RGC responses to bath applied AP7 (totals from figure 5C & D) and DsdA (from figure 1). The relative decreases in total charge for the ON responses were 25.3 ± 5.0% (AP7) and 28.8 ± 5.9% (DsdA). For the OFF responses, the decrease from control was 42.6 ± 8.2% (AP7) and 32.0 ± 7.1% (DsdA).
Figure 1
Figure 2
figure 3
figure 4
Figure 5

Panel A: Graph showing the effects of various treatments on neuronal responses to light stimulation.

- **Mg$^{2+}$-free Control**
- **AP7**
- **AP7 + DsDA**

Panel B: Bar chart illustrating the normalized data for **ON** and **OFF** states of **CHARGE** and **AMPLITUDE**.

Panel C: Graph displaying neuronal responses in the presence of different treatments.

- **AP7**
- **AP7 + D-serine**
- **Mg$^{2+}$-free Control**

Panel D: Bar chart showing the normalized data for **ON** and **OFF** states of **CHARGE** and **AMPLITUDE**.